Survival Distinctions for Cases Representing Immunologically Cold Tumors via Intrinsic Disorder Assessments for Blood-Sourced TRB Variable Regions
Abstract
:1. Introduction
2. Results
2.1. OS Probability Distinctions for UVM, Based on Assessments of Intrinsic Disorder for Blood-Sourced TRB V-CDR3-J AA Sequences
2.2. OS Probability Distinctions for UVM, Based on Physico-Chemical Parameters of Blood-Sourced TRB CDR3 AA Sequences
2.3. An OS Probability Distinction for MCYN Amplified NBL, Based on ANCHOR2 Assessment of Intrinsic Disorder for Blood-Sourced TRB V-CDR3-J AA Sequences
2.4. Multivariate Analysis
3. Discussion
4. Materials and Methods
4.1. Recovery of TRB Recombination Reads from Uveal Melanoma and Neuroblastoma Datasets
4.2. Determination of AA Sequences Representing the Full-Length TRB Variable Region from Recovered TRB Recombination Reads
4.3. Application of Computational Prediction Models to Assess Intrinsic Disorder of the V-CDR3-J AA Sequences
4.4. Characterization of Four Physico-Chemical Parameters of CDR3 AA Sequences
4.5. Survival Analysis
4.6. Multivariate Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kaliki, S.; Shields, C.L. Uveal melanoma: Relatively rare but deadly cancer. Eye 2017, 31, 241–257. [Google Scholar] [CrossRef] [PubMed]
- Nickla, D.L.; Wallman, J. The multifunctional choroid. Prog. Retin. Eye Res. 2010, 29, 144–168. [Google Scholar] [CrossRef] [PubMed]
- Tarlan, B.; Kıratlı, H. Uveal melanoma: Current trends in diagnosis and management. Turk. J. Ophthalmol. 2016, 46, 123–137. [Google Scholar] [CrossRef] [PubMed]
- Carvajal, R.D.; Sacco, J.J.; Jager, M.J.; Eschelman, D.J.; Olofsson Bagge, R.; Harbour, J.W.; Chieng, N.D.; Patel, S.P.; Joshua, A.M.; Piperno-Neumann, S. Advances in the clinical management of uveal melanoma. Nat. Rev. Clin. Oncol. 2023, 20, 99–115. [Google Scholar] [CrossRef] [PubMed]
- Gelmi, M.C.; Jager, M.J. Uveal melanoma: Current evidence on prognosis, treatment and potential developments. Asia Pac. J. Ophthalmol. 2024, 13, 100060. [Google Scholar] [CrossRef] [PubMed]
- Heppt, M.V.; Steeb, T.; Schlager, J.G.; Rosumeck, S.; Dressler, C.; Ruzicka, T.; Nast, A.; Berking, C. Immune checkpoint blockade for unresectable or metastatic uveal melanoma: A systematic review. Cancer Treat. Rev. 2017, 60, 44–52. [Google Scholar] [CrossRef] [PubMed]
- Durante, M.A.; Rodriguez, D.A.; Kurtenbach, S.; Kuznetsov, J.N.; Sanchez, M.I.; Decatur, C.L.; Snyder, H.; Feun, L.G.; Livingstone, A.S.; Harbour, J.W. Single-cell analysis reveals new evolutionary complexity in uveal melanoma. Nat. Commun. 2020, 11, 496. [Google Scholar] [CrossRef] [PubMed]
- Carvajal, R.D.; Butler, M.O.; Shoushtari, A.N.; Hassel, J.C.; Ikeguchi, A.; Hernandez-Aya, L.; Nathan, P.; Hamid, O.; Piulats, J.M.; Rioth, M.; et al. Clinical and molecular response to tebentafusp in previously treated patients with metastatic uveal melanoma: A phase 2 trial. Nat. Med. 2022, 28, 2364–2373. [Google Scholar] [CrossRef] [PubMed]
