Restoring Colistin Sensitivity in Multidrug-Resistant Pathogenic E. coli Using Cinacalcet Hydrochloride
Abstract
:1. Introduction
2. Results
2.1. High-Throughput Whole-Cell Inhibition Screening Identified Cinacalcet Hydrochloride as a Colistin Adjuvant
2.2. Synergistic Antibacterial Effect of CH and COL on Multidrug-Resistant E. coli
2.3. Bactericidal Effect of CH and COL on mcr-1-Positive MDR E. coli
2.4. The Effect of CH Combined with COL on Biofilm Formation and Eradication in mcr-1-Positive MDR E. coli
2.5. CH and Colistin Combination Caused Bacterial Membrane Damage
2.6. Safety Evaluation of CH and COL Combination Therapy
2.7. Protective Effect of CH and COL Combination Therapy in Animal Models of mcr-1-Positive Bacterial Infection
3. Discussion
4. Materials and Methods
4.1. Bacterial Strains, Growth Conditions, and Drugs
4.2. Screening Protocol and MIC Determination
4.3. Identification of mcr-1Positive Strains
4.4. Checkerboard Study
4.5. Growth Curve Measurement
4.6. Time-Kill Curve Measurement Analysis
4.7. Biofilm Formation Inhibition and Biofilm Eradication Assay
4.8. Measurement of Outer Membrane Permeability Assay
4.9. Measurement of Inner Membrane Permeability Assay
4.10. ATP Content Detection
4.11. Reactive Oxygen Species (ROS) Measurement
4.12. NO Detection
4.13. Cytotoxicity Testing of Drug Combination
4.14. Galleria Mellonella Infection Model
4.15. Mouse Infection Model
4.16. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Powers, J.H. Antimicrobial drug development—The past, the present, and the future. Clin. Microbiol. Infect. 2004, 10 (Suppl. S4), 23–31. [Google Scholar] [CrossRef] [PubMed]
- Shrivastava, S.R.; Shrivastava, P.S.; Ramasamy, J. Responding to the challenge of antibiotic resistance: World Health Organization. J. Res. Med. Sci. 2018, 23, 21. [Google Scholar] [CrossRef] [PubMed]
- Davies, J.; Davies, D. Origins and evolution of antibiotic resistance. Microbiol. Mol. Biol. Rev. 2010, 74, 417–433. [Google Scholar] [CrossRef] [PubMed]
- Arbab, S.; Ullah, H. Antimicrobial drug resistance against Escherichia coli and its harmful effect on animal health. Vet. Med. Sci. 2022, 8, 1780–1786. [Google Scholar] [CrossRef]
- Leimbach, A.; Hacker, J.; Dobrindt, U. E. coli as an all-rounder: The thin line between commensalism and pathogenicity. Curr. Top. Microbiol. Immunol. 2013, 358, 3–32. [Google Scholar]
- Peng, Z.; Hu, Z.; Li, Z.; Zhang, X.; Jia, C.; Li, T.; Dai, M.; Tan, C.; Xu, Z.; Wu, B. Antimicrobial resistance and population genomics of multidrug-resistant Escherichia coli in pig farms in mainland China. Nat. Commun. 2022, 13, 1116. [Google Scholar] [CrossRef]
- Li, X.; Hu, H. Population structure and antibiotic resistance of swine extraintestinal pathogenic Escherichia coli from China. Nat. Commun. 2024, 15, 5811. [Google Scholar] [CrossRef]
- Paitan, Y. Current Trends in Antimicrobial Resistance of Escherichia coli. Curr. Top. Microbiol. Immunol. 2018, 416, 181–211. [Google Scholar]
- Gagliotti, C.; Balode, A.; Baquero, F.; Degener, J.; Grundmann, H.; Gür, D.; Jarlier, V.; Kahlmeter, G.; Monen, J.; Monnet, D.L.; et al. Escherichia coli and Staphylococcus aureus: Bad news and good news from the European Antimicrobial Resistance Surveillance Network (EARS-Net, formerly EARSS), 2002 to 2009. Eurosurveillance 2011, 16, 19819. [Google Scholar] [CrossRef]
- Liu, Y.Y.; Wang, Y.; Walsh, T.R.; Yi, L.X.; Zhang, R.; Spencer, J.; Doi, Y.; Tian, G.; Dong, B.; Huang, X.; et al. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: A microbiological and molecular biological study. Lancet Infect. Dis. 2016, 16, 161–168. [Google Scholar] [CrossRef]
