Systemic Inflammation Across Metabolic Obesity Phenotypes: A Cross-Sectional Study of Korean Adults Using High-Sensitivity C-Reactive Protein as a Biomarker
Abstract
:1. Introduction
2. Results
2.1. Demographic Features of This Study Participants
2.2. Distribution of hs-CRP by the Metabolic Obesity Phenotypes
2.3. Association Between Metabolic Obesity Phenotypes and hs-CRP
3. Discussion
4. Materials and Methods
4.1. Study Sample
4.2. Metabolic Obesity Phenotype
4.2.1. Obesity
4.2.2. Metabolic Phenotypes
4.3. Measurement of hs-CRP
4.4. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wong, M.C.S.; Huang, J.; Wang, J.; Chan, P.S.F.; Lok, V.; Chen, X.; Leung, C.; Wang, H.H.X.; Lao, X.Q.; Zheng, Z.J. Global, regional and time-trend prevalence of central obesity: A systematic review and meta-analysis of 13.2 million subjects. Eur. J. Epidemiol. 2020, 35, 673–683. [Google Scholar] [CrossRef] [PubMed]
- NCD Risk Factor Collaboration. Worldwide trends in underweight and obesity from 1990 to 2022: A pooled analysis of 3663 population-representative studies with 222 million children, adolescents, and adults. Lancet 2024, 403, 1027–1050. [Google Scholar] [CrossRef] [PubMed]
- Jeong, S.M.; Jung, J.H.; Yang, Y.S.; Kim, W.; Cho, I.Y.; Lee, Y.B.; Park, K.Y.; Nam, G.E.; Han, K.; Taskforce Team of the Obesity Fact Sheet of the Korean Society for the Study of Obesity. 2023 Obesity Fact Sheet: Prevalence of Obesity and Abdominal Obesity in Adults, Adolescents, and Children in Korea from 2012 to 2021. J. Obes. Metab. Syndr. 2024, 33, 27–35. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.S.; Yang, P.-S.; Jang, E.; Kim, D.; Yu, H.T.; Kim, T.-H.; Uhm, J.-S.; Sung, J.-H.; Pak, H.-N.; Lee, M.-H.; et al. Association between Obesity and Heart Failure and Related Atrial Fibrillation: Patient-Level Data Comparisons of Two Cohort Studies. Yonsei Med. J. 2024, 65, 10–18. [Google Scholar] [CrossRef] [PubMed]
- Dwivedi, A.K.; Dubey, P.; Cistola, D.P.; Reddy, S.Y. Association Between Obesity and Cardiovascular Outcomes: Updated Evidence from Meta-analysis Studies. Curr. Cardiol. Rep. 2020, 22, 25. [Google Scholar] [CrossRef]
- Flegal, K.M.; Kit, B.K.; Orpana, H.; Graubard, B.I. Association of all-cause mortality with overweight and obesity using standard body mass index categories: A systematic review and meta-analysis. JAMA 2013, 309, 71–82. [Google Scholar] [CrossRef]
- Park, J.H.; Park, D.J.; Kim, H.; Park, H.; Lee, B.; Nam, H.; Kim, S.; Kim, S.H.; Kong, S.H.; Lee, H.J.; et al. Twelve-Year Trajectory of Disease Burden and Mortality by Obesity Level in Korea: Analysis of the National Health Insurance Service Database. Obes. Surg. 2023, 33, 105–116. [Google Scholar] [CrossRef]
- Huh, J.Y.; Park, Y.J.; Ham, M.; Kim, J.B. Crosstalk between adipocytes and immune cells in adipose tissue inflammation and metabolic dysregulation in obesity. Mol. Cells 2014, 37, 365–371. [Google Scholar] [CrossRef]