- Tawbi, H.A.; Schadendorf, D.; Lipson, E.J.; Ascierto, P.A.; Matamala, L.; Castillo Gutierrez, E.; Rutkowski, P.; Gogas, H.J.; Lao, C.D.; De Menezes, J.J.; et al. Relatlimab and Nivolumab versus Nivolumab in Untreated Advanced Melanoma. N. Engl. J. Med. 2022, 386, 24–34. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Uversky, V.N.; Tu, Y.N.; Nwogu, O.; Butler, S.N.; Ramsamooj, M.; Blanck, G. High-level intrinsic disorder explains the universality of CLIP binding to diverse MHC class II variants. Cell. Mol. Immunol. 2017, 15, 76–78. [Google Scholar] [CrossRef] [PubMed]
- Uversky, V.N. Natively unfolded proteins: A point where biology waits for physics. Protein Sci. 2002, 11, 739–756. [Google Scholar] [CrossRef] [PubMed]
- Uversky, V.N. Paradoxes and wonders of intrinsic disorder: Stability of instability. Intrinsically Disord. Proteins 2017, 5, e1327757. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wienke, J.; Dierselhuis, M.P.; Tytgat, G.A.M.; Künkele, A.; Nierkens, S.; Molenaar, J.J. The immune landscape of neuroblastoma: Challenges and opportunities for novel therapeutic strategies in pediatric oncology. Eur. J. Cancer 2021, 144, 123–150. [Google Scholar] [CrossRef] [PubMed]
- Chobrutskiy, B.I.; Zaman, S.; Tong, W.L.; Diviney, A.; Blanck, G. Recovery of T-cell receptor V(D)J recombination reads from lower grade glioma exome files correlates with reduced survival and advanced cancer grade. J. Neurooncol. 2018, 140, 697–704. [Google Scholar] [CrossRef] [PubMed]
- Layer, J.P.; Kronmuller, M.T.; Quast, T.; van den Boorn-Konijnenberg, D.; Effern, M.; Hinze, D.; Althoff, K.; Schramm, A.; Westermann, F.; Peifer, M.; et al. Amplification of N-Myc is associated with a T-cell-poor microenvironment in metastatic neuroblastoma restraining interferon pathway activity and chemokine expression. Oncoimmunology 2017, 6, e1320626. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhang, P.; Wu, X.; Basu, M.; Dong, C.; Zheng, P.; Liu, Y.; Sandler, A.D. MYCN Amplification Is Associated with Repressed Cellular Immunity in Neuroblastoma: An In Silico Immunological Analysis of TARGET Database. Front. Immunol. 2017, 8, 1473. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhou, X.; Wang, X.; Li, N.; Guo, Y.; Yang, X.; Lei, Y. Therapy resistance in neuroblastoma: Mechanisms and reversal strategies. Front. Pharmacol. 2023, 14, 1114295. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tong, W.L.; Tu, Y.N.; Samy, M.D.; Sexton, W.J.; Blanck, G. Identification of immunoglobulin V(D)J recombinations in solid tumor specimen exome files: Evidence for high level B-cell infiltrates in breast cancer. Hum. Vaccines Immunother. 2017, 13, 501–506. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gill, T.R.; Samy, M.D.; Butler, S.N.; Mauro, J.A.; Sexton, W.J.; Blanck, G. Detection of Productively Rearranged TcR-alpha V-J Sequences in TCGA Exome Files: Implications for Tumor Immunoscoring and Recovery of Antitumor T-cells. Cancer Inf. 2016, 15, 23–28. