Use of Hydrogels in Regenerative Medicine: Focus on Mechanical Properties
Abstract
:1. Introduction
2. Mechanical Properties of Human Tissues and Organs
2.1. Skin
2.2. Bone Tissue
2.3. Cartilage
2.4. Muscles
3. Hydrogels in Tissue Engineering and Regenerative Medicine
3.1. Hydrogels: Characteristics, Classification, and Production
3.1.1. Hydrogels Fabrication Techniques
3.1.2. Mechanical Properties of Hydrogels
3.1.3. Hydrogel/Tissue Mechanotransduction
4. Hydrogels in Regenerative Medicine
4.1. Hydrogels for Wound Care
4.2. Hydrogel for Bone Regeneration
4.3. Hydrogel for Articular Cartilage Regeneration
4.4. Hydrogel for Skeletal Muscle Regeneration
4.5. Hydrogels for Cardiac Muscle Regeneration
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Mantha, S.; Pillai, S.; Khayambashi, P.; Upadhyay, A.; Zhang, Y.; Tao, O.; Pham, H.M.; Tran, S.D. Smart Hydrogels in Tissue Engineering and Regenerative Medicine. Materials 2019, 12, 3323. [Google Scholar] [CrossRef] [PubMed]
- Tran, T.T.; Hamid, Z.A.; Cheong, K.Y. A Review of Mechanical Properties of Scaffold in Tissue Engineering: Aloe Vera Composites. J. Phys. Conf. Ser. 2018, 1082, 012080. [Google Scholar] [CrossRef]
- Antons, J.; Marascio, M.G.M.; Nohava, J.; Martin, R.; Applegate, L.A.; Bourban, P.E.; Pioletti, D.P. Zone-Dependent Mechanical Properties of Human Articular Cartilage Obtained by Indentation Measurements. J. Mater. Sci. Mater. Med. 2018, 29, 57. [Google Scholar] [CrossRef] [PubMed]
- Öhman-Mägi, C.; Holub, O.; Wu, D.; Hall, R.M.; Persson, C. Density and Mechanical Properties of Vertebral Trabecular Bone—A Review. JOR SPINE 2021, 4, e1176. [Google Scholar] [CrossRef] [PubMed]
- Butcher, D.T.; Alliston, T.; Weaver, V.M. A tense situation: Forcing tumour progression. Nat. Rev. Cancer 2009, 9, 108–122. [Google Scholar] [CrossRef]
- Krishani, M.; Shin, W.Y.; Suhaimi, H.; Sambudi, N.S. Development of Scaffolds from Bio-Based Natural Materials for Tissue Regeneration Applications: A Review. Gels 2023, 9, 100. [Google Scholar] [CrossRef]
- Biggs, L.C.; Kim, C.S.; Miroshnikova, Y.A.; Wickström, S.A. Mechanical Forces in the Skin: Roles in Tissue Architecture, Stability, and Function. J. Investig. Dermatol. 2020, 140, 284–290. [Google Scholar] [CrossRef]
- Roig-Rosello, E.; Rousselle, P. The Human Epidermal Basement Membrane: A Shaped and Cell Instructive Platform That Aging Slowly Alters. Biomolecules 2020, 10, E1607. [Google Scholar] [CrossRef]
- Pozzi, A.; Yurchenco, P.D.; Iozzo, R.V. The Nature and Biology of Basement Membranes. Matrix Biol. 2017, 57–58, 1–11. [Google Scholar] [CrossRef]
- Wong, R.; Geyer, S.; Weninger, W.; Guimberteau, J.-C.; Wong, J.K. The Dynamic Anatomy and Patterning of Skin. Exp. Dermatol. 2016, 25, 92–98. [Google Scholar] [CrossRef]
- Hellström, M.; Hellström, S.; Engström-Laurent, A.; Bertheim, U. The Structure of the Basement Membrane Zone Differs between Keloids, Hypertrophic Scars and Normal Skin: A Possible Background to an Impaired Function. J. Plast. Reconstr. Aesthet. Surg. 2014, 67, 1564–1572. [Google Scholar] [CrossRef]
- Naylor, E.C.; Watson, R.E.B.; Sherratt, M.J. Molecular Aspects of Skin Ageing. Maturitas 2011, 69, 249–256. [Google Scholar] [CrossRef]
- Epstein, E.H.; Munderloh, N.H. Human Skin Collagen. Presence of Type I and Type III at All Levels of the Dermis. J. Biol. Chem. 1978, 253, 1336–1337. [Google Scholar] [CrossRef]
- Oguchi, M.; Kobayasi, T.; Asboe-Hansen, G. Secretion of Type IV Collagen by Keratinocytes of Human Adult. J. Investig. Dermatol. 1985, 85, 79–81. [Google Scholar] [CrossRef]
- Mikesh, L.M.; Aramadhaka, L.R.; Moskaluk, C.; Zigrino, P.; Mauch, C.; Fox, J.W. Proteomic Anatomy of Human Skin. J. Proteom. 2013, 84, 190–200. [Google Scholar] [CrossRef]
- Guimberteau, J.C.; Delage, J.P.; McGrouther, D.A.; Wong, J.K.F. The Microvacuolar System: How Connective Tissue Sliding Works. J. Hand Surg. Eur. Vol. 2010, 35, 614–622. [Google Scholar] [CrossRef]
- Reilly, D.M.; Lozano, J. Skin collagen through the lifestages: Importance for skin health and beauty. Plast. Aesthetic. Res. 2021, 8, 2. [Google Scholar] [CrossRef]
- Avila Rodríguez, M.I.; Rodríguez Barroso, L.G.; Sánchez, M.L. Collagen: A review on its sources and potential cosmetic applications. J. Cosmet. Dermatol. 2018, 17, 20–26. [Google Scholar] [CrossRef]
- Kalra, A.; Lowe, A.; Al-Jumaily, A.M. Mechanical Behaviour of Skin: A Review. J. Mater. Sci. Eng. 2016, 5, 1000254. [Google Scholar]
- Karpiński, R.; Jaworski, Ł.; Czubacka, P. The Structural and Mechanical Properties of the Bone. J. Technol. Exploit. Mech. Eng. 2017, 3, 43–51. [Google Scholar] [CrossRef]
- Bertassoni, L.E.; Swain, M.V. The Contribution of Proteoglycans to the Mechanical Behavior of Mineralized Tissues. J. Mech. Behav. Biomed. Mater. 2014, 38, 91–104. [Google Scholar] [CrossRef]
- Viguet-Carrin, S.; Garnero, P.; Delmas, P.D. The role of collagen in bone strength. Osteoporos. Int. 2006, 17, 319–336. [Google Scholar] [CrossRef]
- Lin, X.; Patil, S.; Gao, Y.G.; Qian, A. The Bone Extracellular Matrix in Bone Formation and Regeneration. Front. Pharmacol. 2020, 11, 757. [Google Scholar] [CrossRef]
- Morgan, E.F.; Unnikrisnan, G.U.; Hussein, A.I. Bone Mechanical Properties in Healthy and Diseased States. Annu. Rev. Biomed. Eng. 2018, 20, 119–143. [Google Scholar] [CrossRef]
- Ott, S.M. Cortical or Trabecular Bone: What’s the Difference? Am. J. Nephrol. 2018, 47, 373–375. [Google Scholar] [CrossRef]
- Grimal, Q.; Laugier, P. Quantitative Ultrasound Assessment of Cortical Bone Properties Beyond Bone Mineral Density. IRBM 2019, 40, 16–24. [Google Scholar] [CrossRef]
- Augat, P.; Schorlemmer, S. The Role of Cortical Bone and Its Microstructure in Bone Strength. Age Ageing 2006, 35 (Suppl. 2), ii27–ii31. [Google Scholar] [CrossRef]
- Schaffler, M.B.; Burr, D.B. Stiffness of Compact Bone: Effects of Porosity and Density. J. Biomech. 1988, 21, 13–16. [Google Scholar] [CrossRef]
- Behrens, J.C.; Walker, P.S.; Shoji, H. Variations in Strength and Structure of Cancellous Bone at the Knee. J. Biomech. 1974, 7, 201–207. [Google Scholar] [CrossRef]
- Ural, A.; Vashishth, D. Effects of Intracortical Porosity on Fracture Toughness in Aging Human Bone: A microCT-Based Cohesive Finite Element Study. J. Biomech. Eng. 2007, 129, 625–631. [Google Scholar] [CrossRef]
- Dong, X.N.; Guo, X.E. The Dependence of Transversely Isotropic Elasticity of Human Femoral Cortical Bone on Porosity. J. Biomech. 2004, 37, 1281–1287. [Google Scholar] [CrossRef]
- Dyson, E.D.; Whitehouse, W.J. Composition of Trabecular Bone in Children and Its Relation to Radiation Dosimetry. Nature 1968, 217, 576–578. [Google Scholar] [CrossRef]
- Oftadeh, R.; Perez-Viloria, M.; Villa-Camacho, J.C.; Vaziri, A.; Nazarian, A. Biomechanics and Mechanobiology of Trabecular Bone: A Review. J. Biomech. Eng. 2015, 137, 010802. [Google Scholar] [CrossRef]
- Little, C.J.; Bawolin, N.K.; Chen, X. Mechanical Properties of Natural Cartilage and Tissue-Engineered Constructs. Tissue Eng. Part B Rev. 2011, 17, 213–227. [Google Scholar] [CrossRef]
- Eschweiler, J.; Horn, N.; Rath, B.; Betsch, M.; Baroncini, A.; Tingart, M.; Migliorini, F. The Biomechanics of Cartilage—An Overview. Life 2021, 11, 302. [Google Scholar] [CrossRef]
