Sodium-Glucose Cotransporter 2 Inhibitor Therapy in Different Scenarios of Heart Failure: An Overview of the Current Literature
Abstract
:1. Introduction
2. SGLT2is and Coronary Artery Disease: From Pathophysiological Mechanisms to Clinical Applications
2.1. SGLT2is and Coronary Artery Disease: Mechanisms
2.2. SGLT2is and Coronary Artery Disease: Literature Overview
3. Exploiting SGLT2i Properties in Amyloid Cardiomyopathy
SGLT2is: Promising Therapeutic Options for Amyloid Cardiomyopathy
4. SGLT2is as a Potential Weapon Against Cardiotoxicity
5. SGLT2is and Takotsubo Syndrome: The Two Sides of the Coin
6. SGLT2i Use in Valvular Disease: What We Know and Future Perspectives
6.1. SGLT2is and Aortic Stenosis
6.2. SGLT2is and Mitral Stenosis
6.3. SGLT2is and Mitral Regurgitation
7. SGLT2is and Myocarditis: Clinical Applications and Promising Experimental Models
8. Limitations
9. Conclusions
- -
- Ischemic Heart Disease and Cardiotoxicity: primary studies demonstrate reassuring results linked to the protective metabolic and anti-inflammatory effects of SGLT2is.
- -
- Amyloidosis and Valvular Diseases: the beneficial impact on volume overload and filling pressures appears promising, although existing data are scarce.
- -
- Takotsubo Syndrome: results remain ambiguous, necessitating further research.
- -
- Myocarditis: while most studies are based on animal models, the use of SGLT2is in the acute phase may be beneficial due to their known anti-inflammatory and anti-remodeling properties.
Author Contributions
Funding
Conflicts of Interest
References
- McDonagh, T.A.; Metra, M.; Adamo, M.; Gardner, R.S.; Baumbach, A.; Böhm, M.; Burri, H.; Butler, J.; Čelutkienė, J.; Chioncel, O.; et al. 2023 Focused Update of the 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur. Heart J. 2023, 44, 3627–3639. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Gao, T.; Meng, C.; Li, S.; Bi, L.; Geng, Y.; Zhang, P. Sodium-glucose co-transporter 2 inhibitors in heart failure with mildly reduced or preserved ejection fraction: An updated systematic review and meta-analysis. Eur. J. Med. Res. 2022, 27, 314. [Google Scholar] [CrossRef]
- Aziri, B.; Begic, E.; Jankovic, S.; Mladenovic, Z.; Stanetic, B.; Kovacevic-Preradovic, T.; Iglica, A.; Mujakovic, A. Systematic review of sodium-glucose cotransporter 2 inhibitors: A hopeful prospect in tackling heart failure-related events. ESC Heart Fail. 2023, 10, 1499–1530. [Google Scholar] [CrossRef] [PubMed]
- Anker, S.D.; Usman, M.S.; Butler, J. SGLT2 Inhibitors: From Antihyperglycemic Agents to All-Around Heart Failure Therapy. Circulation 2022, 146, 299–302. [Google Scholar] [CrossRef] [PubMed]
- McMurray, J.J.V.; Solomon, S.D.; Inzucchi, S.E.; Køber, L.; Kosiborod, M.N.; Martinez, F.A.; Ponikowski, P.; Sabatine, M.S.; Anand, I.S.; Bělohlávek, J.; et al. Dapagliflozin in Patients with Heart Failure and Reduced Ejection Fraction. N. Engl. J. Med. 2019, 381, 1995–2008. [Google Scholar] [CrossRef]