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Giudicelli, V.; Duroux, P.; Ginestoux, C.; Folch, G.; Jabado-Michaloud, J.; Chaume, D.; Lefranc, M.P. IMGT/LIGM-DB, the IMGT comprehensive database of immunoglobulin and T cell receptor nucleotide sequences. Nucleic Acids Res. 2006, 34, D781–D784. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Peng, K.; Radivojac, P.; Vucetic, S.; Dunker, A.K.; Obradovic, Z. Length-dependent prediction of protein intrinsic disorder. BMC Bioinform. 2006, 7, 208. [Google Scholar] [CrossRef] [PubMed]
- Obradovic, Z.; Peng, K.; Vucetic, S.; Radivojac, P.; Brown, C.J.; Dunker, A.K. Predicting intrinsic disorder from amino acid sequence. Proteins Struct. Funct. Bioinform. 2003, 53, 566–572. [Google Scholar] [CrossRef] [PubMed]
- Mészáros, B.; Erdős, G.; Dosztányi, Z. IUPred2A: Context-dependent prediction of protein disorder as a function of redox state and protein binding. Nucleic Acids Res. 2018, 46, W329–W337. [Google Scholar] [CrossRef] [PubMed]
- Dosztányi, Z.; Csizmok, V.; Tompa, P.; Simon, I. IUPred: Web server for the prediction of intrinsically unstructured regions of proteins based on estimated energy content. Bioinformatics 2005, 21, 3433–3434. [Google Scholar] [CrossRef] [PubMed]
- Mészáros, B.; Simon, I.; Dosztányi, Z. Prediction of protein binding regions in disordered proteins. PLOS Comput. Biol. 2009, 5, e1000376. [Google Scholar] [CrossRef] [PubMed]
- Cock, P.J.; Antao, T.; Chang, J.T.; Chapman, B.A.; Cox, C.J.; Dalke, A.; Friedberg, I.; Hamelryck, T.; Kauff, F.; Wilczynski, B.; et al. Biopython: Freely available Python tools for computational molecular biology and bioinformatics. Bioinformatics 2009, 25, 1422–1423. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Holehouse, A.S.; Das, R.K.; Ahad, J.N.; Richardson, M.O.; Pappu, R.V. CIDER: Resources to Analyze Sequence-Ensemble Relationships of Intrinsically Disordered Proteins. Biophys. J. 2017, 112, 16–21. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Campen, A.; Williams, M.R.; Brown, J.C.; Meng, J.; Uversky, N.V.; Dunker, K.A. TOP-IDP-Scale: A new amino acid scale measuring prropensity for intrinsic disorder. Protein Pept. Lett. 2008, 15, 956–963. [Google Scholar] [CrossRef] [PubMed]
- Haimov, B.; Srebnik, S. A closer look into the α-helix basin. Sci. Rep. 2016, 6, 38341. [Google Scholar] [CrossRef] [PubMed]
- Hutchinson, E.G.; Thornton, J.M. A revised set of potentials for β-turn formation in proteins. Protein Sci. 1994, 3, 2207–2216. [Google Scholar] [CrossRef] [PubMed]
- Kim, C.A.; Berg, J.M. Thermodynamic β -sheet propensities measured using a zinc-finger host peptide. Nature 1993, 362, 267–270. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Aksoy, B.A.; Dogrusoz, U.; Dresdner, G.; Gross, B.; Sumer, S.O.; Sun, Y.; Jacobsen, A.; Sinha, R.; Larsson, E.; et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci. Signal. 2013, 6, pl1. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cerami, E.; Gao, J.; Dogrusoz, U.; Gross, B.E.; Sumer, S.O.; Aksoy, B.A.; Jacobsen, A.; Byrne, C.J.; Heuer, M.L.; Larsson, E.; et al. The cBio cancer genomics portal: An open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012, 2, 401–404. