Metabolomics-Based Machine Learning for Predicting Mortality: Unveiling Multisystem Impacts on Health
Abstract
:1. Introduction
2. Results
2.1. Baseline Characteristics of the Study Population
2.2. Most Impactful Metabolite Predictors of Mortality Identified by ML Tools
2.3. Clustered Heatmap of the 32 Metabolites
2.4. Cox Regression Analysis of Metabolites Associated with Mortality Risk
3. Discussion
4. Materials and Methods
4.1. Study Population
4.2. Clinical and Laboratory Measurements
4.3. Metabolomics
4.4. Machine Learning
4.5. Statistical Analyses
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shang, X.; Peng, W.; Hill, E.; Szoeke, C.; He, M.; Zhang, L. Incidence, progression, and patterns of multimorbidity in community-dwelling middle-aged men and women. Front. Public Health 2020, 8, 404. [Google Scholar] [CrossRef] [PubMed]
- Hippisley-Cox, J.; Coupland, C. Development and validation of mortality risk prediction algorithm to estimate short term risk of death and assess frailty: Cohort study. BMJ 2017, 358, j4208. [Google Scholar] [CrossRef] [PubMed]
- Paynter, N.P.; Balasubramanian, R.; Giulianini, F.; Wang, D.D.; Tinker, L.F.; Gopal, S.; Deik, A.A.; Bullock, K.; Pierce, K.A.; Scott, J.; et al. Metabolic predictors of incident coronary heart disease in women. Circulation 2018, 137, 841–853. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Tessier, A.J.; Liang, L.; Wittenbecher, C.; Haslam, D.E.; Fernández-Duval, G.; Heather Eliassen, A.; Rexrode, K.M.; Tobias, D.K.; Li, J.; et al. Plasma metabolic profiles associated with mortality and longevity in a prospective analysis of 13,512 individuals. Nat. Commun. 2023, 14, 5744. [Google Scholar] [CrossRef]
- Ottosson, F.; Smith, E.; Fernandez, C.; Melander, O. Plasma metabolites associate with all-cause mortality in individuals with type 2 diabetes. Metabolites 2020, 10, 315. [Google Scholar] [CrossRef]
- Hu, J.R.; Coresh, J.; Inker, L.A.; Levey, A.S.; Zheng, Z.; Rebholz, C.M.; Tin, A.; Appel, L.J.; Chen, J.; Sarnak, M.J.; et al. Serum metabolites are associated with all-cause mortality in chronic kidney disease. Kidney Int. 2018, 94, 381–389. [Google Scholar] [CrossRef]
- Balasubramanian, R.; Paynter, N.P.; Giulianini, F.; E Manson, J.; Zhao, Y.; Chen, J.-C.; Vitolins, M.Z.; A Albert, C.; Clish, C.; Rexrode, K.M. Metabolomic profiles associated with all-cause mortality in the Women’s Health Initiative. Int. J. Epidemiol. 2020, 49, 289–300. [Google Scholar] [CrossRef]
- Fischer, K.; Kettunen, J.; Würtz, P.; Haller, T.; Havulinna, A.S.; Kangas, A.J.; Soininen, P.; Esko, T.; Tammesoo, M.-L.; Mägi, R.; et al. Biomarker profiling by nuclear magnetic resonance spectroscopy for the prediction of all-cause mortality: An observational study of 17,345 persons. PLoS Med. 2014, 11, e1001606. [Google Scholar] [CrossRef]