- Castoldi, A.; Naffah de Souza, C.; Camara, N.O.; Moraes-Vieira, P.M. The Macrophage Switch in Obesity Development. Front. Immunol. 2015, 6, 637. [Google Scholar] [CrossRef]
- Wu, H.; Ballantyne, C.M. Metabolic Inflammation and Insulin Resistance in Obesity. Circ. Res. 2020, 126, 1549–1564. [Google Scholar] [CrossRef]
- Dali-Youcef, N.; Mecili, M.; Ricci, R.; Andres, E. Metabolic inflammation: Connecting obesity and insulin resistance. Ann. Med. 2013, 45, 242–253. [Google Scholar] [CrossRef] [PubMed]
- Young, B.; Gleeson, M.; Cripps, A.W. C-reactive protein: A critical review. Pathology 1991, 23, 118–124. [Google Scholar] [CrossRef] [PubMed]
- Hildebrandt, X.; Ibrahim, M.; Peltzer, N. Cell death and inflammation during obesity: “Know my methods, WAT(son)”. Cell Death Differ. 2023, 30, 279–292. [Google Scholar] [CrossRef] [PubMed]
- Yung, J.H.M.; Giacca, A. Role of c-Jun N-terminal Kinase (JNK) in Obesity and Type 2 Diabetes. Cells 2020, 9, 706. [Google Scholar] [CrossRef] [PubMed]
- Rocha, V.Z.; Libby, P. Obesity, inflammation, and atherosclerosis. Nat. Rev. Cardiol. 2009, 6, 399–409. [Google Scholar] [CrossRef] [PubMed]
- Ellulu, M.S.; Patimah, I.; Khaza’ai, H.; Rahmat, A.; Abed, Y. Obesity and inflammation: The linking mechanism and the complications. Arch. Med. Sci. 2017, 13, 851–863. [Google Scholar] [CrossRef]
- Choi, J.; Joseph, L.; Pilote, L. Obesity and C-reactive protein in various populations: A systematic review and meta-analysis. Obes. Rev. 2013, 14, 232–244. [Google Scholar] [CrossRef]
- Visser, M.; Bouter, L.M.; McQuillan, G.M.; Wener, M.H.; Harris, T.B. Elevated C-reactive protein levels in overweight and obese adults. JAMA 1999, 282, 2131–2135. [Google Scholar] [CrossRef]
- Lee, H. Association between obesity and high-sensitivity C-reactive protein in Korean adults without cardiovascular disease. J. Korean Biol. Nurs. Sci. 2023, 25, 32–42. [Google Scholar] [CrossRef]
- Aronson, D.; Bartha, P.; Zinder, O.; Kerner, A.; Markiewicz, W.; Avizohar, O.; Brook, G.J.; Levy, Y. Obesity is the major determinant of elevated C-reactive protein in subjects with the metabolic syndrome. Int. J. Obes. Relat. Metab. Disord. 2004, 28, 674–679. [Google Scholar] [CrossRef]
- Schulze, M.B.; Stefan, N. Metabolically healthy obesity: From epidemiology and mechanisms to clinical implications. Nat. Rev. Endocrinol. 2024, 20, 633–646. [Google Scholar] [CrossRef] [PubMed]
- Bluher, M. Metabolically Healthy Obesity. Endocr. Rev. 2020, 41, bnaa004. [Google Scholar] [CrossRef] [PubMed]
- Lavie, C.J.; Laddu, D.; Arena, R.; Ortega, F.B.; Alpert, M.A.; Kushner, R.F. Healthy Weight and Obesity Prevention: JACC Health Promotion Series. J. Am. Coll Cardiol. 2018, 72, 1506–1531. [Google Scholar] [CrossRef] [PubMed]