- Packer, M.; Anker, S.D.; Butler, J.; Filippatos, G.; Pocock, S.J.; Carson, P.; Januzzi, J.; Verma, S.; Tsutsui, H.; Brueckmann, M.; et al. Cardiovascular and Renal Outcomes with Empagliflozin in Heart Failure. N. Engl. J. Med. 2020, 383, 1413–1424. [Google Scholar] [CrossRef]
- Severino, P.; D’Amato, A.; Prosperi, S.; Myftari, V.; Canuti, E.S.; Labbro Francia, A.; Cestiè, C.; Maestrini, V.; Lavalle, C.; Badagliacca, R.; et al. Heart Failure Pharmacological Management: Gaps and Current Perspectives. J. Clin. Med. 2023, 12, 1020. [Google Scholar] [CrossRef]
- Severino, P.; D’Amato, A.; Prosperi, S.; Mariani, M.V.; Myftari, V.; Labbro Francia, A.; Cestiè, C.; Tomarelli, E.; Manzi, G.; Birtolo, L.I.; et al. Strategy for an early simultaneous introduction of four-pillars of heart failure therapy: Results from a single center experience. Am. J. Cardiovasc. Drugs 2024, 24, 663–671. [Google Scholar] [CrossRef]
- Monzo, L.; Ferrari, I.; Cicogna, F.; Tota, C.; Cice, G.; Girerd, N.; Calò, L. Sodium-glucose co-transporter 2 inhibitors in heart failure: An updated evidence-based practical guidance for clinicians. Eur. Heart J. Suppl. 2023, 25, C309–C315. [Google Scholar] [CrossRef]
- von Lewinski, D.; Kolesnik, E.; Tripolt, N.J.; Pferschy, P.N.; Benedikt, M.; Wallner, M.; Alber, H.; Berger, R.; Lichtenauer, M.; Saely, C.H.; et al. Empagliflozin in acute myocardial infarction: The EMMY trial. Eur. Heart J. 2022, 43, 4421–4432. [Google Scholar] [CrossRef]
- Andreadou, I.; Bell, R.M.; Bøtker, H.E.; Zuurbier, C.J. SGLT2 inhibitors reduce infarct size in reperfused ischemic heart and improve cardiac function during ischemic episodes in preclinical models. Biochim. Biophys. Acta Mol. Basis Dis. 2020, 1866, 165770. [Google Scholar] [CrossRef] [PubMed]
- Nakao, M.; Shimizu, I.; Katsuumi, G.; Yoshida, Y.; Suda, M.; Hayashi, Y.; Ikegami, R.; Hsiao, Y.T.; Okuda, S.; Soga, T.; et al. Empagliflozin maintains capillarization and improves cardiac function in a murine model of left ventricular pressure overload. Sci. Rep. 2021, 11, 18384. [Google Scholar] [CrossRef] [PubMed]
- Verma, S.; Mazer, C.D.; Yan, A.T.; Mason, T.; Garg, V.; Teoh, H.; Zuo, F.; Quan, A.; Farkouh, M.E.; Fitchett, D.H.; et al. Effect of Empagliflozin on Left Ventricular Mass in Patients with Type 2 Diabetes Mellitus and Coronary Artery Disease: The EMPA-HEART CardioLink-6 Randomized Clinical Trial. Circulation 2019, 140, 1693–1702. [Google Scholar] [CrossRef] [PubMed]
- Jiang, K.; Xu, Y.; Wang, D.; Chen, F.; Tu, Z.; Qian, J.; Xu, S.; Xu, Y.; Hwa, J.; Li, J.; et al. Cardioprotective mechanism of SGLT2 inhibitor against myocardial infarction is through reduction of autosis. Protein Cell 2022, 13, 336–359. [Google Scholar] [CrossRef] [PubMed]