- Deelen, J.; Kettunen, J.; Fischer, K.; van der Spek, A.; Trompet, S.; Kastenmüller, G.; Boyd, A.; Zierer, J.; Akker, E.B.v.D.; Ala-Korpela, M.; et al. A metabolic profile of all-cause mortality risk identified in an observational study of 44,168 individuals. Nat. Commun. 2019, 10, 3346. [Google Scholar] [CrossRef]
- Gowda, G.A.N.; Djukovic, D. Overview of mass spectrometry-based metabolomics: Opportunities and challenges. Methods Mol. Biol. 2014, 1198, 3–12. [Google Scholar]
- Qiu, W.; Chen, H.; Dincer, A.B.; Lundberg, S.; Kaeberlein, M.; Lee, S.-I. Interpretable machine learning prediction of all-cause mortality. Commun. Med. 2022, 2, 125. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Weinstein, S.J.; Moore, S.C.; Derkach, A.; Hua, X.; Liao, L.M.; Gu, F.; Mondul, A.M.; Sampson, J.N.; Albanes, D. Serum metabolomic profiling of all-cause mortality: A prospective analysis in the alpha-tocopherol, Beta-Carotene Cancer Prevention (ATBC) Study Cohort. Am. J. Epidemiol. 2018, 187, 1721–1732. [Google Scholar] [CrossRef] [PubMed]
- Jaisson, S.; Kerkeni, M.; Santos-Weiss, I.C.R.; Addad, F.; Hammami, M.; Gillery, P. Increased serum homocitrulline concentrations are associated with the severity of coronary artery disease. Clin. Chem. Lab. Med. 2015, 53, 103–110. [Google Scholar] [CrossRef] [PubMed]
- Drechsler, C.; Meinitzer, A.; Pilz, S.; Krane, V.; Tomaschitz, A.; Ritz, E.; März, W.; Wanner, C. Homoarginine, heart failure, and sudden cardiac death in haemodialysis patients. Eur. J. Heart Fail. 2011, 13, 852–859. [Google Scholar] [CrossRef] [PubMed]
- Pappa, V.; Seydel, K.; Gupta, S.; Feintuch, C.M.; Potchen, M.J.; Kampondeni, S.; Goldman-Yassen, A.; Veenstra, M.; Lopez, L.; Kim, R.S.; et al. Lipid metabolites of the phospholipase A2 pathway and inflammatory cytokines are associated with brain volume in paediatric cerebral malaria. Malar. J. 2015, 14, 513. [Google Scholar] [CrossRef]
- Li, T.; Ning, N.; Li, B.; Luo, D.; Qin, E.; Yu, W.; Wang, J.; Yang, G.; Nan, N.; He, Z.; et al. Longitudinal metabolomics reveals ornithine cycle dysregulation correlates with inflammation and coagulation in COVID-19 severe patients. Front. Microbiol. 2021, 12, 723818. [Google Scholar] [CrossRef]
- Huisman, M.V.; Barco, S.; Cannegieter, S.C.; Le Gal, G.; Konstantinides, S.V.; Reitsma, P.H.; Rodger, M.; Noordegraaf, A.V.; Klok, F.A. Pulmonary embolism. Nat. Rev. Dis. Primers 2018, 4, 18028. [Google Scholar] [CrossRef]
- Fernandes Silva, L.; Vangipurapu, J.; Smith, U.; Laakso, M. Metabolite signature of albuminuria involves amino acid pathways in 8661 Finnish men without diabetes. J. Clin. Endocrinol. Metab. 2021, 106, 143–152. [Google Scholar] [CrossRef]
- Morita, S.; Inai, Y.; Minakata, S.; Kishimoto, S.; Manabe, S.; Iwahashi, N.; Ino, K.; Ito, Y.; Akamizu, T.; Ihara, Y. Quantification of serum C-mannosyl tryptophan by novel assay to evaluate renal function and vascular complications in patients with type 2 diabetes. Sci. Rep. 2021, 11, 1946. [Google Scholar] [CrossRef]