- van Vliet-Ostaptchouk, J.V.; Nuotio, M.L.; Slagter, S.N.; Doiron, D.; Fischer, K.; Foco, L.; Gaye, A.; Gogele, M.; Heier, M.; Hiekkalinna, T.; et al. The prevalence of metabolic syndrome and metabolically healthy obesity in Europe: A collaborative analysis of ten large cohort studies. BMC Endocr. Disord. 2014, 14, 9. [Google Scholar] [CrossRef]
- Primeau, V.; Coderre, L.; Karelis, A.D.; Brochu, M.; Lavoie, M.E.; Messier, V.; Sladek, R.; Rabasa-Lhoret, R. Characterizing the profile of obese patients who are metabolically healthy. Int. J. Obes. 2011, 35, 971–981. [Google Scholar] [CrossRef]
- Koster, A.; Stenholm, S.; Alley, D.E.; Kim, L.J.; Simonsick, E.M.; Kanaya, A.M.; Visser, M.; Houston, D.K.; Nicklas, B.J.; Tylavsky, F.A.; et al. Body fat distribution and inflammation among obese older adults with and without metabolic syndrome. Obesity 2010, 18, 2354–2361. [Google Scholar] [CrossRef]
- O’Connell, J.; Lynch, L.; Hogan, A.; Cawood, T.J.; O’Shea, D. Preadipocyte factor-1 is associated with metabolic profile in severe obesity. J. Clin. Endocrinol. Metab. 2011, 96, E680–E684. [Google Scholar] [CrossRef]
- Su, Z.; Efremov, L.; Mikolajczyk, R. Differences in the levels of inflammatory markers between metabolically healthy obese and other obesity phenotypes in adults: A systematic review and meta-analysis. Nutr. Metab. Cardiovasc. Dis. 2024, 34, 251–269. [Google Scholar] [CrossRef]
- Zhou, J.; Bai, L.; Dong, Y.; Cai, R.; Ding, W. The association between a metabolically healthy overweight/obesity phenotype and markers of inflammation among Chinese children and adolescents aged 10–18 years. J. Pediatr. Endocrinol. Metab. 2022, 35, 109–114. [Google Scholar] [CrossRef]
- Barrea, L.; Muscogiuri, G.; Pugliese, G.; de Alteriis, G.; Colao, A.; Savastano, S. Metabolically Healthy Obesity (MHO) vs. Metabolically Unhealthy Obesity (MUO) Phenotypes in PCOS: Association with Endocrine-Metabolic Profile, Adherence to the Mediterranean Diet, and Body Composition. Nutrients 2021, 13, 3925. [Google Scholar] [CrossRef]
- Iglesias Molli, A.E.; Penas Steinhardt, A.; Lopez, A.P.; Gonzalez, C.D.; Vilarino, J.; Frechtel, G.D.; Cerrone, G.E. Metabolically healthy obese individuals present similar chronic inflammation level but less insulin-resistance than obese individuals with metabolic syndrome. PLoS ONE 2017, 12, e0190528. [Google Scholar] [CrossRef] [PubMed]
- Dwipayana, I.M.P.; Semadi, I.M.S.; Nugraha, I.B.A.; Gotera, W.; Saraswati, M.R.; Budhiarta, A.A.G.; Suastika, K. Comparison of high sensitive c reactive protein levels between metabolically healthy and unhealthy obese. J. Penyakit Dalam Udayana 2024, 8, 32–35. [Google Scholar]
- Spoto, B.; Di Betta, E.; Pizzini, P.; Lonardi, S.; Mallamaci, F.; Tripepi, G.; Kanbay, M.; Cancarini, G.; Zoccali, C. Inflammation biomarkers and inflammatory genes expression in metabolically healthy obese patients. Nutr. Metab. Cardiovasc. Dis. 2023, 33, 584–591. [Google Scholar] [CrossRef] [PubMed]