- Sophia Fox, A.J.; Bedi, A.; Rodeo, S.A. The Basic Science of Articular Cartilage: Structure, Composition, and Function. Sports Health 2009, 1, 461–468. [Google Scholar] [CrossRef]
- Alcaide-Ruggiero, L.; Molina-Hernández, V.; Granados, M.M.; Domínguez, J.M. Main and Minor Types of Collagens in the Articular Cartilage: The Role of Collagens in Repair Tissue Evaluation in Chondral Defects. Int. J. Mol. Sci. 2021, 22, 13329. [Google Scholar] [CrossRef]
- Buckwalter, J.A.; Mankin, H.J.; Grodzinsky, A.J. Articular Cartilage and Osteoarthritis. Instr. Course Lect. 2005, 54, 465–480. [Google Scholar]
- Schinagl, R.M.; Gurskis, D.; Chen, A.C.; Sah, R.L. Depth-Dependent Confined Compression Modulus of Full-Thickness Bovine Articular Cartilage. J. Orthop. Res. 1997, 15, 499–506. [Google Scholar] [CrossRef]
- Poole, A.R.; Kojima, T.; Yasuda, T.; Mwale, F.; Kobayashi, M.; Laverty, S. Composition and Structure of Articular Cartilage: A Template for Tissue Repair. Clin. Orthop. Relat. Res. 2001, 391, S26–S33. [Google Scholar] [CrossRef]
- Lu, X.L.; Mow, V.C. Biomechanics of Articular Cartilage and Determination of Material Properties. Med. Sci. Sports Exerc. 2008, 40, 193–199. [Google Scholar] [CrossRef]
- Klika, V.; Gaffney, E.A.; Chen, Y.-C.; Brown, C.P. An Overview of Multiphase Cartilage Mechanical Modelling and Its Role in Understanding Function and Pathology. J. Mech. Behav. Biomed. Mater. 2016, 62, 139–157. [Google Scholar] [CrossRef]
- Muir, H. The Chondrocyte, Architect of Cartilage. Biomechanics, Structure, Function and Molecular Biology of Cartilage Matrix Macromolecules. Bioessays 1995, 17, 1039–1048. [Google Scholar] [CrossRef]
- Buckwalter, J.A.; Mow, V.C.; Ratcliffe, A. Restoration of Injured or Degenerated Articular Cartilage. J. Am. Acad. Orthop. Surg. 1994, 2, 192–201. [Google Scholar] [CrossRef]
- Bingham, J.T.; Papannagari, R.; Van de Velde, S.K.; Gross, C.; Gill, T.J.; Felson, D.T.; Rubash, H.E.; Li, G. In Vivo Cartilage Contact Deformation in the Healthy Human Tibiofemoral Joint. Rheumatology 2008, 47, 1622–1627. [Google Scholar] [CrossRef]
- Oloyede, A.; Flachsmann, R.; Broom, N.D. The Dramatic Influence of Loading Velocity on the Compressive Response of Articular Cartilage. Connect. Tissue Res. 1992, 27, 211–224. [Google Scholar] [CrossRef]
- Tomkoria, S.; Patel, R.V.; Mao, J.J. Heterogeneous Nanomechanical Properties of Superficial and Zonal Regions of Articular Cartilage of the Rabbit Proximal Radius Condyle by Atomic Force Microscopy. Med. Eng. Phys. 2004, 26, 815–822. [Google Scholar] [CrossRef]
- Chen, A.C.; Bae, W.C.; Schinagl, R.M.; Sah, R.L. Depth- and Strain-Dependent Mechanical and Electromechanical Properties of Full-Thickness Bovine Articular Cartilage in Confined Compression. J. Biomech. 2001, 34, 1–12. [Google Scholar] [CrossRef]
- Dave, H.D.; Shook, M.; Varacallo, M. Anatomy, Skeletal Muscle; StatPearls Publishing: St. Petersburg, FL, USA, 2022. [Google Scholar]
- Kohn, S.; Leichsenring, K.; Kuravi, R.; Ehret, A.E.; Böl, M. Direct Measurement of the Direction-Dependent Mechanical Behaviour of Skeletal Muscle Extracellular Matrix. Acta Biomater. 2021, 122, 249–262. [Google Scholar] [CrossRef]
- Listrat, A.; Picard, B.; Geay, Y. Age-Related Changes and Location of Type I, III, IV, V and VI Collagens during Development of Four Foetal Skeletal Muscles of Double-Muscled and Normal Bovine Animals. Tissue Cell 1999, 31, 17–27. [Google Scholar] [CrossRef]
- Kjaer, M. Role of Extracellular Matrix in Adaptation of Tendon and Skeletal Muscle to Mechanical Loading. Physiol. Rev. 2004, 84, 649–698. [Google Scholar] [CrossRef]
- Herbert, R. The Passive Mechanical Properties of Muscle and Their Adaptations to Altered Patterns of Use. Aust. J. Physiother. 1988, 34, 141–149. [Google Scholar] [CrossRef]
- Gillies, A.R.; Lieber, R.L. Structure and Function of the Skeletal Muscle Extracellular Matrix. Muscle Nerve 2011, 44, 318–331. [Google Scholar] [CrossRef]
- McKee, T.J.; Perlman, G.; Morris, M.; Komarova, S.V. Extracellular matrix composition of connective tissues: A systematic review and meta-analysis. Sci. Rep. 2019, 9, 10542. [Google Scholar] [CrossRef]
- Light, N.; Champion, A.E. Characterization of muscle epimysium, perimysium and endomysium collagens. Biochem. J. 1984, 219, 1017–1026. [Google Scholar] [CrossRef]
- Fomovsky, G.M.; Thomopoulos, S.; Holmes, J.W. Contribution of Extracellular Matrix to the Mechanical Properties of the Heart. J. Mol. Cell. Cardiol. 2010, 48, 490–496. [Google Scholar] [CrossRef]
- Wang, K.; Meng, X.; Guo, Z. Elastin Structure, Synthesis, Regulatory Mechanism and Relationship with Cardiovascular Diseases. Front. Cell Dev. Biol. 2021, 9, 596702. [Google Scholar] [CrossRef]
- Azeloglu, E.U.; Albro, M.B.; Thimmappa, V.A.; Ateshian, G.A.; Costa, K.D. Heterogeneous Transmural Proteoglycan Distribution Provides a Mechanism for Regulating Residual Stresses in the Aorta. Am. J. Physiol. Heart. Circ. Physiol. 2008, 294, H1197–H1205. [Google Scholar] [CrossRef]
- Krishnamurthy, V.K.; Jane Grande-Allen, K. The Role of Proteoglycans and Glycosaminoglycans in Heart Valve Biomechanics. In Advances in Heart Valve Biomechanics: Valvular Physiology, Mechanobiology, and Bioengineering; Sacks, M.S., Liao, J., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 59–79. [Google Scholar]
- Salinas, S.D.; Farra, Y.M.; Khoiy, K.A.; Houston, J.; Lee, C.-H.; Bellini, C.; Amini, R. The Role of Elastin on the Mechanical Properties of the Anterior Leaflet in Porcine Tricuspid Valves. PLoS ONE 2022, 17, e0267131. [Google Scholar] [CrossRef]
- Tani, H.; Kobayashi, E.; Yagi, S.; Tanaka, K.; Kameda-Haga, K.; Shibata, S.; Moritoki, N.; Takatsuna, K.; Moriwaki, T.; Sekine, O.; et al. Heart-derived collagen promotes maturation of engineered heart tissue. Biomaterials 2023, 299, 122174. [Google Scholar] [CrossRef]
- Neff, L.S.; Bradshaw, A.D. Cross your heart? Collagen cross-links in cardiac health and disease. Cell. Signal. 2021, 79, 109889. [Google Scholar] [CrossRef]
- Meiss, R.A. Mechanics of Smooth Muscle. In Advances in Organ Biology; A Functional View of Smooth Muscle; Elsevier: Amsterdam, The Netherlands, 2000; Volume 8, pp. 1–48. [Google Scholar]
- Schuliga, M. Smooth Muscle and Extracellular Matrix Interactions in Health and Disease. In Muscle Cell and Tissue; IntechOpen: London, UK, 2015. [Google Scholar]
- Francis, L.; Greco, K.V.; Boccaccini, A.R.; Roether, J.J.; English, N.R.; Huang, H.; Ploeg, R.; Ansari, T. Development of a Novel Hybrid Bioactive Hydrogel for Future Clinical Applications. J. Biomater. Appl. 2018, 33, 447–465. [Google Scholar] [CrossRef] [PubMed]
- Maitra, J.; Shukla, V.K. Cross-Linking in Hydrogels—A Review. Am. J. Polym. Sci. 2014, 4, 25–31. [Google Scholar]
- Bashir, S.; Hina, M.; Iqbal, J.; Rajpar, A.H.; Mujtaba, M.A.; Alghamdi, N.A.; Wageh, S.; Ramesh, K.; Ramesh, S. Fundamental Concepts of Hydrogels: Synthesis, Properties, and Their Applications. Polymers 2020, 12, 2702. [Google Scholar] [CrossRef] [PubMed]
- Catoira, M.C.; Fusaro, L.; Di Francesco, D.; Ramella, M.; Boccafoschi, F. Overview of Natural Hydrogels for Regenerative Medicine Applications. J. Mater. Sci. Mater. Med. 2019, 30, 115. [Google Scholar] [CrossRef] [PubMed]