- Udell, J.A.; Jones, W.S.; Petrie, M.C.; Harrington, J.; Anker, S.D.; Bhatt, D.L.; Hernandez, A.F.; Butler, J. Sodium Glucose Cotransporter-2 Inhibition for Acute Myocardial Infarction: JACC Review Topic of the Week. J. Am. Coll. Cardiol. 2022, 79, 2058–2068. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Zhang, Y.; Wang, Z.; Tan, M.; Lin, J.; Qian, X.; Li, H.; Jiang, T. Dapagliflozin alleviates myocardial ischemia/reperfusion injury by reducing ferroptosis via MAPK signaling inhibition. Front. Pharmacol. 2023, 14, 1078205. [Google Scholar] [CrossRef]
- Packer, M. Differential Pathophysiological Mechanisms in Heart Failure with a Reduced or Preserved Ejection Fraction in Diabetes. JACC Heart Fail. 2021, 9, 535–549. [Google Scholar] [CrossRef] [PubMed]
- Dyck, J.R.B.; Sossalla, S.; Hamdani, N.; Coronel, R.; Weber, N.C.; Light, P.E.; Zuurbier, C.J. Cardiac mechanisms of the beneficial effects of SGLT2 inhibitors in heart failure: Evidence for potential off-target effects. J. Mol. Cell Cardiol. 2022, 167, 17–31. [Google Scholar] [CrossRef]
- Aziz, F.; Tripolt, N.J.; Pferschy, P.N.; Scharnagl, H.; Abdellatif, M.; Oulhaj, A.; Benedikt, M.; Kolesnik, E.; von Lewinski, D.; Sourij, H. Ketone body levels and its associations with cardiac markers following an acute myocardial infarction: A post hoc analysis of the EMMY trial. Cardiovasc. Diabetol. 2024, 23, 145. [Google Scholar] [CrossRef]
- Udell, J.A.; Petrie, M.C.; Jones, W.S.; Anker, S.D.; Harrington, J.; Mattheus, M.; Seide, S.; Amir, O.; Bahit, M.C.; Bauersachs, J.; et al. Left Ventricular Function, Congestion, and Effect of Empagliflozin on Heart Failure Risk After Myocardial Infarction. J. Am. Coll. Cardiol. 2024, 83, 2233–2246. [Google Scholar] [CrossRef]
- Butler, J.; Jones, W.S.; Udell, J.A.; Anker, S.D.; Petrie, M.C.; Harrington, J.; Mattheus, M.; Zwiener, I.; Amir, O.; Bahit, M.C.; et al. Empagliflozin after Acute Myocardial Infarction. N. Engl. J. Med. 2024, 390, 1455–1466. [Google Scholar] [CrossRef] [PubMed]
- Talha, K.M.; Anker, S.D.; Butler, J. SGLT-2 Inhibitors in Heart Failure: A Review of Current Evidence. Int. J. Heart Fail. 2023, 5, 82–90. [Google Scholar] [CrossRef] [PubMed]
- Hernandez, A.F.; Udell, J.A.; Jones, W.S.; Anker, S.D.; Petrie, M.C.; Harrington, J.; Mattheus, M.; Seide, S.; Zwiener, I.; Amir, O.; et al. Effect of Empagliflozin on Heart Failure Outcomes After Acute Myocardial Infarction: Insights From the EMPACT-MI Trial. Circulation 2024, 149, 1627–1638. [Google Scholar] [CrossRef] [PubMed]
- Moady, G.; Yakubovich, I.; Atar, S. Safety and Efficacy of Early SGLT2 Inhibitors Initiation in Diabetic Patients Following Acute Myocardial Infarction, a Retrospective Study. J. Cardiovasc. Pharmacol. Ther. 2024, 29, 10742484241252474. [Google Scholar] [CrossRef] [PubMed]