- Khera, A.; Vega, G.L.; Das, S.R.; Ayers, C.; McGuire, D.K.; Grundy, S.M.; de Lemos, J.A. Sex differences in the relationship between C-reactive protein and body fat. J. Clin. Endocrinol. Metab. 2009, 94, 3251–3258. [Google Scholar] [CrossRef]
- Clark, D.O.; Unroe, K.T.; Xu, H.; Keith, N.R.; Callahan, C.M.; Tu, W. Sex and Race Differences in the Relationship between Obesity and C-Reactive Protein. Ethn. Dis. 2016, 26, 197–204. [Google Scholar] [CrossRef]
- van Wijk, D.F.; Boekholdt, S.M.; Arsenault, B.J.; Ahmadi-Abhari, S.; Wareham, N.J.; Stroes, E.S.; Khaw, K.T. C-Reactive Protein Identifies Low-Risk Metabolically Healthy Obese Persons: The European Prospective Investigation of Cancer-Norfolk Prospective Population Study. J. Am. Heart Assoc. 2016, 5, e002823. [Google Scholar] [CrossRef]
- Romero-Cabrera, J.L.; Ankeny, J.; Fernández-Montero, A.; Kales, S.N.; Smith, D.L. A Systematic Review and Meta-Analysis of Advanced Biomarkers for Predicting Incident Cardiovascular Disease among Asymptomatic Middle-Aged Adults. Int. J. Mol. Sci. 2022, 23, 13540. [Google Scholar] [CrossRef]
- Li, Y.; Zhong, X.; Cheng, G.; Zhao, C.; Zhang, L.; Hong, Y.; Wan, Q.; He, R.; Wang, Z. Hs-CRP and all-cause, cardiovascular, and cancer mortality risk: A meta-analysis. Atherosclerosis 2017, 259, 75–82. [Google Scholar] [CrossRef]
- Karelis, A.D.; Faraj, M.; Bastard, J.P.; St-Pierre, D.H.; Brochu, M.; Prud’homme, D.; Rabasa-Lhoret, R. The metabolically healthy but obese individual presents a favorable inflammation profile. J. Clin. Endocrinol. Metab. 2005, 90, 4145–4150. [Google Scholar] [CrossRef]
- Cobos-Palacios, L.; Ruiz-Moreno, M.I.; Vilches-Perez, A.; Vargas-Candela, A.; Munoz-Ubeda, M.; Benitez Porres, J.; Navarro-Sanz, A.; Lopez-Carmona, M.D.; Sanz-Canovas, J.; Perez-Belmonte, L.M.; et al. Metabolically healthy obesity: Inflammatory biomarkers and adipokines in elderly population. PLoS ONE 2022, 17, e0265362. [Google Scholar] [CrossRef]
- Ferreira, F.G.; Reitz, L.K.; Valmorbida, A.; Papini Gabiatti, M.; Hansen, F.; Faria Di Pietro, P.; Licursi de Oliveira, L.; Santos de Moraes Trindade, E.B.; Zarbato Longo, G. Metabolically unhealthy and overweight phenotypes are associated with increased levels of inflammatory cytokines: A population-based study. Nutrition 2022, 96, 111590. [Google Scholar] [CrossRef] [PubMed]
- Shaharyar, S.; Roberson, L.L.; Jamal, O.; Younus, A.; Blaha, M.J.; Ali, S.S.; Zide, K.; Agatston, A.A.; Blumenthal, R.S.; Conceicao, R.D.; et al. Obesity and metabolic phenotypes (metabolically healthy and unhealthy variants) are significantly associated with prevalence of elevated C-reactive protein and hepatic steatosis in a large healthy Brazilian population. J. Obes. 2015, 2015, 178526. [Google Scholar] [CrossRef] [PubMed]
- Christou, K.A.; Christou, G.A.; Karamoutsios, A.; Vartholomatos, G.; Gartzonika, K.; Tsatsoulis, A.; Tigas, S. Metabolically Healthy Obesity Is Characterized by a Proinflammatory Phenotype of Circulating Monocyte Subsets. Metab. Syndr. Relat. Disord. 2019, 17, 259–265. [Google Scholar] [CrossRef] [PubMed]