- Islam, A.; Yasin, T.; Bano, I.; Riaz, M. Controlled Release of Aspirin from pH-Sensitive Chitosan/Poly(Vinyl Alcohol) Hydrogel. J. Appl. Polym. Sci. 2012, 124, 4184–4192. [Google Scholar] [CrossRef]
- Palmese, L.L.; Thapa, R.K.; Sullivan, M.O.; Kiick, K.L. Hybrid Hydrogels for Biomedical Applications. Curr. Opin. Chem. Eng. 2019, 24, 143–157. [Google Scholar] [CrossRef]
- Vasile, C.; Pamfil, D.; Stoleru, E.; Baican, M. New Developments in Medical Applications of Hybrid Hydrogels Containing Natural Polymers. Molecules 2020, 25, 1539. [Google Scholar] [CrossRef]
- Matai, I.; Kaur, G.; Seyedsalehi, A.; McClinton, A.; Laurencin, C.T. Progress in 3D Bioprinting Technology for Tissue/Organ Regenerative Engineering. Biomaterials 2020, 226, 119536. [Google Scholar] [CrossRef]
- Garg, T.; Singh, O.; Arora, S.; Rayasa, M. Scaffold: A Novel Carrier for Cell and Drug Delivery. Crit. Rev. Ther. Drug Carr. Syst. 2012, 29, 1–63. [Google Scholar] [CrossRef]
- El-Sherbiny, I.M.; Yacoub, M.H. Hydrogel scaffolds for tissue engineering: Progress and challenges. Glob. Cardiol. Sci. Pract. 2013, 2013, 316–342. [Google Scholar] [CrossRef] [PubMed]
- Lu, T.; Li, Y.; Chen, T. Techniques for fabrication and construction of three-dimensional scaffolds for tissue engineering. Int. J. Nanomed. 2013, 8, 337–350. [Google Scholar] [CrossRef] [PubMed]
- Xing, Q.; Zhao, F.; Chen, S.; McNamara, J.; Decoster, M.A.; Lvov, Y.M. Porous biocompatible three-dimensional scaffolds of cellulose microfiber/gelatin composites for cell culture. Acta Biomater. 2010, 6, 2132–2139. [Google Scholar] [CrossRef] [PubMed]
- Danks, A.E.; Hall, S.R.; Schnepp, Z. The evolution of “sol-gel” chemistry as a technique for materials synthesis. Mater. Horiz. 2016, 3, 91. [Google Scholar] [CrossRef]
- Khademhosseini, A.; Langer, R. Microengineered hydrogels for tissue engineering. Biomaterials 2007, 28, 5087–5092. [Google Scholar] [CrossRef]
- Dinu, M.V.; Dragan, E.S. Macroporous Hydrogels: Preparation, Properties, and Applications. In Hydrogels; Thakur, V., Thakur, M., Eds.; Gels Horizons: From Science to Smart Materials; Springer: Singapore, 2018. [Google Scholar] [CrossRef]
- Anseth, K.S.; Bowman, C.N.; Brannon-Peppas, L. Mechanical Properties of Hydrogels and Their Experimental Determination. Biomaterials 1996, 17, 1647–1657. [Google Scholar] [CrossRef]
- Shibayama, M. Structure-Mechanical Property Relationship of Tough Hydrogels. Soft Matter. 2012, 8, 8030. [Google Scholar] [CrossRef]
- Liu, J.; Zheng, H.; Poh, P.; Machens, H.-G.; Schilling, A. Hydrogels for Engineering of Perfusable Vascular Networks. Int. J. Mol. Sci. 2015, 16, 15997–16016. [Google Scholar] [CrossRef]
- Raab, M.; Discher, D.E. Matrix Rigidity Regulates Microtubule Network Polarization in Migration. Cytoskeleton 2017, 74, 114–124. [Google Scholar] [CrossRef]
- Huang, G.; Wang, L.; Wang, S.; Han, Y.; Wu, J.; Zhang, Q.; Xu, F.; Lu, T.J. Engineering Three-Dimensional Cell Mechanical Microenvironment with Hydrogels. Biofabrication 2012, 4, 042001. [Google Scholar] [CrossRef]
- Bakhshandeh, B.; Sorboni, S.G.; Ranjbar, N.; Deyhimfar, R.; Abtahi, M.S.; Izady, M.; Kazemi, N.; Noori, A.; Pennisi, C.P. Mechanotransduction in tissue engineering: Insights into the interaction of stem cells with biomechanical cues. Exp. Cell Res. 2023, 431, 113766. [Google Scholar] [CrossRef] [PubMed]
- Schmitter, C.; Di-Luoffo, M.; Guillermet-Guibert, J. Transducing compressive forces into cellular outputs in cancer and beyond. Life Sci. Alliance 2023, 6, e202201862. [Google Scholar] [CrossRef] [PubMed]
- Su, T.; Xu, M.; Lu, F.; Chang, Q. Adipogenesis or osteogenesis: Destiny decision made by mechanical properties of biomaterials. RSC Adv. 2022, 12, 24501–24510. [Google Scholar] [CrossRef]
- Uray, I.P.; Uray, K. Mechanotransduction at the Plasma Membrane-Cytoskeleton Interface. Int. J. Mol. Sci. 2021, 22, 11566. [Google Scholar] [CrossRef] [PubMed]
- Handorf, A.M.; Zhou, Y.; Halanski, M.A.; Li, W.J. Tissue stiffness dictates development, homeostasis, and disease progression. Organogenesis 2015, 11, 1–15. [Google Scholar] [CrossRef]
- Qi, L.; Zhang, C.; Wang, B.; Yin, J.; Yan, S. Progress in Hydrogels for Skin Wound Repair. Macromol. Biosci. 2022, 22, e2100475. [Google Scholar] [CrossRef]
- Lovisolo, F.; Carton, F.; Gino, S.; Migliario, M.; Renò, F. Platelet Rich Plasma-Derived Microvesicles Increased in Vitro Wound Healing. Eur. Rev. Med. Pharmacol. Sci. 2020, 24, 9658–9664. [Google Scholar]
- Laurano, R.; Boffito, M.; Ciardelli, G.; Chiono, V. Wound Dressing Products: A Translational Investigation from the Bench to the Market. Eng. Regen. 2022, 3, 182–200. [Google Scholar] [CrossRef]
- Bellu, E.; Medici, S.; Coradduzza, D.; Cruciani, S.; Amler, E.; Maioli, M. Nanomaterials in Skin Regeneration and Rejuvenation. Int. J. Mol. Sci. 2021, 22, 7095. [Google Scholar] [CrossRef]
- Qianqian, O.; Songzhi, K.; Yongmei, H.; Xianghong, J.; Sidong, L.; Puwang, L.; Hui, L. Preparation of Nano-Hydroxyapatite/Chitosan/Tilapia Skin Peptides Hydrogels and Its Burn Wound Treatment. Int. J. Biol. Macromol. 2021, 181, 369–377. [Google Scholar] [CrossRef]
- Comotto, M.; Saghazadeh, S.; Bagherifard, S.; Aliakbarian, B.; Kazemzadeh-Narbat, M.; Sharifi, F.; Mousavi Shaegh, S.A.; Arab-Tehrany, E.; Annabi, N.; Perego, P.; et al. Breathable Hydrogel Dressings Containing Natural Antioxidants for Management of Skin Disorders. J. Biomater. Appl. 2019, 33, 1265–1276. [Google Scholar] [CrossRef] [PubMed]
- Kharaziha, M.; Baidya, A.; Annabi, N. Rational Design of Immunomodulatory Hydrogels for Chronic Wound Healing. Adv. Mater. 2021, 33, e2100176. [Google Scholar] [CrossRef] [PubMed]
- Mostafalu, P.; Tamayol, A.; Rahimi, R.; Ochoa, M.; Khalilpour, A.; Kiaee, G.; Yazdi, I.K.; Bagherifard, S.; Dokmeci, M.R.; Ziaie, B.; et al. Smart Bandage for Monitoring and Treatment of Chronic Wounds. Small 2018, 14, e1703509. [Google Scholar] [CrossRef] [PubMed]
- Atefyekta, S.; Blomstrand, E.; Rajasekharan, A.K.; Svensson, S.; Trobos, M.; Hong, J.; Webster, T.J.; Thomsen, P.; Andersson, M. Antimicrobial Peptide-Functionalized Mesoporous Hydrogels. ACS Biomater. Sci. Eng. 2021, 7, 1693–1702. [Google Scholar] [CrossRef]
- Annabi, N.; Rana, D.; Shirzaei Sani, E.; Portillo-Lara, R.; Gifford, J.L.; Fares, M.M.; Mithieux, S.M.; Weiss, A.S. Engineering a Sprayable and Elastic Hydrogel Adhesive with Antimicrobial Properties for Wound Healing. Biomaterials 2017, 139, 229–243. [Google Scholar] [CrossRef]
- Zhao, X.; Li, P.; Guo, B.; Ma, P.X. Antibacterial and Conductive Injectable Hydrogels Based on Quaternized Chitosan-Graft-Polyaniline/Oxidized Dextran for Tissue Engineering. Acta Biomater. 2015, 26, 236–248. [Google Scholar] [CrossRef] [PubMed]
- Eke, G.; Mangir, N.; Hasirci, N.; MacNeil, S.; Hasirci, V. Development of a UV Crosslinked Biodegradable Hydrogel Containing Adipose Derived Stem Cells to Promote Vascularization for Skin Wounds and Tissue Engineering. Biomaterials 2017, 129, 188–198. [Google Scholar] [CrossRef]
- Tamama, K.; Kerpedjieva, S.S. Acceleration of Wound Healing by Multiple Growth Factors and Cytokines Secreted from Multipotential Stromal Cells/Mesenchymal Stem Cells. Adv. Wound Care 2012, 1, 177–182. [Google Scholar] [CrossRef]