- Peng, H.; Liu, X.; Aoieong, C.; Tou, T.; Tsai, T.; Ngai, K.; I Cheang, H.; Liu, Z.; Liu, P.; Zhu, H. Identification of metabolite markers associated with kidney function. J. Immunol. Res. 2022, 2022, 6190333. [Google Scholar] [CrossRef]
- Sanders, J.L.; Han, Y.; Urbina, M.F.; Systrom, D.M.; Waxman, A.B. Metabolomics of exercise pulmonary hypertension are intermediate between controls and patients with pulmonary arterial hypertension. Pulm. Circ. 2019, 9, 2045894019882623. [Google Scholar] [CrossRef] [PubMed]
- Tang, W.W.; Shrestha, K.; Wang, Z.; Borowski, A.G.; Troughton, R.W.; Klein, A.L.; Hazen, S.L. Protein carbamylation in chronic systolic heart failure: Relationship with renal impairment and adverse long-term outcomes. J. Card. Fail. 2013, 19, 219–224. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Nicholls, S.J.; Rodriguez, E.R.; Kummu, O.; Hörkkö, S.; Barnard, J.; Reynolds, W.F.; Topol, E.J.; A DiDonato, J.; Hazen, S.L. Protein carbamylation links inflammation, smoking, uremia and atherogenesis. Nat. Med. 2007, 13, 1176–1184. [Google Scholar] [CrossRef] [PubMed]
- Kalim, S.; Karumanchi, S.A.; Thadhani, R.I.; Berg, A.H. Protein carbamylation in kidney disease: Pathogenesis and clinical implications. Am. J. Kidney Dis. 2014, 64, 793–803. [Google Scholar] [CrossRef] [PubMed]
- Verbrugge, F.H.; Tang, W.H.W.; Hazen, S.L. Protein carbamylation and cardiovascular disease. Kidney Int. 2015, 88, 474–478. [Google Scholar] [CrossRef]
- März, W.; Meinitzer, A.; Drechsler, C.; Pilz, S.; Krane, V.; Kleber, M.E.; Fischer, J.; Winkelmann, B.R.; Böhm, B.O.; Ritz, E.; et al. Homoarginine, cardiovascular risk, and mortality. Circulation 2010, 122, 967–975. [Google Scholar] [CrossRef]
- Lehr, H.A.; Krombach, F.; Münzing, S.; Bodlaj, R.; Glaubitt, S.I.; Seiffge, D.; Hübner, C.; Von Andrian, U.H.; Messmer, K. In vitro effects of oxidized low-density lipoprotein on CD11b/CD18 and L-selectin presentation on neutrophils and monocytes with relevance for the in vivo situation. Am. J. Pathol. 1995, 146, 218–227. [Google Scholar]
- Wishart, D.S.; Guo, A.; Oler, E.; Wang, F.; Anjum, A.; Peters, H.; Dizon, R.; Sayeeda, Z.; Tian, S.; Lee, B.L.; et al. HMDB 5.0: The Human Metabolome Database for 2022. Nucleic Acids Res. 2022, 50, D622–D631. [Google Scholar] [CrossRef]
- Mitchinson, M.J.; Hardwick, S.J.; Bennett, M.R. Cell death in atherosclerotic plaques. Curr. Opin. Lipidol. 1996, 7, 324–329. [Google Scholar] [CrossRef]
- Bismuth, J.; Lin, P.; Yao, Q.; Chen, C. Ceramide: A common pathway for atherosclerosis? Atherosclerosis 2008, 196, 497–504. [Google Scholar] [CrossRef]