- Paolisso, P.; Bergamaschi, L.; Gragnano, F.; Gallinoro, E.; Cesaro, A.; Sardu, C.; Mileva, N.; Foà, A.; Armillotta, M.; Sansonetti, A.; et al. Outcomes in diabetic patients treated with SGLT2-Inhibitors with acute myocardial infarction undergoing PCI: The SGLT2-I AMI PROTECT Registry. Pharmacol. Res. 2023, 187, 106597. [Google Scholar] [CrossRef]
- Paolisso, P.; Bergamaschi, L.; Santulli, G.; Gallinoro, E.; Cesaro, A.; Gragnano, F.; Sardu, C.; Mileva, N.; Foà, A.; Armillotta, M.; et al. Infarct size, inflammatory burden, and admission hyperglycemia in diabetic patients with acute myocardial infarction treated with SGLT2-inhibitors: A multicenter international registry. Cardiovasc. Diabetol. 2022, 21, 77. [Google Scholar] [CrossRef]
- Gilstrap, L.G.; Dominici, F.; Wang, Y.; El-Sady, M.S.; Singh, A.; Di Carli, M.F.; Falk, R.H.; Dorbala, S. Epidemiology of Cardiac Amyloidosis-Associated Heart Failure Hospitalizations Among Fee-for-Service Medicare Beneficiaries in the United States. Circ. Heart Fail. 2019, 12, e005407. [Google Scholar] [CrossRef]
- Steinhardt, M.J.; Cejka, V.; Chen, M.; Bäuerlein, S.; Schäfer, J.; Adrah, A.; Ihne-Schubert, S.M.; Papagianni, A.; Kortüm, K.M.; Morbach, C.; et al. Safety and Tolerability of SGLT2 Inhibitors in Cardiac Amyloidosis-A Clinical Feasibility Study. J. Clin. Med. 2024, 13, 283. [Google Scholar] [CrossRef]
- Asakura-Kinoshita, M.; Masuda, T.; Oka, K.; Ohara, K.; Miura, M.; Morinari, M.; Misawa, K.; Miyazawa, Y.; Akimoto, T.; Shimada, K.; et al. Sodium-Glucose Cotransporter 2 Inhibitor Combined with Conventional Diuretics Ameliorate Body Fluid Retention without Excessive Plasma Volume Reduction. Diagnostics 2024, 14, 1194. [Google Scholar] [CrossRef]
- Dobner, S.; Bernhard, B.; Asatryan, B.; Windecker, S.; Stortecky, S.; Pilgrim, T.; Gräni, C.; Hunziker, L. SGLT2 inhibitor therapy for transthyretin amyloid cardiomyopathy: Early tolerance and clinical response to dapagliflozin. ESC Heart Fail. 2023, 10, 397–404. [Google Scholar] [CrossRef]
- Porcari, A.; Cappelli, F.; Nitsche, C.; Tomasoni, D.; Sinigiani, G.; Longhi, S.; Bordignon, L.; Masri, A.; Serenelli, M.; Urey, M.; et al. SGLT2 Inhibitor Therapy in Patients with Transthyretin Amyloid Cardiomyopathy. J. Am. Coll. Cardiol. 2024, 83, 2411–2422. [Google Scholar] [CrossRef] [PubMed]
- Perelman, M.G.; Brzezinski, R.Y.; Waissengrin, B.; Leshem, Y.; Bainhoren, O.; Rubinstein, T.A.; Perelman, M.; Rozenbaum, Z.; Havakuk, O.; Topilsky, Y.; et al. Sodium-glucose co-transporter-2 inhibitors in patients treated with immune checkpoint inhibitors. Cardiooncology 2024, 10, 2. [Google Scholar] [CrossRef] [PubMed]
- Ulusan, S.; Gülle, K.; Peynirci, A.; Sevimli, M.; Karaibrahimoglu, A.; Kuyumcu, M.S. Dapagliflozin May Protect Against Doxorubicin-Induced Cardiotoxicity. Anatol. J. Cardiol. 2023, 27, 339–347. [Google Scholar] [CrossRef] [PubMed]
- Barış, V.Ö.; Dinçsoy, A.B.; Gedikli, E.; Zırh, S.; Müftüoğlu, S.; Erdem, A. Empagliflozin Significantly Prevents the Doxorubicin-induced Acute Cardiotoxicity via Non-antioxidant Pathways. Cardiovasc. Toxicol. 2021, 21, 747–758. [Google Scholar] [CrossRef]