- Chen, T.-Y.; Wen, T.-K.; Dai, N.-T.; Hsu, S.-H. Cryogel/Hydrogel Biomaterials and Acupuncture Combined to Promote Diabetic Skin Wound Healing through Immunomodulation. Biomaterials 2021, 269, 120608. [Google Scholar] [CrossRef]
- He, M.; Sun, L.; Fu, X.; McDonough, S.P.; Chu, C.-C. Biodegradable Amino Acid-Based Poly(Ester Amine) with Tunable Immunomodulating Properties and Their in Vitro and in Vivo Wound Healing Studies in Diabetic Rats’ Wounds. Acta Biomater. 2019, 84, 114–132. [Google Scholar] [CrossRef]
- Huang, J.; Wu, X.; Ren, J. Wound-Contractible Hydrogel for Skin Regeneration, a New Insight from Mechanobiology. Matter 2021, 4, 3091–3094. [Google Scholar] [CrossRef]
- Le, X.; Lu, W.; Zheng, J.; Tong, D.; Zhao, N.; Ma, C.; Xiao, H.; Zhang, J.; Huang, Y.; Chen, T. Stretchable Supramolecular Hydrogels with Triple Shape Memory Effect. Chem. Sci. 2016, 7, 6715–6720. [Google Scholar] [CrossRef]
- Wu, B.; Lu, H.; Le, X.; Lu, W.; Zhang, J.; Théato, P.; Chen, T. Recent Progress in the Shape Deformation of Polymeric Hydrogels from Memory to Actuation. Chem. Sci. 2021, 12, 6472–6487. [Google Scholar] [CrossRef]
- Jin, S.G.; Kim, K.S.; Kim, D.W.; Kim, D.S.; Seo, Y.G.; Go, T.G.; Youn, Y.S.; Kim, J.O.; Yong, C.S.; Choi, H.-G. Development of a Novel Sodium Fusidate-Loaded Triple Polymer Hydrogel Wound Dressing: Mechanical Properties and Effects on Wound Repair. Int. J. Pharm. 2016, 497, 114–122. [Google Scholar] [CrossRef] [PubMed]
- Qu, J.; Zhao, X.; Liang, Y.; Zhang, T.; Ma, P.X.; Guo, B. Antibacterial Adhesive Injectable Hydrogels with Rapid Self-Healing, Extensibility and Compressibility as Wound Dressing for Joints Skin Wound Healing. Biomaterials 2018, 183, 185–199. [Google Scholar] [CrossRef]
- Ma, Y.; Wang, Y.; Chen, D.; Su, T.; Chang, Q.; Huang, W.; Lu, F. 3D Bioprinting of a Gradient Stiffened Gelatin-Alginate Hydrogel with Adipose-Derived Stem Cells for Full-Thickness Skin Regeneration. J. Mater. Chem. B 2023, 11, 2989–3000. [Google Scholar] [CrossRef]
- Li, Y.Y.; Ji, S.F.; Fu, X.B.; Jiang, Y.F.; Sun, X.Y. Biomaterial-based mechanical regulation facilitates scarless wound healing with functional skin appendage regeneration. Mil. Med. Res. 2024, 11, 13. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Xing, J.; Zhong, Y.; Zhang, T.; Liu, X.; Xing, D. Advanced function, design and application of skin substitutes for skin regeneration. Mater. Today Bio 2023, 24, 100918. [Google Scholar] [CrossRef]
- Ansari, M. Bone Tissue Regeneration: Biology, Strategies and Interface Studies. Prog. Biomater. 2019, 8, 223–237. [Google Scholar] [CrossRef]
- Grosso, A.; Lunger, A.; Burger, M.G.; Briquez, P.S.; Mai, F.; Hubbell, J.A.; Schaefer, D.J.; Banfi, A.; Di Maggio, N. VEGF dose controls the coupling of angiogenesis and osteogenesis in engineered bone. NPJ Regen. Med. 2023, 8, 15. [Google Scholar] [CrossRef]
- Burger, M.G.; Grosso, A.; Briquez, P.S.; Born, G.M.E.; Lunger, A.; Schrenk, F.; Todorov, A.; Sacchi, V.; Hubbell, J.A.; Schaefer, D.J.; et al. Robust coupling of angiogenesis and osteogenesis by VEGF-decorated matrices for bone regeneration. Acta Biomater. 2022, 149, 111–125. [Google Scholar] [CrossRef] [PubMed]
- Ramasamy, S.K.; Kusumbe, A.P.; Schiller, M.; Zeuschner, D.; Bixel, M.G.; Milia, C.; Gamrekelashvili, J.; Limbourg, A.; Medvinsky, A.; Santoro, M.M.; et al. Blood flow controls bone vascular function and osteogenesis. Nat. Commun. 2016, 7, 13601. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Walsh, K.; Hoff, B.L.; Camci-Unal, G. Mineralization of Biomaterials for Bone Tissue Engineering. Bioengineering 2020, 7, 132. [Google Scholar] [CrossRef] [PubMed]
- Hu, C.; An, R.; Han, L.; Wang, X.; Shi, Y.; Ran, R. Preparation of High Strength Double Physically Cross-Linked Hydrogels by Immersion Method—How to Avoid Uneven Soaking. Colloids Surf. A Physicochem. Eng. Asp. 2018, 559, 74–82. [Google Scholar] [CrossRef]
- Zhang, X.; Huang, P.; Jiang, G.; Zhang, M.; Yu, F.; Dong, X.; Wang, L.; Chen, Y.; Zhang, W.; Qi, Y.; et al. A Novel Magnesium Ion-Incorporating Dual-Crosslinked Hydrogel to Improve Bone Scaffold-Mediated Osteogenesis and Angiogenesis. Mater. Sci. Eng. C Mater. Biol. Appl. 2021, 121, 111868. [Google Scholar] [CrossRef]
- Chen, X.; Tan, B.; Wang, S.; Tang, R.; Bao, Z.; Chen, G.; Chen, S.; Tang, W.; Wang, Z.; Long, C.; et al. Rationally Designed Protein Cross-Linked Hydrogel for Bone Regeneration via Synergistic Release of Magnesium and Zinc Ions. Biomaterials 2021, 274, 120895. [Google Scholar] [CrossRef]
- Zhao, R.; Xie, P.; Zhang, K.; Tang, Z.; Chen, X.; Zhu, X.; Fan, Y.; Yang, X.; Zhang, X. Selective Effect of Hydroxyapatite Nanoparticles on Osteoporotic and Healthy Bone Formation Correlates with Intracellular Calcium Homeostasis Regulation. Acta Biomater. 2017, 59, 338–350. [Google Scholar] [CrossRef]
- Filipović, V.V.; Babić Radić, M.M.; Vuković, J.S.; Vukomanović, M.; Rubert, M.; Hofmann, S.; Müller, R.; Tomić, S.L. Biodegradable Hydrogel Scaffolds Based on 2-Hydroxyethyl Methacrylate, Gelatin, Poly(β-Amino Esters), and Hydroxyapatite. Polymers 2021, 14, 18. [Google Scholar] [CrossRef]
- Kaiyu, L.; Chenchen, Z.; Chenxin, S.; Lan, Z.; Pengcheng, Q.; Shengyu, W.; Jinjin, Z.; Zhe, G.; Zhaoming, L.; Ruikang, T.; et al. In Situ Biomimetic Mineralization of Bone-Like Hydroxyapatite in Hydrogel for the Acceleration of Bone Regeneration. ACS Appl. Mater. Interfaces 2023, 15, 292–308. [Google Scholar]
- Vitale, M.; Ligorio, C.; McAvan, B.; Hodson, N.W.; Allan, C.; Richardson, S.M.; Hoyland, J.A.; Bella, J. Hydroxyapatite-Decorated Fmoc-Hydrogel as a Bone-Mimicking Substrate for Osteoclast Differentiation and Culture. Acta Biomater. 2022, 138, 144–154. [Google Scholar] [CrossRef]
- Tan, Y.; Ma, L.; Chen, X.; Ran, Y.; Tong, Q.; Tang, L.; Li, X. Injectable Hyaluronic Acid/Hydroxyapatite Composite Hydrogels as Cell Carriers for Bone Repair. Int. J. Biol. Macromol. 2022, 216, 547–557. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.; Yin, C.; Mo, A.; Hong, G. Applications of Hydrogel with Special Physical Properties in Bone and Cartilage Regeneration. Materials 2021, 14, 235. [Google Scholar] [CrossRef]
- Gong, J.P.; Katsuyama, Y.; Kurokawa, T.; Osada, Y. Double-Network Hydrogels with Extremely High Mechanical Strength. Adv. Mater. 2003, 15, 1155–1158. [Google Scholar] [CrossRef]
- Li, X.; Wang, H.; Li, D.; Long, S.; Zhang, G.; Wu, Z. Dual Ionically Cross-Linked Double-Network Hydrogels with High Strength, Toughness, Swelling Resistance, and Improved 3D Printing Processability. ACS Appl. Mater. Interfaces 2018, 10, 31198–31207. [Google Scholar] [CrossRef]
- Wu, X.; Stroll, S.I.; Lantigua, D.; Suvarnapathaki, S.; Camci-Unal, G. Eggshell Particle-Reinforced Hydrogels for Bone Tissue Engineering: An Orthogonal Approach. Biomater. Sci. 2019, 7, 2675–2685. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Fang, T.; Shi, T.; Wang, Y.; Liu, G. Hydrogels Provide Microenvironments to Mesenchymal Stem Cells for Craniofacial Bone Regeneration: Review. J. Biomater. Appl. 2023, 38, 3–24. [Google Scholar] [CrossRef] [PubMed]