- Gander, J.; Carrard, J.; Gallart-Ayala, H.; Borreggine, R.; Teav, T.; Infanger, D.; Colledge, F.; Streese, L.; Wagner, J.; Klenk, C.; et al. Metabolic impairment in coronary artery disease: Elevated serum acylcarnitines under the spotlights. Front. Cardiovasc. Med. 2021, 8, 792350. [Google Scholar] [CrossRef] [PubMed]
- Titan, S.M.; Venturini, G.; Padilha, K.; Goulart, A.C.; Lotufo, P.A.; Bensenor, I.J.; Krieger, J.E.; Thadhani, R.I.; Rhee, E.P.; Pereira, A.C. Metabolomics biomarkers and the risk of overall mortality and ESRD in CKD: Results from the Progredir Cohort. PLoS ONE 2019, 14, e0213764. [Google Scholar] [CrossRef] [PubMed]
- Kane, A.E.; Gregson, E.; Theou, O.; Rockwood, K.; Howlett, S.E. The association between frailty, the metabolic syndrome, and mortality over the lifespan. Geroscience 2017, 39, 221–229. [Google Scholar] [CrossRef] [PubMed]
- Fromentin, S.; Forslund, S.K.; Chechi, K.; Aron-Wisnewsky, J.; Chakaroun, R.; Nielsen, T.; Tremaroli, V.; Ji, B.; Prifti, E.; Myridakis, A.; et al. Microbiome and metabolome features of the cardiometabolic disease spectrum. Nat. Med. 2022, 28, 303–314. [Google Scholar] [CrossRef]
- Mindikoglu, A.L.; Opekun, A.R.; Putluri, N.; Devaraj, S.; Sheikh-Hamad, D.; Vierling, J.M.; Goss, J.A.; Rana, A.; Sood, G.K.; Jalal, P.K.; et al. Unique metabolomic signature associated with hepatorenal dysfunction and mortality in cirrhosis. Transl. Res. 2018, 195, 25–47. [Google Scholar] [CrossRef]
- Watanabe, M.; E Suliman, M.; Qureshi, A.R.; Garcia-Lopez, E.; Bárány, P.; Heimbürger, O.; Stenvinkel, P.; Lindholm, B. Consequences of low plasma histidine in chronic kidney disease patients: Associations with inflammation, oxidative stress, and mortality. Am. J. Clin. Nutr. 2008, 87, 1860–1866. [Google Scholar] [CrossRef]
- Babizhayev, M.A.; Seguin, M.C.; Gueyne, J.; Evstigneeva, R.P.; Ageyeva, E.A.; Zheltukhina, G.A. L-carnosine (beta-alanyl-L-histidine) and carcinine (beta-alanylhistamine) act as natural antioxidants with hydroxyl-radical-scavenging and lipid-peroxidase activities. Biochem. J. 1994, 304, 509–516. [Google Scholar] [CrossRef]
- Hipkiss, A.R. Would carnosine or a carnivorous diet help suppress aging and associated pathologies? Ann. N. Y. Acad. Sci. 2006, 1067, 369–374. [Google Scholar] [CrossRef]
- Löwhagen, O.; Granerus, G.; Wetterqvist, H. Studies on histamine metabolism in intrinsic bronchial asthma. Allergy 1979, 34, 395–404. [Google Scholar] [CrossRef]
- Ifegwu, O.C.; Anyakora, C. Polycyclic aromatic hydrocarbons. Adv. Clin. Chem. 2016, 75, 159–183. [Google Scholar]
- De Fonseca, F.R.; Navarro, M.; Gómez, R.; Escuredo, L.; Nava, F.; Fu, J.; Murillo-Rodríguez, E.; Giuffrida, A.; LoVerme, J.; Gaetani, S.; et al. An anorexic lipid mediator regulated by feeding. Nature 2001, 414, 209–212. [Google Scholar] [CrossRef] [PubMed]
- Landi, F.; Liperoti, R.; Lattanzio, F.; Russo, A.; Tosato, M.; Barillaro, C.; Bernabei, R.; Onder, G. Effects of anorexia on mortality among older adults receiving home care: An observational study. J. Nutr. Health Aging 2012, 16, 79–83. [Google Scholar] [CrossRef] [PubMed]