- Rolain, J.M.; Olaitan, A.O. Plasmid-mediated colistin resistance: The final blow to colistin? Int. J. Antimicrob. Agents 2016, 47, 4–5. [Google Scholar] [CrossRef] [PubMed]
- Paterson, D.L.; Harris, P.N. Colistin resistance: A major breach in our last line of defence. Lancet Infect. Dis. 2016, 16, 132–133. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Zhang, P.; Du, P. Prevalence and Genomic Characteristics of mcr-Positive Escherichia coli Strains Isolated from Humans, Pigs, and Foods in China. Microbiol. Spectr. 2023, 11, e0456922. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Hou, M.; Liu, C.; Xiong, W.; Zeng, Z. Dramatic decrease in colistin resistance in Escherichia coli from a typical pig farm following restriction of colistin use in China. Int. J. Antimicrob. Agents 2019, 53, 707–708. [Google Scholar] [CrossRef]
- Wang, Y.C.; Kuo, S.C.; Yang, Y.S.; Lee, Y.T.; Chiu, C.H.; Chuang, M.F.; Lin, J.C.; Chang, F.Y.; Chen, T.L. Individual or Combined Effects of Meropenem, Imipenem, Sulbactam, Colistin, and Tigecycline on Biofilm-Embedded Acinetobacter baumannii and Biofilm Architecture. Antimicrob. Agents Chemother. 2016, 60, 4670–4676. [Google Scholar] [CrossRef]
- Xu, C.; Zhang, Y.; Ma, L.; Zhang, G.; Li, C.; Zhang, C.; Li, Y.; Zeng, X.; Li, Y. Valnemulin restores colistin sensitivity against multidrug-resistant gram-negative pathogens. Commun. Biol. 2024, 7, 1122. [Google Scholar] [CrossRef]
- Kim, Y.-J.; Cubitt, B.; Chen, E.; Hull, M.V.; Chatterjee, A.K.; Cai, Y.; Kuhn, J.H.; de la Torre, J.C. The ReFRAME library as a comprehensive drug repurposing library to identify mammarenavirus inhibitors. Antivir. Res. 2019, 169, 104558. [Google Scholar] [CrossRef]
- Guo, Y.; Liu, H.; Yang, M.; Ding, R.; Gao, Y.; Niu, X.; Deng, X.; Wang, J. Novel metallo-β-lactamases inhibitors restore the susceptibility of carbapenems to New Delhi metallo-lactamase-1 (NDM-1)-harbouring bacteria. Br. J. Pharmacol. 2024, 181, 54–69. [Google Scholar] [CrossRef]
- Wang, J.; Sha, J.; Strong, E.; Chopra, A.K.; Lee, S. FDA-Approved Amoxapine Effectively Promotes Macrophage Control of Mycobacteria by Inducing Autophagy. Microbiol. Spectr. 2022, 10, e0250922. [Google Scholar] [CrossRef]
- Liu, Y.; Jia, Y.; Yang, K.; Tong, Z.; Shi, J.; Li, R.; Xiao, X.; Ren, W.; Hardeland, R.; Reiter, R.J.; et al. Melatonin overcomes MCR-mediated colistin resistance in Gram-negative pathogens. Theranostics 2020, 10, 10697–10711. [Google Scholar] [CrossRef]
- Landeta, C.; Mejia-Santana, A. Union Is Strength: Target-Based and Whole-Cell High-Throughput Screens in Antibacterial Discovery. J. Bacteriol. 2022, 204, e0047721. [Google Scholar] [CrossRef] [PubMed]
- Bushinsky, D.A.; Laplante, K.; Asplin, J.R. Effect of cinacalcet on urine calcium excretion and supersaturation in genetic hypercalciuric stone-forming rats. Kidney Int. 2006, 69, 1586–1592. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Suzuki, A.; Thakkar, S.; Yu, K.; Hu, C.; Tong, W. DILIrank: The largest reference drug list ranked by the risk for developing drug-induced liver injury in humans. Drug Discov. Today 2016, 21, 648–653. [Google Scholar] [CrossRef]
- Sharma, G.; Sharma, S.; Sharma, P.; Chandola, D.; Dang, S.; Gupta, S.; Gabrani, R. Escherichia coli biofilm: Development and therapeutic strategies. J. Appl. Microbiol. 2016, 121, 309–319. [Google Scholar] [CrossRef]
- Velkov, T.; Dai, C.; Ciccotosto, G.D.; Cappai, R.; Hoyer, D.; Li, J. Polymyxins for CNS infections: Pharmacology and neurotoxicity. Pharmacol. Ther. 2018, 181, 85–90. [Google Scholar] [CrossRef]