- Gomez-Zorita, S.; Queralt, M.; Vicente, M.A.; Gonzalez, M.; Portillo, M.P. Metabolically healthy obesity and metabolically obese normal weight: A review. J. Physiol. Biochem. 2021, 77, 175–189. [Google Scholar] [CrossRef] [PubMed]
- Horwitz, A.; Birk, R. Adipose Tissue Hyperplasia and Hypertrophy in Common and Syndromic Obesity—The Case of BBS Obesity. Nutrients 2023, 15, 3445. [Google Scholar] [CrossRef]
- Ruggiero, A.D.; Vemuri, R.; Block, M.; DeStephanis, D.; Davis, M.; Chou, J.; Williams, A.; Brock, A.; Das, S.K.; Kavanagh, K. Macrophage Phenotypes and Gene Expression Patterns Are Unique in Naturally Occurring Metabolically Healthy Obesity. Int. J. Mol. Sci. 2022, 23, 12680. [Google Scholar] [CrossRef]
- Navarro, E.; Funtikova, A.N.; Fíto, M.; Schröder, H. Can metabolically healthy obesity be explained by diet, genetics, and inflammation? Mol. Nutr. Food Res. 2015, 59, 75–93. [Google Scholar] [CrossRef]
- Wang, F.; Liu, H.; Blanton, W.P.; Belkina, A.; Lebrasseur, N.K.; Denis, G.V. Brd2 disruption in mice causes severe obesity without Type 2 diabetes. Biochem. J. 2009, 425, 71–83. [Google Scholar] [CrossRef]
- Song, Y.; Yang, S.K.; Kim, J.; Lee, D.C. Association between C-Reactive Protein and Metabolic Syndrome in Korean Adults. Korean J. Fam. Med. 2019, 40, 116–123. [Google Scholar] [CrossRef]
- Lai, M.M.; Li, C.I.; Kardia, S.L.; Liu, C.S.; Lin, W.Y.; Lee, Y.D.; Chang, P.C.; Lin, C.C.; Li, T.C. Sex difference in the association of metabolic syndrome with high sensitivity C-reactive protein in a Taiwanese population. BMC Public Health 2010, 10, 429. [Google Scholar] [CrossRef]
- Rudnicka, A.R.; Rumley, A.; Whincup, P.H.; Lowe, G.D.; Strachan, D.P. Sex differences in the relationship between inflammatory and hemostatic biomarkers and metabolic syndrome: British 1958 Birth Cohort. J. Thromb. Haemost 2011, 9, 2337–2344. [Google Scholar] [CrossRef] [PubMed]
- Meeuwsen, S.; Horgan, G.W.; Elia, M. The relationship between BMI and percent body fat, measured by bioelectrical impedance, in a large adult sample is curvilinear and influenced by age and sex. Clin. Nutr. 2010, 29, 560–566. [Google Scholar] [CrossRef] [PubMed]
- Shamsuzzaman, A.S.; Winnicki, M.; Wolk, R.; Svatikova, A.; Phillips, B.G.; Davison, D.E.; Berger, P.B.; Somers, V.K. Independent association between plasma leptin and C-reactive protein in healthy humans. Circulation 2004, 109, 2181–2185. [Google Scholar] [CrossRef] [PubMed]
- Viikari, L.A.; Huupponen, R.K.; Viikari, J.S.; Marniemi, J.; Eklund, C.; Hurme, M.; Lehtimaki, T.; Kivimaki, M.; Raitakari, O.T. Relationship between leptin and C-reactive protein in young Finnish adults. J. Clin. Endocrinol. Metab. 2007, 92, 4753–4758. [Google Scholar] [CrossRef] [PubMed]