- Cho, S.-H.; Shin, K.K.; Kim, S.-Y.; Cho, M.Y.; Oh, D.-B.; Lim, Y.T. In Situ-Forming Collagen/Poly-γ-Glutamic Acid Hydrogel System with Mesenchymal Stem Cells and Bone Morphogenetic Protein-2 for Bone Tissue Regeneration in a Mouse Calvarial Bone Defect Model. Tissue Eng. Regen. Med. 2022, 19, 1099–1111. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, J.; Gao, R.; Liu, X.; Feng, Z.; Zhang, C.; Huang, P.; Dong, A.; Kong, D.; Wang, W. Biomimetic Glycopeptide Hydrogel Coated PCL/nHA Scaffold for Enhanced Cranial Bone Regeneration via Macrophage M2 Polarization-Induced Osteo-Immunomodulation. Biomaterials 2022, 285, 121538. [Google Scholar] [CrossRef]
- Wu, Z.; Bai, J.; Ge, G.; Wang, T.; Feng, S.; Ma, Q.; Liang, X.; Li, W.; Zhang, W.; Xu, Y.; et al. Regulating Macrophage Polarization in High Glucose Microenvironment Using Lithium-Modified Bioglass-Hydrogel for Diabetic Bone Regeneration. Adv. Healthc. Mater. 2022, 11, e2200298. [Google Scholar] [CrossRef]
- Fu, M.; Li, J.; Liu, M.; Yang, C.; Wang, Q.; Wang, H.; Chen, B.; Fu, Q.; Sun, G. Sericin/Nano-Hydroxyapatite Hydrogels Based on Graphene Oxide for Effective Bone Regeneration via Immunomodulation and Osteoinduction. Int. J. Nanomed. 2023, 18, 1875–1895. [Google Scholar] [CrossRef]
- Di Francesco, D.; Talmon, M.; Carton, F.; Fresu, L.G.; Boccafoschi, F. Chapter 37—Macrophage Polarization Guided by Immunomodulatory Hydrogels. In Hydrogels for Tissue Engineering and Regenerative Medicine; Oliveira, J.M., Silva-Correia, J., Reis, R.L., Eds.; Academic Press: Cambridge, MA, USA, 2024; pp. 765–782. [Google Scholar]
- Tharakan, S.; Raja, I.; Pietraru, A.; Sarecha, E.; Gresita, A.; Petcu, E.; Ilyas, A.; Hadjiargyrou, M. The Use of Hydrogels for the Treatment of Bone Osteosarcoma via Localized Drug-Delivery and Tissue Regeneration: A Narrative Review. Gels 2023, 9, 274. [Google Scholar] [CrossRef] [PubMed]
- Motasadizadeh, H.; Tavakoli, M.; Damoogh, S.; Mottaghitalab, F.; Gholami, M.; Atyabi, F.; Farokhi, M.; Dinarvand, R. Dual Drug Delivery System of Teicoplanin and Phenamil Based on pH-Sensitive Silk Fibroin/Sodium Alginate Hydrogel Scaffold for Treating Chronic Bone Infection. Biomater. Adv. 2022, 139, 213032. [Google Scholar] [CrossRef] [PubMed]
- Carotenuto, F.; Politi, S.; Ul Haq, A.; De Matteis, F.; Tamburri, E.; Terranova, M.L.; Teodori, L.; Pasquo, A.; Di Nardo, P. From Soft to Hard Biomimetic Materials: Tuning Micro/Nano-Architecture of Scaffolds for Tissue Regeneration. Micromachines 2022, 13, 780. [Google Scholar] [CrossRef] [PubMed]
- Bachmann, B.; Spitz, S.; Schädl, B.; Teuschl, A.H.; Redl, H.; Nürnberger, S.; Ertl, P. Stiffness Matters: Fine-Tuned Hydrogel Elasticity Alters Chondrogenic Redifferentiation. Front. Bioeng. Biotechnol. 2020, 8, 373. [Google Scholar] [CrossRef]
- Galarraga, J.H.; Locke, R.C.; Witherel, C.E.; Stoeckl, B.D.; Castilho, M.; Mauck, R.L.; Malda, J.; Levato, R.; Burdick, J.A. Fabrication of MSC-Laden Composites of Hyaluronic Acid Hydrogels Reinforced with MEW Scaffolds for Cartilage Repair. Biofabrication 2021, 14, 014106. [Google Scholar] [CrossRef]
- Zhang, Y.; Yu, J.; Ren, K.; Zuo, J.; Ding, J.; Chen, X. Thermosensitive Hydrogels as Scaffolds for Cartilage Tissue Engineering. Biomacromolecules 2019, 20, 1478–1492. [Google Scholar] [CrossRef]
- Benmassaoud, M.M.; Gultian, K.A.; DiCerbo, M.; Vega, S.L. Hydrogel Screening Approaches for Bone and Cartilage Tissue Regeneration. Ann. N. Y. Acad. Sci. 2020, 1460, 25–42. [Google Scholar] [CrossRef]
- Walker, M.; Luo, J.; Pringle, E.W.; Cantini, M. ChondroGELesis: Hydrogels to Harness the Chondrogenic Potential of Stem Cells. Mater. Sci. Eng. C 2021, 121, 111822. [Google Scholar] [CrossRef]
- Zhang, Y.; Cao, Y.; Zhao, H.; Zhang, L.; Ni, T.; Liu, Y.; An, Z.; Liu, M.; Pei, R. An Injectable BMSC-Laden Enzyme-Catalyzed Crosslinking Collagen-Hyaluronic Acid Hydrogel for Cartilage Repair and Regeneration. J. Mater. Chem. B 2020, 8, 4237–4244. [Google Scholar] [CrossRef]
- Antich, C.; de Vicente, J.; Jiménez, G.; Chocarro, C.; Carrillo, E.; Montañez, E.; Gálvez-Martín, P.; Marchal, J.A. Bio-Inspired Hydrogel Composed of Hyaluronic Acid and Alginate as a Potential Bioink for 3D Bioprinting of Articular Cartilage Engineering Constructs. Acta Biomater. 2020, 106, 114–123. [Google Scholar] [CrossRef]
- Ziadlou, R.; Rotman, S.; Teuschl, A.; Salzer, E.; Barbero, A.; Martin, I.; Alini, M.; Eglin, D.; Grad, S. Optimization of Hyaluronic Acid-Tyramine/Silk-Fibroin Composite Hydrogels for Cartilage Tissue Engineering and Delivery of Anti-Inflammatory and Anabolic Drugs. Mater. Sci. Eng. C 2021, 120, 111701. [Google Scholar] [CrossRef] [PubMed]
- Ao, Y.; Tang, W.; Tan, H.; Li, J.; Wang, F.; Yang, L. Hydrogel Composed of Type II Collagen, Chondroitin Sulfate and Hyaluronic Acid for Cartilage Tissue Engineering. Biomed. Mater. Eng. 2022, 33, 515–523. [Google Scholar] [CrossRef]
- Smeriglio, P.; Lai, J.H.; Yang, F.; Bhutani, N. 3D Hydrogel Scaffolds for Articular Chondrocyte Culture and Cartilage Generation. J. Vis. Exp. 2015, 104, 53085. [Google Scholar]
- Kristjánsson, B.; Honsawek, S. Current Perspectives in Mesenchymal Stem Cell Therapies for Osteoarthritis. Stem. Cells Int. 2014, 2014, 194318. [Google Scholar] [CrossRef]
- Hached, F.; Vinatier, C.; Le Visage, C.; Gondé, H.; Guicheux, J.; Grimandi, G.; Billon-Chabaud, A. Biomaterial-Assisted Cell Therapy in Osteoarthritis: From Mesenchymal Stem Cells to Cell Encapsulation. Best Pract. Res. Clin. Rheumatol. 2017, 31, 730–745. [Google Scholar] [CrossRef]
- Gonzalez-Fernandez, T.; Tierney, E.G.; Cunniffe, G.M.; O’Brien, F.J.; Kelly, D.J. Gene Delivery of TGF-Β3 and BMP2 in an MSC-Laden Alginate Hydrogel for Articular Cartilage and Endochondral Bone Tissue Engineering. Tissue Eng. Part A 2016, 22, 776–787. [Google Scholar] [CrossRef]
- Liu, H.; Xiang, X.; Huang, J.; Zhu, B.; Wang, L.; Tang, Y.; Du, F.; Li, L.; Yan, F.; Ma, L.; et al. Ultrasound Augmenting Injectable Chemotaxis Hydrogel for Articular Cartilage Repair in Osteoarthritis. Chin. Chem. Lett. 2021, 32, 1759–1764. [Google Scholar] [CrossRef]
- Scalzone, A.; Ferreira, A.M.; Tonda-Turo, C.; Ciardelli, G.; Dalgarno, K.; Gentile, P. The Interplay between Chondrocyte Spheroids and Mesenchymal Stem Cells Boosts Cartilage Regeneration within a 3D Natural-Based Hydrogel. Sci. Rep. 2019, 9, 14630. [Google Scholar] [CrossRef] [PubMed]
- Zhao, T.; Wei, Z.; Zhu, W.; Weng, X. Recent Developments and Current Applications of Hydrogels in Osteoarthritis. Bioengineering 2022, 9, 132. [Google Scholar] [CrossRef]
- Xia, C.; Chen, P.; Mei, S.; Ning, L.; Lei, C.; Wang, J.; Zhang, J.; Ma, J.; Fan, S. Photo-Crosslinked HAMA Hydrogel with Cordycepin Encapsulated Chitosan Microspheres for Osteoarthritis Treatment. Oncotarget 2017, 8, 2835–2849. [Google Scholar] [CrossRef]
- Fattahpour, S.; Shamanian, M.; Tavakoli, N.; Fathi, M.; Sadeghi-Aliabadi, H.; Sheykhi, S.R.; Fesharaki, M.; Fattahpour, S. An Injectable Carboxymethyl Chitosan-Methylcellulose-Pluronic Hydrogel for the Encapsulation of Meloxicam Loaded Nanoparticles. Int. J. Biol. Macromol. 2020, 151, 220–229. [Google Scholar] [CrossRef] [PubMed]
- Zhu, C.; Han, S.; Zeng, X.; Zhu, C.; Pu, Y.; Sun, Y. Multifunctional Thermo-Sensitive Hydrogel for Modulating the Microenvironment in Osteoarthritis by Polarizing Macrophages and Scavenging RONS. J. Nanobiotechnol. 2022, 20, 221. [Google Scholar] [CrossRef] [PubMed]