- Tacão, M.; Tavares, R.D.S.; Teixeira, P.; Roxo, I.; Ramalheira, E.; Ferreira, S.; Henriques, I. mcr-1 and bla(KPC-3) in Escherichia coli Sequence Type 744 after Meropenem and Colistin Therapy, Portugal. Emerg. Infect. Dis. 2017, 23, 1419–1421. [Google Scholar] [CrossRef]
- Zhou, Y.F.; Liu, P.; Dai, S.H.; Sun, J. Activity of Tigecycline or Colistin in Combination with Zidovudine against Escherichia coli Harboring tet(X) and mcr-1. Antimicrob. Agents Chemother. 2020, 65, 10–1128. [Google Scholar] [CrossRef]
- Colloton, M.; Shatzen, E.; Miller, G.; Stehman-Breen, C.; Wada, M.; Lacey, D.; Martin, D. Cinacalcet HCl attenuates parathyroid hyperplasia in a rat model of secondary hyperparathyroidism. Kidney Int. 2005, 67, 467–476. [Google Scholar] [CrossRef]
- Song, G.; Zhou, Y.; Niu, S.; Deng, X.; Qiu, J.; Li, L.; Wang, J. Nordihydroguaiaretic acid reverses the antibacterial activity of colistin against MCR-1-positive bacteria in vivo/in vitro by inhibiting MCR-1 activity and injuring the bacterial cell membrane. Phytomedicine 2022, 98, 153946. [Google Scholar] [CrossRef]
- Zhou, Y.; Liu, B.; Chu, X.; Su, J.; Xu, L.; Li, L.; Deng, X.; Li, D. Commercialized artemisinin derivatives combined with colistin protect against critical Gram-negative bacterial infection. Commun. Biol. 2022, 5, 931. [Google Scholar] [CrossRef]
- Du, R.; Lv, Q.; Hu, W.; Hou, X.; Zhou, Y.; Deng, X.; Sun, L.; Li, L.; Deng, Y.; Wang, J. Phloretin potentiates polymyxin E activity against gram-negative bacteria. Life Sci. 2021, 287, 120085. [Google Scholar] [CrossRef] [PubMed]
- Yi, K.; Liu, S.; Liu, P.; Luo, X.; Zhao, J.; Yan, F.; Pan, Y.; Liu, J.; Zhai, Y.; Hu, G. Synergistic antibacterial activity of tetrandrine combined with colistin against MCR-mediated colistin-resistant Salmonella. Biomed. Pharmacother. 2022, 149, 112873. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Wang, T.; Guo, Y.; Liu, S.; Wang, J.; Shen, Y.; Tang, S.; Wang, Y.; Deng, X. In Vitro/Vivo Activity of Potential MCR-1 Inhibitor in Combination With Colistin Againsts mcr-1-Positive Klebsiella pneumonia. Front. Microbiol. 2018, 9, 1615. [Google Scholar] [CrossRef]
- Jalil, A.T.; Alrawe, R.T.A.; Al-Saffar, M.A.; Shaghnab, M.L.; Merza, M.S.; Abosaooda, M.; Latef, R. The use of combination therapy for the improvement of colistin activity against bacterial biofilm. Braz. J. Microbiol. 2024, 55, 411–427. [Google Scholar] [CrossRef] [PubMed]
- Kohanski, M.A.; Dwyer, D.J.; Hayete, B.; Lawrence, C.A.; Collins, J.J. A common mechanism of cellular death induced by bactericidal antibiotics. Cell 2007, 130, 797–810. [Google Scholar] [CrossRef]
- Wagenlehner, F.; Lucenteforte, E.; Pea, F.; Soriano, A.; Tavoschi, L.; Steele, V.R.; Henriksen, A.S.; Longshaw, C.; Manissero, D.; Pecini, R.; et al. Systematic review on estimated rates of nephrotoxicity and neurotoxicity in patients treated with polymyxins. Clin. Microbiol. Infect. 2021, 27, 671–686. [Google Scholar] [CrossRef]
- Guo, Y.; Lv, X.; Wang, Y.; Zhou, Y.; Lu, N.; Deng, X.; Wang, J. Honokiol Restores Polymyxin Susceptibility to MCR-1-Positive Pathogens both In Vitro and In Vivo. Appl. Environ. Microbiol. 2020, 86, e02346-19. [Google Scholar] [CrossRef]
- Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2007. [Google Scholar]
- Zuo, G.Y.; Han, Z.Q.; Hao, X.Y.; Han, J.; Li, Z.S.; Wang, G.C. Synergy of aminoglycoside antibiotics by 3-Benzylchroman derivatives from the Chinese drug Caesalpinia sappan against clinical methicillin-resistant Staphylococcus aureus (MRSA). Phytomedicine 2014, 21, 936–941. [Google Scholar] [CrossRef]