- Rossi, I.A.; Bochud, M.; Bovet, P.; Paccaud, F.; Waeber, G.; Vollenweider, P.; Taffé, P. Sex difference and the role of leptin in the association between high-sensitivity C-reactive protein and adiposity in two different populations. Eur. J. Epidemiol. 2012, 27, 379–384. [Google Scholar] [CrossRef]
- Ridker, P.M. Cardiology Patient Page. C-reactive protein: A simple test to help predict risk of heart attack and stroke. Circulation 2003, 108, e81–e85. [Google Scholar] [CrossRef]
- Haam, J.H.; Kim, B.T.; Kim, E.M.; Kwon, H.; Kang, J.H.; Park, J.H.; Kim, K.K.; Rhee, S.Y.; Kim, Y.H.; Lee, K.Y. Diagnosis of Obesity: 2022 Update of Clinical Practice Guidelines for Obesity by the Korean Society for the Study of Obesity. J. Obes. Metab. Syndr. 2023, 32, 121–129. [Google Scholar] [CrossRef]
- Ortega, F.B.; Lavie, C.J.; Blair, S.N. Obesity and Cardiovascular Disease. Circ. Res. 2016, 118, 1752–1770. [Google Scholar] [CrossRef]
- Alberti, K.G.; Eckel, R.H.; Grundy, S.M.; Zimmet, P.Z.; Cleeman, J.I.; Donato, K.A.; Fruchart, J.C.; James, W.P.; Loria, C.M.; Smith, S.C., Jr.; et al. Harmonizing the metabolic syndrome: A joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation 2009, 120, 1640–1645. [Google Scholar] [CrossRef]
- Kim, H.L.; Park, S.M.; Cho, I.J.; Kim, Y.M.; Kim, D.H.; Kim, S.H.; Kim, K.I.; Sung, K.C.; Ihm, S.H.; Shin, J.; et al. Standardized protocol of blood pressure measurement and quality control program for the Korea National Health and Nutrition Examination Survey. Clin. Hypertens 2023, 29, 28. [Google Scholar] [CrossRef]
- Orsolini, L.; Pompili, S.; Tempia Valenta, S.; Salvi, V.; Volpe, U. C-Reactive Protein as a Biomarker for Major Depressive Disorder? Int. J. Mol. Sci. 2022, 23, 1616. [Google Scholar] [CrossRef]
- O’Rourke, R.W.; Johnson, G.S.; Purnell, J.Q.; Courcoulas, A.P.; Dakin, G.F.; Garcia, L.; Hinojosa, M.; Mitchell, J.E.; Pomp, A.; Pories, W.J.; et al. Serum biomarkers of inflammation and adiposity in the LABS cohort: Associations with metabolic disease and surgical outcomes. Int. J. Obes. 2019, 43, 285–296. [Google Scholar] [CrossRef] [PubMed]
- Gadd, G.; Aberg, D.; Wall, A.; Zetterberg, H.; Blennow, K.; Jood, K.; Jern, C.; Isgaard, J.; Svensson, J.; Aberg, N.D. A Nonlinear Relation between Body Mass Index and Long-Term Poststroke Functional Outcome-The Importance of Insulin Resistance, Inflammation, and Insulin-like Growth Factor-Binding Protein-1. Int. J. Mol. Sci. 2024, 25, 4931. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Lee, C.; Min, J.; Kang, D.W.; Kim, J.Y.; Yang, H.I.; Park, J.; Lee, M.K.; Lee, M.Y.; Park, I.; et al. Development of the Korean Global Physical Activity Questionnaire: Reliability and validity study. Glob. Health Promot. 2020, 27, 44–55. [Google Scholar] [CrossRef] [PubMed]