- Sabatino, J.; De Rosa, S.; Tammè, L.; Iaconetti, C.; Sorrentino, S.; Polimeni, A.; Mignogna, C.; Amorosi, A.; Spaccarotella, C.; Yasuda, M.; et al. Empagliflozin prevents doxorubicin-induced myocardial dysfunction. Cardiovasc. Diabetol. 2020, 19, 66. [Google Scholar] [CrossRef]
- Hwang, H.J.; Kim, M.; Jun, J.E.; Yon, D.K. Sodium-glucose cotransporter-2 inhibitors improve clinical outcomes in patients with type 2 diabetes mellitus undergoing anthracycline-containing chemotherapy: An emulated target trial using nationwide cohort data in South Korea. Sci. Rep. 2023, 13, 21756. [Google Scholar] [CrossRef]
- Qiu, S.; Zhou, T.; Qiu, B.; Zhang, Y.; Zhou, Y.; Yu, H.; Zhang, J.; Liu, L.; Yuan, L.; Yang, G.; et al. Risk Factors for Anthracycline-Induced Cardiotoxicity. Front. Cardiovasc. Med. 2021, 8, 736854. [Google Scholar] [CrossRef]
- Avula, V.; Sharma, G.; Kosiborod, M.N.; Vaduganathan, M.; Neilan, T.G.; Lopez, T.; Dent, S.; Baldassarre, L.; Scherrer-Crosbie, M.; Barac, A.; et al. SGLT2 Inhibitor Use and Risk of Clinical Events in Patients with Cancer Therapy-Related Cardiac Dysfunction. JACC Heart Fail. 2024, 12, 67–78. [Google Scholar] [CrossRef]
- Chiang, C.H.; Chiang, C.H.; Chiang, C.H.; Ma, K.S.; Peng, C.Y.; Hsia, Y.P.; Horng, C.S.; Chen, C.Y.; Chang, Y.C.; See, X.Y.; et al. Impact of sodium-glucose cotransporter-2 inhibitors on heart failure and mortality in patients with cancer. Heart 2023, 109, 470–477. [Google Scholar] [CrossRef]
- Prosperi, S.; D’Amato, A.; Severino, P.; Myftari, V.; Monosilio, S.; Marchiori, L.; Zagordi, L.M.; Filomena, D.; Di Pietro, G.; Birtolo, L.I.; et al. Sizing SGLT2 Inhibitors Up: From a Molecular to a Morpho-Functional Point of View. Int. J. Mol. Sci. 2023, 24, 13848. [Google Scholar] [CrossRef]
- Roshanzamir, S.; Showkathali, R. Takotsubo cardiomyopathy a short review. Curr. Cardiol. Rev. 2013, 9, 191–196. [Google Scholar] [CrossRef] [PubMed]
- Oldfield, K.; Jayasinghe, R.; Niranjan, S.; Chadha, S. Immune checkpoint inhibitor-induced takotsubo syndrome and diabetic ketoacidosis: Rare reactions. BMJ Case Rep. 2021, 14, e237217. [Google Scholar] [CrossRef] [PubMed]
- Kinoshita, H.; Sugino, H.; Oka, T.; Ichikawa, O.; Shimonaga, T.; Sumimoto, Y.; Kashiwabara, A.; Sakai, T. A case in which SGLT2 inhibitor is a contributing factor to takotsubo cardiomyopathy and heart failure. J. Cardiol. Cases 2020, 22, 177–180. [Google Scholar] [CrossRef] [PubMed]
- Tatarcheh, T.; Amissi, S.; Matsushita, K.; Mroueh, A.; Trimaille, A.; Gong, D.S.; Fakih, W.; Muzammel, H.; Faucher, L.; Granier, A.; et al. Empagliflozin treatment prevented oxidative stress, macrophage infiltration, pro-inflammatory and pro-fibrotic responses in the left ventricle of isoprenaline-induced Takotsubo-like syndrome in rats. Eur. Heart J. 2023, 44 (Suppl. S2). [Google Scholar] [CrossRef]