- Sang, X.; Zhao, X.; Yan, L.; Jin, X.; Wang, X.; Wang, J.; Yin, Z.; Zhang, Y.; Meng, Z. Thermosensitive Hydrogel Loaded with Primary Chondrocyte-Derived Exosomes Promotes Cartilage Repair by Regulating Macrophage Polarization in Osteoarthritis. Tissue Eng. Regen. Med. 2022, 19, 629–642. [Google Scholar] [CrossRef] [PubMed]
- Hwang, J.H.; Kim, I.G.; Piao, S.; Jung, A.R.; Lee, J.Y.; Park, K.D.; Lee, J.Y. Combination Therapy of Human Adipose-Derived Stem Cells and Basic Fibroblast Growth Factor Hydrogel in Muscle Regeneration. Biomaterials 2013, 34, 6037–6045. [Google Scholar] [CrossRef] [PubMed]
- Ciriza, J.; Rodríguez-Romano, A.; Nogueroles, I.; Gallego-Ferrer, G.; Cabezuelo, R.M.; Pedraz, J.L.; Rico, P. Borax-Loaded Injectable Alginate Hydrogels Promote Muscle Regeneration in Vivo after an Injury. Mater. Sci. Eng. C 2021, 123, 112003. [Google Scholar] [CrossRef] [PubMed]
- Peper, S.; Vo, T.; Ahuja, N.; Awad, K.; Mikos, A.G.; Varanasi, V. Bioprinted Nanocomposite Hydrogels: A Proposed Approach to Functional Restoration of Skeletal Muscle and Vascular Tissue Following Volumetric Muscle Loss. Curr. Opin. Pharmacol. 2021, 58, 35–43. [Google Scholar] [CrossRef]
- Falco, E.E.; Wang, M.O.; Thompson, J.A.; Chetta, J.M.; Yoon, D.M.; Li, E.Z.; Kulkami, M.M.; Shah, S.; Pandit, A.; Roth, J.S.; et al. Porous EH and EH-PEG Scaffolds as Gene Delivery Vehicles to Skeletal Muscle. Pharm. Res. 2011, 28, 1306–1316. [Google Scholar] [CrossRef]
- Doukas, J.; Blease, K.; Craig, D.; Ma, C.; Chandler, L.A.; Sosnowski, B.A.; Pierce, G.F. Delivery of FGF Genes to Wound Repair Cells Enhances Arteriogenesis and Myogenesis in Skeletal Muscle. Mol. Ther. 2002, 5 Pt 1, 517–527. [Google Scholar] [CrossRef]
- Boso, D.; Maghin, E.; Carraro, E.; Giagante, M.; Pavan, P.; Piccoli, M. Extracellular Matrix-Derived Hydrogels as Biomaterial for Different Skeletal Muscle Tissue Replacements. Materials 2020, 13, 2483. [Google Scholar] [CrossRef]
- Bettadapur, A.; Suh, G.C.; Geisse, N.A.; Wang, E.R.; Hua, C.; Huber, H.A.; Viscio, A.A.; Kim, J.Y.; Strickland, J.B.; McCain, M.L. Prolonged Culture of Aligned Skeletal Myotubes on Micromolded Gelatin Hydrogels. Sci. Rep. 2016, 6, 28855. [Google Scholar] [CrossRef]
- Hosseini, V.; Kollmannsberger, P.; Ahadian, S.; Ostrovidov, S.; Kaji, H.; Vogel, V.; Khademhosseini, A. Fiber-Assisted Molding (FAM) of Surfaces with Tunable Curvature to Guide Cell Alignment and Complex Tissue Architecture. Small 2014, 10, 4851–4857. [Google Scholar] [CrossRef] [PubMed]
- Hume, S.L.; Hoyt, S.M.; Walker, J.S.; Sridhar, B.V.; Ashley, J.F.; Bowman, C.N.; Bryant, S.J. Alignment of Multi-Layered Muscle Cells within Three-Dimensional Hydrogel Macrochannels. Acta Biomater. 2012, 8, 2193–2202. [Google Scholar] [CrossRef] [PubMed]
- Volpi, M.; Paradiso, A.; Costantini, M.; Świȩszkowski, W. Hydrogel-Based Fiber Biofabrication Techniques for Skeletal Muscle Tissue Engineering. ACS Biomater. Sci. Eng. 2022, 8, 379–405. [Google Scholar] [CrossRef] [PubMed]
- Patel, K.H.; Talovic, M.; Dunn, A.J.; Patel, A.; Vendrell, S.; Schwartz, M.; Garg, K. Aligned Nanofibers of Decellularized Muscle Extracellular Matrix for Volumetric Muscle Loss. J. Biomed. Mater. Res. B Appl. Biomater. 2020, 108, 2528–2537. [Google Scholar] [CrossRef]
- Patel, K.H.; Dunn, A.J.; Talovic, M.; Haas, G.J.; Marcinczyk, M.; Elmashhady, H.; Kalaf, E.G.; Sell, S.A.; Garg, K. Aligned Nanofibers of Decellularized Muscle ECM Support Myogenic Activity in Primary Satellite Cells in Vitro. Biomed. Mater. 2019, 14, 035010. [Google Scholar] [CrossRef] [PubMed]
- Costantini, M.; Testa, S.; Fornetti, E.; Barbetta, A.; Trombetta, M.; Cannata, S.M.; Gargioli, C.; Rainer, A. Engineering Muscle Networks in 3D Gelatin Methacryloyl Hydrogels: Influence of Mechanical Stiffness and Geometrical Confinement. Front. Bioeng. Biotechnol. 2017, 5, 22. [Google Scholar] [CrossRef]
- Gilbert, P.M.; Havenstrite, K.L.; Magnusson, K.E.G.; Sacco, A.; Leonardi, N.A.; Kraft, P.; Nguyen, N.K.; Thrun, S.; Lutolf, M.P.; Blau, H.M. Substrate Elasticity Regulates Skeletal Muscle Stem Cell Self-Renewal in Culture. Science 2010, 329, 1078–1081. [Google Scholar] [CrossRef]
- Spencer, A.R.; Shirzaei Sani, E.; Soucy, J.R.; Corbet, C.C.; Primbetova, A.; Koppes, R.A.; Annabi, N. Bioprinting of a Cell-Laden Conductive Hydrogel Composite. ACS Appl. Mater. Interfaces 2019, 11, 30518–30533. [Google Scholar] [CrossRef] [PubMed]
- Jo, H.; Sim, M.; Kim, S.; Yang, S.; Yoo, Y.; Park, J.-H.; Yoon, T.H.; Kim, M.-G.; Lee, J.Y. Electrically Conductive Graphene/Polyacrylamide Hydrogels Produced by Mild Chemical Reduction for Enhanced Myoblast Growth and Differentiation. Acta Biomater. 2017, 48, 100–109. [Google Scholar] [CrossRef]
- Ramón-Azcón, J.; Ahadian, S.; Estili, M.; Liang, X.; Ostrovidov, S.; Kaji, H.; Shiku, H.; Ramalingam, M.; Nakajima, K.; Sakka, Y.; et al. Dielectrophoretically Aligned Carbon Nanotubes to Control Electrical and Mechanical Properties of Hydrogels to Fabricate Contractile Muscle Myofibers. Adv. Mater. 2013, 25, 4028–4034. [Google Scholar] [CrossRef]
- Vasu, S.; Zhou, J.; Chen, J.; Johnston, P.V.; Kim, D.-H. Biomaterials-Based Approaches for Cardiac Regeneration. Korean Circ. J. 2021, 51, 943–960. [Google Scholar] [CrossRef] [PubMed]
- Shaik, R.; Xu, J.; Wang, Y.; Hong, Y.; Zhang, G. Fibrin-Enriched Cardiac Extracellular Matrix Hydrogel Promotes In Vitro Angiogenesis. ACS Biomater. Sci. Eng. 2023, 9, 877–888. [Google Scholar] [CrossRef] [PubMed]
- McMahan, S.; Taylor, A.; Copeland, K.M.; Pan, Z.; Liao, J.; Hong, Y. Current Advances in Biodegradable Synthetic Polymer Based Cardiac Patches. J. Biomed. Mater. Res. A 2020, 108, 972–983. [Google Scholar] [CrossRef]
- Feiner, R.; Engel, L.; Fleischer, S.; Malki, M.; Gal, I.; Shapira, A.; Shacham-Diamand, Y.; Dvir, T. Engineered Hybrid Cardiac Patches with Multifunctional Electronics for Online Monitoring and Regulation of Tissue Function. Nat. Mater. 2016, 15, 679–685. [Google Scholar] [CrossRef]
- Chen, J.; Zhan, Y.; Wang, Y.; Han, D.; Tao, B.; Luo, Z.; Ma, S.; Wang, Q.; Li, X.; Fan, L.; et al. Chitosan/Silk Fibroin Modified Nanofibrous Patches with Mesenchymal Stem Cells Prevent Heart Remodeling Post-Myocardial Infarction in Rats. Acta Biomater. 2018, 80, 154–168. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Yang, H.; Bai, A.; Jiang, W.; Li, X.; Wang, X.; Mao, Y.; Lu, C.; Qian, R.; Guo, F.; et al. Functional Engineered Human Cardiac Patches Prepared from Nature’s Platform Improve Heart Function after Acute Myocardial Infarction. Biomaterials 2016, 105, 52–65. [Google Scholar] [CrossRef] [PubMed]
- O’Neill, H.S.; O’Sullivan, J.; Porteous, N.; Ruiz-Hernandez, E.; Kelly, H.M.; O’Brien, F.J.; Duffy, G.P. A Collagen Cardiac Patch Incorporating Alginate Microparticles Permits the Controlled Release of Hepatocyte Growth Factor and Insulin-like Growth Factor-1 to Enhance Cardiac Stem Cell Migration and Proliferation. J. Tissue Eng. Regen. Med. 2018, 12, e384–e394. [Google Scholar] [CrossRef]