- Lawler, P.R.; Akinkuolie, A.O.; Chandler, P.D.; Moorthy, M.V.; Vandenburgh, M.J.; Schaumberg, D.A.; Lee, I.-M.; Glynn, R.J.; Ridker, P.M.; Buring, J.E.; et al. Circulating N-linked glycoprotein acetyls and longitudinal mortality risk. Circ. Res. 2016, 118, 1106–1115. [Google Scholar] [CrossRef] [PubMed]
- Kompare, M.; Rizzo, W.B. Mitochondrial fatty-acid oxidation disorders. Semin. Pediatr. Neurol. 2008, 15, 140–149. [Google Scholar] [CrossRef]
- Sharma, V.; Ichikawa, M.; Freeze, H.H. Mannose metabolism: More than meets the eye. Commun. Biochem. Biophys. Res. 2014, 453, 220–228. [Google Scholar] [CrossRef]
- Akinkuolie, A.O.; Buring, J.E.; Ridker, P.M.; Mora, S. A novel protein glycan biomarker and future cardiovascular disease events. J. Am. Heart Assoc. 2014, 3, e001221. [Google Scholar] [CrossRef]
- Xiong, W.; Zhao, Y.; Wei, Z.; Li, C.; Zhao, R.; Ge, J.; Shi, B. N1-methyladenosine formation, gene regulation, biological functions, and clinical relevance. Mol. Ther. 2023, 31, 308–330. [Google Scholar] [CrossRef]
- Brooks, G.A. The science and translation of lactate shuttle theory. Cell Metab. 2020, 31, 692–705. [Google Scholar] [CrossRef]
- Tretter, L.; Patocs, A.; Chinopoulos, C. Succinate, an intermediate in metabolism, signal transduction, ROS, hypoxia, and tumorigenesis. Biochim. Biophys. Acta Bioenerg. 2016, 1857, 1086–1101. [Google Scholar] [CrossRef]
- Weiss, E.P.; Villareal, D.T.; Fontana, L.; Han, D.H.; Holloszy, J.O. Dehydroepiandrosterone (DHEA) replacement decreases insulin resistance and lowers inflammatory cytokines in aging humans. Aging 2011, 3, 533–542. [Google Scholar] [CrossRef]
- Burri, L.; La Frano, M.R.; Parker, R.S. Absorption, Metabolism, and Functions of β-Cryptoxanthin. Nutr. Rev. 2016, 74, 69–82. [Google Scholar] [CrossRef] [PubMed]
- Laakso, M.; Kuusisto, J.; Stančáková, A.; Kuulasmaa, T.; Pajukanta, P.; Lusis, A.J.; Collins, F.S.; Mohlke, K.L.; Boehnke, M. The Metabolic Syndrome in Men study: A resource for studies of metabolic and cardiovascular diseases. J. Lipid Res. 2017, 58, 481–493. [Google Scholar] [CrossRef] [PubMed]
- Yin, X.; Chan, L.S.; Bose, D.; Jackson, A.U.; VandeHaar, P.; Locke, A.E.; Fuchsberger, C.; Stringham, H.M.; Welch, R.; Yu, K.; et al. Genome-wide association studies of metabolites in Finnish men identify disease-relevant loci. Nat. Commun. 2022, 13, 1644. [Google Scholar] [CrossRef] [PubMed]
- Thomas, I.; Dickens, A.M.; Posti, J.P.; Czeiter, E.; Duberg, D.; Sinioja, T.; Krakstrom, M.; Helmrich, I.R.A.R.; Wang, K.K.W.; Maas, A.I.R.; et al. Serum metabolome associated with severity of acute traumatic brain injury. Nat. Commun. 2022, 13, 2545. [Google Scholar] [CrossRef]