- Bull, F.C.; Al-Ansari, S.S.; Biddle, S.; Borodulin, K.; Buman, M.P.; Cardon, G.; Carty, C.; Chaput, J.P.; Chastin, S.; Chou, R.; et al. World Health Organization 2020 guidelines on physical activity and sedentary behaviour. Br. J. Sports Med. 2020, 54, 1451–1462. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.A.; Lim, K.; Lee, J.K.; Kang, D.; Shin, S. Metabolically healthy obesity and the risk of all-cause and cardiovascular disease mortality in a Korean population: A prospective cohort study. BMJ Open 2021, 11, e049063. [Google Scholar] [CrossRef]
- Oh, C.M.; Park, J.H.; Chung, H.S.; Yu, J.M.; Chung, W.; Kang, J.G.; Moon, S. Effect of body shape on the development of cardiovascular disease in individuals with metabolically healthy obesity. Medicine 2020, 99, e22036. [Google Scholar] [CrossRef]
- Lumley, T. Analysis of complex survey samples. J. Stat. Softw. 2004, 9, 1–19. [Google Scholar] [CrossRef]
Overall | Metabolic Obesity Phenotypes | ||||
---|---|---|---|---|---|
MHNO | MUNO | MHO | MUO | ||
N = 21,112 | N = 5019 | N = 8763 | N = 856 | N = 6474 | |
Sex | |||||
Male | 9250 (43.8) | 1574 (31.4) | 3920 (44.7) | 417 (48.7) | 3339 (51.6) |
Female | 11,862 (56.2) | 3445 (68.6) | 4843 (55.3) | 439 (51.3) | 3135 (48.4) |
Age | |||||
19–25 | 1701 (8.1) | 985 (19.6) | 338 (3.9) | 140 (16.4) | 238 (3.7) |
26–35 | 2690 (12.7) | 1144 (22.8) | 707 (8.1) | 211 (24.6) | 628 (9.7) |
36–45 | 3898 (18.5) | 1303 (26.0) | 1300 (14.8) | 200 (23.4) | 1095 (16.9) |
46–55 | 3933 (18.6) | 809 (16.1) | 1673 (19.1) | 150 (17.5) | 1301 (20.1) |
56–65 | 4148 (19.6) | 532 (10.6) | 2080 (23.7) | 93 (10.9) | 1443 (22.3) |
>65 | 4742 (22.5) | 246 (4.9) | 2665 (30.4) | 62 (7.2) | 1769 (27.3) |
Education level | |||||
Middle school or below | 6413 (30.4) | 517 (10.3) | 3299 (37.6) | 119 (13.9) | 2478 (38.3) |
High school | 6929 (32.8) | 1853 (36.9) | 2770 (31.6) | 327 (38.2) | 1979 (30.6) |
College or above | 7770 (36.8) | 2649 (52.8) | 2694 (30.7) | 410 (47.9) | 2017 (31.2) |
Income level | |||||
Lowest | 3809 (18.0) | 407 (8.1) | 1956 (22.3) | 77 (9.0) | 1369 (21.1) |
Low | 5116 (24.2) | 1076 (21.4) | 2161 (24.7) | 206 (24.1) | 1673 (25.8) |
High | 5900 (27.9) | 1586 (31.6) | 2275 (26.0) | 303 (35.4) | 1736 (26.8) |
Highest | 6287 (29.8) | 1950 (38.9) | 2371 (27.1) | 270 (31.5) | 1696 (26.2) |
Marital status | |||||
Married | 17,526 (83.0) | 3355 (66.8) | 7837 (89.4) | 600 (70.1) | 5734 (88.6) |
Unmarried or others | 3586 (17.0) | 1664 (33.2) | 926 (10.6) | 256 (29.9) | 740 (11.4) |
Employment type | |||||
Employed | 12,986 (61.5) | 3248 (64.7) | 5139 (58.6) | 583 (68.1) | 4016 (62.0) |
Unemployed | 8126 (38.5) | 1771 (35.3) | 3624 (41.4) | 273 (31.9) | 2458 (38.0) |
Smoking | |||||
Yes | 3227 (15.3) | 549 (10.9) | 1408 (16.1) | 126 (14.7) | 1144 (17.7) |
No | 17,885 (84.7) | 4470 (89.1) | 7355 (83.9) | 730 (85.3) | 5330 (82.3) |
Physical activity | |||||
Yes | 9382 (44.4) | 2577 (51.3) | 3596 (41.0) | 485 (56.7) | 2724 (42.1) |
No | 11,730 (55.6) | 2442 (48.7) | 5167 (59.0) | 371 (43.3) | 3750 (57.9) |
BMI (kg/m2) | |||||