- Lakshmanan, R.; Kumaraswamy, P.; Krishnan, U.M.; Sethuraman, S. Engineering a Growth Factor Embedded Nanofiber Matrix Niche to Promote Vascularization for Functional Cardiac Regeneration. Biomaterials 2016, 97, 176–195. [Google Scholar] [CrossRef]
- Cristallini, C.; Vaccari, G.; Barbani, N.; Cibrario Rocchietti, E.; Barberis, R.; Falzone, M.; Cabiale, K.; Perona, G.; Bellotti, E.; Rastaldo, R.; et al. Cardioprotection of PLGA/Gelatine Cardiac Patches Functionalised with Adenosine in a Large Animal Model of Ischaemia and Reperfusion Injury: A Feasibility Study. J. Tissue Eng. Regen. Med. 2019, 13, 1253–1264. [Google Scholar] [CrossRef]
- Lee, M.; Kim, M.C.; Lee, J.Y. Nanomaterial-Based Electrically Conductive Hydrogels for Cardiac Tissue Repair. Int. J. Nanomed. 2022, 17, 6181–6200. [Google Scholar] [CrossRef]
- Morsink, M.; Severino, P.; Luna-Ceron, E.; Hussain, M.A.; Sobahi, N.; Shin, S.R. Effects of Electrically Conductive Nano-Biomaterials on Regulating Cardiomyocyte Behavior for Cardiac Repair and Regeneration. Acta Biomater. 2022, 139, 141–156. [Google Scholar] [CrossRef] [PubMed]
- Ghovvati, M.; Kharaziha, M.; Ardehali, R.; Annabi, N. Recent Advances in Designing Electroconductive Biomaterials for Cardiac Tissue Engineering. Adv. Healthc. Mater. 2022, 11, e2200055. [Google Scholar] [CrossRef] [PubMed]
Biological Tissue | Elastic Modulus |
---|---|
Skin | 4.6–20 MPa |
Cartilage | 10–20 kPa |
Bone | 1–20 GPa |
Heart | 30–400 kPa |
Skeletal Muscle | 20–100 kPa |
Type | Examples | Advantages | Disadvantages | References |
---|---|---|---|---|
Synthetic | poly(vinyl alcohol) (PVA), poly(ethylene glycol) (PEG), poly(ethylene oxide) (PEO), poly(2-hydroxyethyl methacrylate) (PHEMA), poly(acrylic acid) (PAA), poly(acrylamide) (PAAm), etc. | Excellent durability and reproducibility, high tunability of their mechanical properties | Low bioactivity, possible cytotoxic effects and immune rejection | [68] |
Natural | Protein based: Collagen, elastin, fibrin, gelatin, silk fibroin Polysaccharide based: Glycosaminoglycans, alginate, chitosan Decellularized hydrogels: Decellularized ECM from different tissues | Biocompatibility, biodegradability, high bioactivity, low/absent toxicity, high tunability of their characteristics, high retention of growth, and differentiation factors | Poor mechanical stability, batch variability, poor stability over a long period of time, possible lack of reproducibility, limited applicability in terms of 3D printing | [68,69] |
Hybrid | Combination of natural and synthetic (e.g., collagen, elastin, fibrin, gelatin, silk fibroin, GAGs, alginate, chitosan, decellularized tissues, poly(lactic acid) (PLA), poly(ε-caprolactone) (PCL), poly(glycolic acid) (PGA) and copolymers, poly(ethylene glycol) (PEG), and poly(vinyl alcohol) (PVA)) | Remarkable thermodynamic stability, elevated capacity of solubilization, tunable mechanical properties, heterogeneous structure allowing cell adhesion and spreading, responsiveness, biocompatibility, biodegradability, and non-immunologic response | The incorrect combination of materials could result in incompatible and non-functional hydrogels | [70,71,72] |
Fabrication Methods | Key Features | Advantages | Disadvantages | Examples |
---|---|---|---|---|
Emulsification | It produces minute hydrogel droplets by mixing multi-phased solutions with a hydrophobic phase. Hydrogel droplet size could be easily tailored by modifying the precursor’s viscosity and mixing intensity. Agglomeration could be prevented by adding surfactants to limit surface tension. | Possibility to obtain cell-laden scaffolds by simply adding cells to the mixing phase. | Only spherical particles could be produced, with a wide particle size distribution. | Natural (chitosan, collagen, agarose, alginate) and synthetic (polylactic acid, polylactic-co-glycolic acid) polymers can be used to encapsulate cells to develop a controllable environment for differentiation. |
Freeze-drying | Polymer and solvent are added to a water solution undergoing rapid cooling in a temperature range, causing thermal instability within the structure. This freeze-dried construct is then subjected to partial vacuum, allowing solvent to evaporate while building porous scaffolds. | Possibility to create porous matrices. Possibility to use water and ice crystals instead of organic solvents during the fabrication process. | Difficulty in tuning pores size and long processing time, resulting in relatively poor mechanical features due to matrix collapse following the scaffold–air interface tension changes during solvent evaporation. | Natural (collagen, chitosan, agarose, silk proteins), synthetic (poly(ethylene glycol), poly(L-lactic acid)) and composite (polylactic-co-glycolic acid-poly(propylene fumarate), collagen-chitosan) polymers can be used. Collagen–chitosan scaffolds crosslinked with glutaraldehyde were tested for adipose tissue engineering, while agarose scaffolds with linear porous channels showed promising results in supporting azonal regeneration. |
Porogen leaching | Salt particles are mixed with a solvent and transferred to a mold of the desired shape, which undergoes freeze-drying, allowing solvent evaporation, and subsequent leaching of the trapped salt particles within the network. | Fair reproducibility and lack of sophisticated fabrication apparatus. Possibility to control pore size and quantity by adjusting the nature and quantity of porogen used. Possibility to develop scaffolds with dual porosity. | Need for long soaking in water to remove salts and solvents used during the fabrication. Potential presence of residual porogen and/or solvent within the network, forming defective pore structures. | Natural (collagen) and synthetic (polylactic-co-glycolic acid, poly(lactic acid)) can be used to obtain composite scaffolds. |
Gas foaming | Effervescent salt particles are mixed into a polymer gel cast in a mold where gas bubbles are generated with either chemical or physical methods, decreasing the polymer solubility. Consequently, the pressure causes gas nucleation and the formation of interconnecting pores, finally resulting in highly porous foam scaffolds without the use of organic solvents, which can have toxic effects or induce inflammatory responses. | Possibility to obtain scaffolds with high porosity (up to 90–93%). Possibility to obtain macroporous structures with a homogeneous pore size ranging between 100 and 200 μm. Possibility to maintain the bioactivity of the molecules embedded into the matrix. | Formation of skimming film layers on the scaffold surface, which needs to be removed. Poor interconnectivity of the porosity. | Mixtures of poly(lactic acid) and ammonium bicarbonate, polylactic-co-glycolic acid and citric acid, poly(acrylic acid/acrylamide) and sodium bicarbonate or poly(ethylene glycol) and sodium bicarbonate have been successfully used to produce highly porous foams. |