- Lu, H.; Liu, M.; Lu, W.; Wang, C.; Wang, G.; Dong, W.; Wang, X.; Chen, H.; Tan, C. Repurposing Ellipticine Hydrochloride to Combat Colistin-Resistant Extraintestinal Pathogenic E. coli (ExPEC). Front. Microbiol. 2020, 11, 806. [Google Scholar] [CrossRef]
- Song, Y.J.; Yu, H.H.; Kim, Y.J.; Lee, N.K.; Paik, H.D. Anti-Biofilm Activity of Grapefruit Seed Extract against Staphylococcus aureus and Escherichia coli. J. Microbiol. Biotechnol. 2019, 29, 1177–1183. [Google Scholar] [CrossRef]
- Mukane, L.; Racenis, K. Anti-Biofilm Effect of Bacteriophages and Antibiotics against Uropathogenic Escherichia coli. Antibiotics 2022, 11, 1706. [Google Scholar] [CrossRef]
- Helander, I.M.; Mattila-Sandholm, T. Fluorometric assessment of gram-negative bacterial permeabilization. J. Appl. Microbiol. 2000, 88, 213–219. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Jia, Y.; Yang, K.; Li, R.; Xiao, X.; Zhu, K.; Wang, Z. Metformin Restores Tetracyclines Susceptibility against Multidrug Resistant Bacteria. Adv. Sci. 2020, 7, 1902227. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Ji, Y.; Huo, X.; Li, X.; Lu, W.; Zhang, Z.; Dong, W.; Wang, X. Discovery of Salifungin as a Repurposed Antibiotic against Methicillin-Resistant Staphylococcus aureus with Limited Resistance Development. ACS Infect. Dis. 2024, 10, 1576–1589. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Woo, E.R.; Lee, D.G. Apigenin promotes antibacterial activity via regulation of nitric oxide and superoxide anion production. J. Basic Microbiol. 2020, 60, 862–872. [Google Scholar] [CrossRef]
- Wang, C.; Lu, H.; Li, X.; Zhu, Y.; Ji, Y.; Lu, W.; Wang, G.; Dong, W.; Liu, M.; Wang, X.; et al. Identification of an anti-virulence drug that reverses antibiotic resistance in multidrug resistant bacteria. Biomed. Pharmacother. 2022, 153, 113334. [Google Scholar] [CrossRef]
- Lu, H.; Wang, C.; Lu, W.; Li, X.; Wang, G.; Dong, W.; Wang, X.; Chen, H.; Tan, C. Antibacterial efficacy and mechanism of Cyprinus carpio chemokine-derived L-10 against multidrug-resistant Escherichia coli infections. Int. J. Antimicrob. Agents 2024, 63, 107104. [Google Scholar] [CrossRef]
Drugs | E. coli 42 | ||
---|---|---|---|
MIC of COL | MIC of COL with Drugs (32 µg/mL) | MIC Fold Change of COL | |
Oxiconazole nitrate | 4 | 0.0625 | 64 |
Diethylstilbestrol | 4 | 0.25 | 16 |
Guanfacine hydrochloride | 8 | 4 | 2 |
Sulfabenzamide | 4 | 4 | 1 |
Cinacalcet hydrochloride | 8 | ≤0.0625 | ≥64 |
Pramipexole | 4 | 4 | 1 |
Sorafenib | 4 | 0.125 | 32 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, C.; Zhang, Z.; Liu, D.; Li, X.; Zhang, Z.; Zeng, Y.; Dong, W.; Tan, C.; Liu, M. Restoring Colistin Sensitivity in Multidrug-Resistant Pathogenic E. coli Using Cinacalcet Hydrochloride. Int. J. Mol. Sci. 2024, 25, 11574. https://doi.org/10.3390/ijms252111574
Wang C, Zhang Z, Liu D, Li X, Zhang Z, Zeng Y, Dong W, Tan C, Liu M. Restoring Colistin Sensitivity in Multidrug-Resistant Pathogenic E. coli Using Cinacalcet Hydrochloride. International Journal of Molecular Sciences. 2024; 25(21):11574. https://doi.org/10.3390/ijms252111574
Chicago/Turabian StyleWang, Chenchen, Ziyi Zhang, Di Liu, Xiaodan Li, Zhaoran Zhang, Yan Zeng, Wenqi Dong, Chen Tan, and Manli Liu. 2024. "Restoring Colistin Sensitivity in Multidrug-Resistant Pathogenic E. coli Using Cinacalcet Hydrochloride" International Journal of Molecular Sciences 25, no. 21: 11574. https://doi.org/10.3390/ijms252111574
APA StyleWang, C., Zhang, Z., Liu, D., Li, X., Zhang, Z., Zeng, Y., Dong, W., Tan, C., & Liu, M. (2024). Restoring Colistin Sensitivity in Multidrug-Resistant Pathogenic E. coli Using Cinacalcet Hydrochloride. International Journal of Molecular Sciences, 25(21), 11574. https://doi.org/10.3390/ijms252111574