- Lundberg, S.M.; Erion, G.; Chen, H.; DeGrave, A.; Prutkin, J.M.; Nair, B.; Katz, R.; Himmelfarb, J.; Bansal, N.; Lee, S.-I. From local explanations to global understanding with explainable AI for trees. Nat. Mach. Intell. 2020, 2, 56–67. [Google Scholar] [CrossRef]
Alive | Deceased | ||||
---|---|---|---|---|---|
Variable | n | Mean ± SD | n | Mean ± SD | p |
Age (years) | 8851 | 56.9 ± 6.9 | 1346 | 62.5 ± 6.5 | 2.0 × 10−161 |
Body mass index (kg/m2) | 8849 | 27.2 ± 4.0 | 1344 | 28.2 ± 5.0 | 3.1 × 10−15 |
Waist (cm) | 8848 | 98.2 ± 11.1 | 1343 | 102.3 ± 11.5 | 3.4 × 10−31 |
Smoking (%) * | 8851 | 16.8 | 1344 | 26.4 | 1.5 × 10−16 |
Systolic blood pressure (mmHg) | 8851 | 137.5 ± 16.4 | 1345 | 143.3 ± 18.0 | 7.0 × 10−31 |
Type 2 diabetes (%) * | 8851 | 11.9 | 1345 | 27.2 | 1.3 × 10−44 |
LDLC (mmol/L) | 8847 | 3.34 ± 0.89 | 1346 | 3.10 ± 0.92 | 2.0 × 10−19 |
Triglycerides (mmol/L) | 8850 | 1.45 ± 0.97 | 1346 | 1.58 ± 1.23 | 4.8 × 10−07 |
Fasting glucose (mmol/L) | 8851 | 5.92 ± 0.98 | 1346 | 6.30 ± 1.70 | 6.5 × 10−27 |
hS-CRP (mg/L) | 8850 | 2.01 ± 4.27) | 1345 | 3.44 ± 5.62 | 2.5 × 10−43 |
Creatinine (umol/L) | 8851 | 83.5 ± 13.4 | 1346 | 86.7 ± 24.5 | 5.1 × 10−8 |
Urinary albumin excretion rate (ug/min) | 8740 | 17.7 ± 95.5 | 1311 | 69.1 ± 31.9 | 1.0 × 10−33 |
eGFR (mL/min/1.73 m2) | 8850 | 88.7 ± 12.1 | 1345 | 83.4 ± 14.9 | 6.4 × 10−52 |
ALT (U/L) | 8851 | 32.5 ± 21.2 | 1346 | 32.1 ± 22.0 | 0.562 |
HMDB | Metabolite | Cases | Total | HR (95% CI) | p | Novel |
---|---|---|---|---|---|---|
Amino Acids | ||||||
HMDB0341329 | Hydroxyasparagine | 1345 | 10,169 | 1.23 (1.16–1.29) | 2.1 × 10−15 | Yes |
HMDB0000177 | Histidine | 1345 | 10,188 | 0.85 (0.81–0.88) | 3.2 × 10−15 | No |
HMDB0000670 | Homoarginine | 1345 | 10,188 | 0.87 (0.82–0.91) | 1.8 × 10−8 | No |
HMDB0002820 | 1-methyl-4-imidazoleacetate | 1333 | 10,125 | 1.25 (1.19–1.29) | <1.0 × 10−20 | Yes |
HMDB0000600 | 5-(galactosylhydroxy)-L-lysine | 1165 | 8180 | 1.17 (1.10–1.24) | 3.8 × 10−7 | Yes |
HMDB0000512 | N-acetylphenylalanine | 1317 | 9959 | 1.26 (1.19–1.32) | 3.0 × 10−17 | No |
HMDB0240296 | C-glycosyltryptophan | 1345 | 10,188 | 1.26 (1.20–1.33) | <1.0 × 10−20 | Yes |
HMDB0000679 | Homocitrulline | 1304 | 9837 | 1.19 (1.13–1.26) | 5.5 × 10−11 | No |
HMDB0000323 | 3-amino-2-piperidone | 1344 | 10,180 | 1.15 (1.10–1.21) | 4.4 × 10−9 | Yes |
HMDB0002201 | Carboxyehtyl-GABA | 1308 | 9898 | 1.14 (1.08–1.21) | 4.2 × 10−6 | Yes |
Peptide | ||||||
HMDB0012881 | N-acetylcarnosine | 1340 | 10,162 | 0.87 (0.83–0.92) | 2.3 × 10−7 | No |
Nucleotides | ||||||
HMDB0000026 | 3-ureidopropionate | 1236 | 9104 | 1.27 (1.12–1.33) | <1.0 × 10−20 | No |
Fatty acids | ||||||
HMDB0000345 | 3-hydroxyadipate | 1054 | 7933 | 1.25 (1.18–1.18) | 1.1 × 10−13 | Yes |
HMDB0061661 | 9-hydroxystearate | 1191 | 9011 | 1.37 (1.30–1.44) | <1.0 × 10−20 | Yes |
- | 2-hydroxynervonate | 1317 | 9773 | 1.37 (1.28–1.46) | <1.0 × 10−20 | Yes |