- Aluru, J.S.; Barsouk, A.; Saginala, K.; Rawla, P.; Barsouk, A. Valvular Heart Disease Epidemiology. Med. Sci. 2022, 10, 32. [Google Scholar] [CrossRef]
- Vavilis, G.; Bäck, M.; Bárány, P.; Szummer, K. Epidemiology of Aortic Stenosis/Aortic Valve Replacement (from the Nationwide Swedish Renal Registry). Am. J. Cardiol. 2022, 163, 58–64. [Google Scholar] [CrossRef]
- Palazzuoli, A.; Severino, P.; D’Amato, A.; Myftari, V.; Tricarico, L.; Correale, M.; Dattilo, G.; Fioretti, F.; Nodari, S. Distinct Profiles and New Pharmacological Targets for Heart Failure with Preserved Ejection Fraction. Rev. Cardiovasc. Med. 2024, 25, 270. [Google Scholar] [CrossRef]
- Urbano Pagan, L.; Gomes, M.J.; Damatto, F.C.; Oliveira, J.P.G.; Gatto, M.; Souza, L.M.; Santos, A.C.C.; Borim, P.A.; Rodrigues, E.A.; Mota, G.A.F.; et al. Effects of SGLT2 inhibition on cardiac remodeling and heart failure development in rats with aortic stenosis. Eur. Heart J. 2023, 44 (Suppl. S2), ehad655-1661. [Google Scholar] [CrossRef]
- Amat-Santos, I.J.; Sánchez-Luna, J.P.; Abu-Assi, E.; Melendo-Viu, M.; Cruz-Gonzalez, I.; Nombela-Franco, L.; Muñoz-Garcí, A.J.; Blas, S.G.; de la Torre Hernandez, J.M.; Romaguera, R.; et al. Rationale and design of the Dapagliflozin after Transcatheter Aortic Valve Implantation (DapaTAVI) randomized trial. Eur. J. Heart Fail. 2022, 24, 581–588. [Google Scholar] [CrossRef]
- D’Amato, A.; Prosperi, S.; Severino, P.; Myftari, V.; Labbro Francia, A.; Cestiè, C.; Pierucci, N.; Marek-Iannucci, S.; Mariani, M.V.; Germanò, R.; et al. Current Approaches to Worsening Heart Failure: Pathophysiological and Molecular Insights. Int. J. Mol. Sci. 2024, 25, 1574. [Google Scholar] [CrossRef]
- Asrial, A.A.; Reviono, R.; Soetrisno, S.; Setianto, B.Y.; Widyaningsih, V.; Nurwati, I.; Wasita, B.; Pudjiastuti, A. Effect of Dapagliflozin on Patients with Rheumatic Heart Disease Mitral Stenosis. J. Clin. Med. 2023, 12, 5898. [Google Scholar] [CrossRef] [PubMed]
- Gaasch, W.H.; Meyer, T.E. Left ventricular response to mitral regurgitation: Implications for management. Circulation 2008, 118, 2298–2303. [Google Scholar] [CrossRef] [PubMed]
- Mariani, M.V.; Manzi, G.; Pierucci, N.; Laviola, D.; Piro, A.; D’Amato, A.; Filomena, D.; Matteucci, A.; Severino, P.; Miraldi, F.; et al. SGLT2i effect on atrial fibrillation: A network meta-analysis of randomized controlled trials. J. Cardiovasc. Electrophysiol. 2024, epub ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Constant Dit Beaufils, A.L.; Huttin, O.; Jobbe-Duval, A.; Senage, T.; Filippetti, L.; Piriou, N.; Cueff, C.; Venner, C.; Mandry, D.; Sellal, J.M.; et al. Replacement Myocardial Fibrosis in Patients with Mitral Valve Prolapse: Relation to Mitral Regurgitation, Ventricular Remodeling, and Arrhythmia. Circulation 2021, 143, 1763–1774. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.W.; Chen, C.Y.; Shih, J.Y.; Cheng, B.C.; Chang, C.P.; Lin, M.T.; Ho, C.H.; Chen, Z.C.; Fisch, S.; Chang, W.T. Dapagliflozin Improves Cardiac Hemodynamics and Mitigates Arrhythmogenesis in Mitral Regurgitation-Induced Myocardial Dysfunction. J. Am. Heart Assoc. 2021, 10, e019274. [Google Scholar] [CrossRef]