Electrospinning | A high voltage current is applied to the syringe pump filled with the polymeric material, which jets the solution out of the nozzle tip as thin filaments collected by a rotating collector. | Possibility to incorporate proteins and/or growth factors in poorly biocompatible synthetic polymers to improve their whole features. Possibility to obtain submicrometric porous fibrous hydrogels, assuring improved cell–scaffold interactions. | Difficulties in generating scaffolds with complex structures and homogeneous pore distribution. Inability to generate three-dimensional scaffolds. | Natural (collagen, chitosan, silk fibroin, chitin) and synthetic (poly(lactic acid), poly(glycolic acid), poly(lactic-co-glycolitic acid), polycaprolactone, poly(ethylene oxide), polyvinyl alcohol) polymers can be used to develop scaffolds for tissue engineering applications. |
Three-dimensional printing | It represents an innovative strategy to fabricate matrices with precise size and shape, in which it is possible to precisely position biologics, such as living cells, and ECM components according to a hierarchical organization. | Possibility to replace the classical two-dimensional (2D) models in which cells are grown as monolayers without reproducing the dynamic and complex cell–cell and cell–matrix interactions, thus improving in vivo physiological interactions in artificial multicellular tissues/organs. | Difficulties in the identification of the printable materials that should possess structural stability in biological environments, a degradation rate congruent with tissue regeneration, and non-toxic features. | Natural (alginate, collagen, silk, dextran, gelatin, fibrin, agarose, gellan gum, hyaluronic acid, decellularized matrices), synthetic (pluronics, poly(ethylene glycol), polycaprolactone) and composite (agarose/chitosan, alginate/gelatin, fibrinogen/gelatin, hydroxyapatite/gelatin) polymers can be used to obtain cell-laden scaffolds with predefined external shape and internal morphology. |
Photolithography | This is a two-step technique in which a masked photosensitive polymer modelled in the desired shapes and sizes is exposed to UV radiation to allow the photopolymerization, while the unreacted substrate is eliminated through solvent washing. | Possibility to synthesize polymeric 3D scaffolds with tunable alignment patterns. Possibility to create scaffolds in which cells are encapsulated within photocrosslinkable polymers. Possibility to conjugate chemical moieties to the hydrogel matrix in spatially controlled manner. | Need of photo-crosslinkable polymers and photoinitiators that could be cytotoxic. Possible noxious effects of UV radiation on cell behavior. Need for further assembly of the obtained two-dimensional structures in order to obtain three-dimensional scaffolds. | Acrylic monomers, acrylate-functionalized polymers (poly(ethylene glycol) diacrylate, acrylated gelatin, acrylated alginate) or vinyl-functionalized macromolecules have been successfully photopolymerized to obtain scaffold with arbitrary geometries. |
Sol–gel technique | Scaffolds are prepared by dissolving organic or inorganic metal compounds in a solvent. The resulting solution is subjected to cycles of hydrolysis and polymerization reactions, allowing the formation of a colloidal suspension (sol) that is cast into a mold to achieve a gel structure that is converted into a dense ceramic or glass material through further drying and heat treatments. | Possibility to obtain scaffolds with high chemical homogeneity by working with low processing temperatures. Possibility of controlling particle size and morphology. | High cost of raw materials. Large shrinkage during processing. Possible health hazards deriving from the long processing time involving organic solutions. | Natural (alginate, gelatin, cellulose) and synthetic (poly(ethylene glycol), polyvinyl alcohol) polymers can be used to obtain porous scaffolds. |
Membrane-Located Mechanosensors | Mode of Action |
---|---|
Cadherins | They act as tension transducers, transmitting mechanical stimuli to the cytoskeletal actin filaments. |
Desmosomal cadherins | They assure mechanical integrity to the junctional complex by acting on cytoskeletal intermediate filaments. |
Connexins | They enhance cell–cell communications at gap junction level, assuring a syncytium-like behavior. |
Integrins | They act as tension transducers, transmitting mechanical stimuli to the cytoskeletal intermediate filaments. |
Focal adhesions | They strengthen the actomyosin cytoskeletal network thanks to mechanical stimulation-induced conformational changes. |
Transient receptor potential vanilloid 4 (TRPV4) channels | They allow calcium influx and signaling in response to a direct mechanical stimulation. |
Piezo1 channels | They allow calcium movement, influencing cytoskeletal rearrangement. |
Very large G protein-coupled receptor 1 (VLGR1) | They regulate focal adhesion assembly and disassembly and stimulate cell migration. |
Intracellular Mechanosensors | Mode of Action |
Linker of the nucleoskeleton and cytoskeleton (LINC) complex | It transmits mechanical stimuli between the nucleoskeleton and the cytoskeleton. |
Yes-associated protein and transcriptional coactivator with PDZ-binding motif (YAP/TAZ) | They alter their localization between the cytoplasm (inactive state) and the nucleus (active state) in response to mechanical stimuli, thus regulating cell growth, differentiation, and migration. |
Rho-associated kinase (ROCK) | It stabilizes the actin cytoskeleton, favors actin/myosin crosslinking, and enhances actomyosin contractility. |
mDia | It promotes actin cytoskeleton assembly by favoring its nucleation and polymerization. |
Focal adhesion kinase (FAK) | It transduces mechanical stimuli to the myosin cytoskeleton, finally regulating cell differentiation by acting upstream on the Rho/ROCK pathway. |
Mixed lineage kinases (MLKs) | Under compression stimulation, they activated the downstream mitogen-activated protein kinase (MAPK) pathway, a key regulator of cell differentiation. |
Wnt/β-catenin pathway | Mechanical stimuli, like shear stress or tension, lead to integrin activation and β-catenin accumulation and/or Wnt ligand release, finally resulting in the regulation of cell differentiation and homeostasis. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carton, F.; Rizzi, M.; Canciani, E.; Sieve, G.; Di Francesco, D.; Casarella, S.; Di Nunno, L.; Boccafoschi, F. Use of Hydrogels in Regenerative Medicine: Focus on Mechanical Properties. Int. J. Mol. Sci. 2024, 25, 11426. https://doi.org/10.3390/ijms252111426
Carton F, Rizzi M, Canciani E, Sieve G, Di Francesco D, Casarella S, Di Nunno L, Boccafoschi F. Use of Hydrogels in Regenerative Medicine: Focus on Mechanical Properties. International Journal of Molecular Sciences. 2024; 25(21):11426. https://doi.org/10.3390/ijms252111426
Chicago/Turabian StyleCarton, Flavia, Manuela Rizzi, Elena Canciani, Gianluca Sieve, Dalila Di Francesco, Simona Casarella, Luca Di Nunno, and Francesca Boccafoschi. 2024. "Use of Hydrogels in Regenerative Medicine: Focus on Mechanical Properties" International Journal of Molecular Sciences 25, no. 21: 11426. https://doi.org/10.3390/ijms252111426
APA StyleCarton, F., Rizzi, M., Canciani, E., Sieve, G., Di Francesco, D., Casarella, S., Di Nunno, L., & Boccafoschi, F. (2024). Use of Hydrogels in Regenerative Medicine: Focus on Mechanical Properties. International Journal of Molecular Sciences, 25(21), 11426. https://doi.org/10.3390/ijms252111426