HMDB0000409 | 5-hydroxyhexanoate | 1125 | 7220 | 1.23 (1.16–1.31) | 3.4 × 10−12 | No |
HMDB0000511 | Caprate (10:0) | 1345 | 10,188 | 1.22 (1.16–1.28) | 1.3 × 10−14 | No |
Sphingolipids | ||||||
HMDB0000269 | Sphinganine | 1257 | 8796 | 1.22 (1.15–1.29) | 1.7 × 10−11 | Yes |
HMDB0011697 | Lignoceroyl sphingomyelin | 1136 | 7896 | 0.88 (0.31–0.93) | 9.9 × 10−6 | Yes |
HMDB0240671 | Sphingomyelin (d18:1/25:0) | 1136 | 7893 | 0.85 (0.80–0.90) | 6.8 × 10−9 | Yes |
HMDB0012091 | Behenoyl dihydrosphingomyelin | 1337 | 10,008 | 0.89 (0.51–0.94) | 1.1 × 10−5 | Yes |
Acylcarnitines | ||||||
- | Suberoylcarnitine (C8-DC) | 1163 | 8684 | 1.31 (1.24–1.39) | <1.0 × 10−20 | No |
HMDB0013127 | (R)-3-hydroxybutyrylcarnitine | 1292 | 9620 | 1.22 (1.15–1.38) | 8.9 × 10−13 | Yes |
- | (S)-3-hydroxybutyrylcarnitine | 1334 | 10,014 | 1.20 (1.14–1.26) | 1.0 × 10−11 | Yes |
Steroids | ||||||
- | Pregnenetriol sulfate | 1345 | 10,187 | 0.89 (0.85–0.94) | 9.8 × 10−6 | Yes |
Carbohydrates | ||||||
HMDB0000212 HMDB0000215 | N-acetylglucosamine/N N-acetylgalactosamine | 1334 | 10,053 | 1.30 (1.23–1.38) | <1.0 × 10−20 | No |
HMDB0000169 | Mannose | 1345 | 10,185 | 1.22 (1.16–1.29) | 9.9 × 10−13 | Yes |
Energy | ||||||
HMDB0031518 | Malate | 1345 | 10,188 | 1.33 (1.26–1.39) | <1.0 × 10−20 | No |
Endocannab. | ||||||
HMDB0002088 | Oleoylethanolamide | 1109 | 7189 | 1.18 (1.11–1.26) | 7.2 × 10−8 | Yes |
Organic compound | ||||||
HMDB0304531 | Vanillylmandelate | 1202 | 8816 | 1.12 (1.06–1.19) | 1.2 × 10−4 | No |
Xenobiotics | ||||||
- | 5-hydroxymethyl-2-furoylcarnitine | 953 | 7071 | 1.22 (1.14–1.30) | 1.6 × 10−9 | Yes |
- | 2-hydroxyfluorene sulfate | 932 | 6556 | 1.30 (1.22–1.38) | 8.5 × 10−16 | Yes |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oravilahti, A.; Vangipurapu, J.; Laakso, M.; Fernandes Silva, L. Metabolomics-Based Machine Learning for Predicting Mortality: Unveiling Multisystem Impacts on Health. Int. J. Mol. Sci. 2024, 25, 11636. https://doi.org/10.3390/ijms252111636
Oravilahti A, Vangipurapu J, Laakso M, Fernandes Silva L. Metabolomics-Based Machine Learning for Predicting Mortality: Unveiling Multisystem Impacts on Health. International Journal of Molecular Sciences. 2024; 25(21):11636. https://doi.org/10.3390/ijms252111636
Chicago/Turabian StyleOravilahti, Anniina, Jagadish Vangipurapu, Markku Laakso, and Lilian Fernandes Silva. 2024. "Metabolomics-Based Machine Learning for Predicting Mortality: Unveiling Multisystem Impacts on Health" International Journal of Molecular Sciences 25, no. 21: 11636. https://doi.org/10.3390/ijms252111636
APA StyleOravilahti, A., Vangipurapu, J., Laakso, M., & Fernandes Silva, L. (2024). Metabolomics-Based Machine Learning for Predicting Mortality: Unveiling Multisystem Impacts on Health. International Journal of Molecular Sciences, 25(21), 11636. https://doi.org/10.3390/ijms252111636