Median (Q1, Q3) | 23.7 (21.5, 26.0) | 21.3 (19.8, 22.7) | 22.7 (21.2, 23.9) | 26.5 (25.6, 28.1) | 27.1 (25.9, 28.9) |
Univariate Model | Multivariate Model | |||
---|---|---|---|---|
% Change (95% CI) | p | % Change (95% CI) | p | |
Overall sample | ||||
MHNO | Reference | Reference | ||
MUNO | 52.0 (46.3–57.9) | <0.001 | 29.3 (24.1–34.6) | <0.001 |
MHO | 94.0 (79.7–109.4) | <0.001 | 15.4 (6.4–25.2) | <0.001 |
MUO | 130.3 (121.1–139.9) | <0.001 | 23.3 (16.4–30.5) | <0.001 |
Stratified by obesity | ||||
MHNO | Reference | Reference | ||
MUNO | 52.0 (46.3–57.9) | <0.001 | 25.7 (20.6–31.1) | <0.001 |
MHO | Reference | Reference | ||
MUO | 18.7 (10.0–28.1) | <0.001 | 14.1 (5.5–23.4) | 0.001 |
Stratified by metabolic dysfunction | ||||
MHNO | Reference | Reference | ||
MHO | 94.0 (79.7–109.4) | <0.001 | 19.3 (7.6–32.3) | 0.001 |
MUNO | Reference | Reference | ||
MUO | 51.6 (46.3–57.0) | <0.001 | −5.2 (−9.9–−0.2) | 0.042 |
Male (N = 9250) | Female (N = 11,862) | |||
---|---|---|---|---|
% Change (95% CI) | p | % Change (95% CI) | p | |
Overall sample | ||||
MHNO | Reference | Reference | ||
MUNO | 22.3 (14.7–30.3) | <0.001 | 30.2 (22.8–38.2) | <0.001 |
MHO | 15.8 (2.6–30.7) | 0.018 | 16.0 (6.5–26.4) | <0.001 |
MUO | 12.5 (3.0–22.9) | 0.009 | 22.8 (13.6–32.8) | <0.001 |
Stratified by obesity | ||||
MHNO | Reference | Reference | ||
MUNO | 17.8 (11.1–24.9) | <0.001 | 30.4 (23.9–37.3) | <0.001 |
MHO | Reference | Reference | ||
MUO | 0.4 (−10.2–12.1) | 0.949 | 38.7 (24.0–55.2) | <0.001 |
Stratified by metabolic dysfunction | ||||
MHNO | Reference | Reference | ||
MHO | 16.4 (−0.8–36.5) | 0.062 | 21.3 (5.8–39.2) | <0.001 |
MUNO | Reference | Reference | ||
MUO | −8.1 (−14.4–−1.4) | 0.019 | 0.8 (−6.8–9.0) | 0.851 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baek, S.-U.; Yoon, J.-H. Systemic Inflammation Across Metabolic Obesity Phenotypes: A Cross-Sectional Study of Korean Adults Using High-Sensitivity C-Reactive Protein as a Biomarker. Int. J. Mol. Sci. 2024, 25, 11540. https://doi.org/10.3390/ijms252111540
Baek S-U, Yoon J-H. Systemic Inflammation Across Metabolic Obesity Phenotypes: A Cross-Sectional Study of Korean Adults Using High-Sensitivity C-Reactive Protein as a Biomarker. International Journal of Molecular Sciences. 2024; 25(21):11540. https://doi.org/10.3390/ijms252111540
Chicago/Turabian StyleBaek, Seong-Uk, and Jin-Ha Yoon. 2024. "Systemic Inflammation Across Metabolic Obesity Phenotypes: A Cross-Sectional Study of Korean Adults Using High-Sensitivity C-Reactive Protein as a Biomarker" International Journal of Molecular Sciences 25, no. 21: 11540. https://doi.org/10.3390/ijms252111540
APA StyleBaek, S. -U., & Yoon, J. -H. (2024). Systemic Inflammation Across Metabolic Obesity Phenotypes: A Cross-Sectional Study of Korean Adults Using High-Sensitivity C-Reactive Protein as a Biomarker. International Journal of Molecular Sciences, 25(21), 11540. https://doi.org/10.3390/ijms252111540