- Yan, P.; Song, X.; Tran, J.; Zhou, R.; Cao, X.; Zhao, G.; Yuan, H. Dapagliflozin Alleviates Coxsackievirus B3-induced Acute Viral Myocarditis by Regulating the Macrophage Polarization Through Stat3-related Pathways. Inflammation 2022, 45, 2078–2090. [Google Scholar] [CrossRef]
- Long, Q.; Li, L.; Yang, H.; Lu, Y.; Yang, H.; Zhu, Y.; Tang, Y.; Liu, C.; Yuan, J. SGLT2 inhibitor, canagliflozin, ameliorates cardiac inflammation in experimental autoimmune myocarditis. Int. Immunopharmacol. 2022, 110, 109024. [Google Scholar] [CrossRef]
- Lv, C.; Hu, C.; Zhu, C.; Wan, X.; Chen, C.; Ji, X.; Qin, Y.; Lu, L.; Guo, X. Empagliflozin alleviates the development of autoimmune myocarditis via inhibiting NF-κB-dependent cardiomyocyte pyroptosis. Biomed. Pharmacother. 2024, 170, 115963. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prosperi, S.; D’Amato, A.; Labbro Francia, A.; Monosilio, S.; Cestiè, C.; Marek Iannucci, S.; Netti, L.; Angotti, D.; Filomena, D.; Mariani, M.V.; et al. Sodium-Glucose Cotransporter 2 Inhibitor Therapy in Different Scenarios of Heart Failure: An Overview of the Current Literature. Int. J. Mol. Sci. 2024, 25, 11458. https://doi.org/10.3390/ijms252111458
Prosperi S, D’Amato A, Labbro Francia A, Monosilio S, Cestiè C, Marek Iannucci S, Netti L, Angotti D, Filomena D, Mariani MV, et al. Sodium-Glucose Cotransporter 2 Inhibitor Therapy in Different Scenarios of Heart Failure: An Overview of the Current Literature. International Journal of Molecular Sciences. 2024; 25(21):11458. https://doi.org/10.3390/ijms252111458
Chicago/Turabian StyleProsperi, Silvia, Andrea D’Amato, Aurora Labbro Francia, Sara Monosilio, Claudia Cestiè, Stefanie Marek Iannucci, Lucrezia Netti, Danilo Angotti, Domenico Filomena, Marco Valerio Mariani, and et al. 2024. "Sodium-Glucose Cotransporter 2 Inhibitor Therapy in Different Scenarios of Heart Failure: An Overview of the Current Literature" International Journal of Molecular Sciences 25, no. 21: 11458. https://doi.org/10.3390/ijms252111458
APA StyleProsperi, S., D’Amato, A., Labbro Francia, A., Monosilio, S., Cestiè, C., Marek Iannucci, S., Netti, L., Angotti, D., Filomena, D., Mariani, M. V., Myftari, V., Germanò, R., Cimino, S., Mancone, M., Badagliacca, R., Maestrini, V., Severino, P., & Vizza, C. D. (2024). Sodium-Glucose Cotransporter 2 Inhibitor Therapy in Different Scenarios of Heart Failure: An Overview of the Current Literature. International Journal of Molecular Sciences, 25(21), 11458. https://doi.org/10.3390/ijms252111458