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Patel, A.R.; Patel, D.N.; Tu, Y.N.; Yeagley, M.; Chobrutskiy, A.; Chobrutskiy, B.I.; Blanck, G. Chemical complementarity between immune receptor CDR3s and candidate cancer antigens correlating with reduced survival: Evidence for outcome mitigation with corticosteroid treatments. J. Biomol. Struct. Dyn. 2022, 41, 4632–4640. [Google Scholar] [CrossRef] [PubMed]
- Yeagley, M.; Chobrutskiy, B.I.; Gozlan, E.C.; Medikonda, N.; Patel, D.N.; Falasiri, S.; Callahan, B.M.; Huda, T.; Blanck, G. Electrostatic Complementarity of T-Cell Receptor-Alpha CDR3 Domains and Mutant Amino Acids Is Associated with Better Survival Rates for Sarcomas. Pediatr. Hematol. Oncol. 2021, 38, 251–264. [Google Scholar] [CrossRef] [PubMed]
Analysis 1 | |||
---|---|---|---|
Covariate | Exp(B) | Significance | 95% CI for Exp(B) |
VSL2 | 9.812 | 0.006 | 1.919–50.175 |
Age at diagnosis | 1.049 | 0.169 | 0.980–1.124 |
AJCC pathologic stage | 4.647 | 0.031 | 1.155–18.691 |
AJCC pathologic T | 0.492 | 0.093 | 0.215–1.126 |
Received treatment | 3.875 | 0.135 | 0.655–22.935 |
Fraction of genome altered | 8.068 | 0.351 | 0.100–647.679 |
MSIsensor score | 1.591 × 103 | 0.072 | 0.511–4.951 × 106 |
Analysis 2 | |||
IUPred2 short | 5.910 | 0.009 | 1.569–22.259 |
Age at diagnosis | 1.039 | 0.237 | 0.975–1.107 |
AJCC pathologic stage | 4.469 | 0.016 | 1.316–15.184 |
AJCC pathologic T | 0.585 | 0.128 | 0.294–1.167 |
Received treatment | 2.179 | 0.334 | 0.449–10.581 |
Fraction of genome altered | 16.602 | 0.240 | 0.153–1.797 × 103 |
MSIsensor score | 2.573 × 103 | 0.044 | 1.251–5.292 × 106 |
Analysis 3 | |||
IUPred2 long | 9.355 | 0.002 | 2.218–39.453 |
Age at diagnosis | 1.041 | 0.227 | 0.975–1.111 |
AJCC pathologic stage | 5.052 | 0.013 | 1.405–18.167 |
AJCC pathologic T | 0.568 | 0.122 | 0.277–1.163 |
Received treatment | 2.073 | 0.374 | 0.415–10.354 |
Fraction of genome altered | 21.022 | 0.212 | 0.175–2.519 × 103 |
MSIsensor score | 2.206 × 103 | 0.051 | 0.969–5.024 × 106 |
Analysis 4 | |||
ANCHOR2 | 6.939 | 0.006 | 1.732–27.803 |
Age at diagnosis | 1.044 | 0.184 | 0.980–1.112 |
AJCC pathologic stage | 4.787 | 0.015 | 1.362–16.823 |
AJCC pathologic T | 0.498 | 0.061 | 0.240–1.033 |
Received treatment | 3.357 | 0.132 | 0.695–16.216 |
Fraction of genome altered | 26.585 | 0.187 | 0.204–3.468 × 103 |
MSIsensor score | 879.865 | 0.089 | 0.357–2.171 × 106 |
Analysis 5 | |||
Proportion of disorder-promoting residues | 4.652 | 0.029 | 1.166–18.562 |
Age at diagnosis | 1.045 | 0.157 | 0.983–1.110 |
AJCC pathologic stage | 2.268 | 0.149 | 0.747–6.889 |
AJCC pathologic T | 0.697 | 0.265 | 0.369–1.316 |
Received treatment | 3.179 | 0.138 | 0.691–14.623 |
Fraction of genome altered | 17.480 | 0.239 | 0.149–2.054 × 103 |
MSIsensor score | 4.477 × 103 | 0.030 | 2.213–9.059 × 106 |
Analysis 1 | |||
---|---|---|---|
Covariate | Exp(B) | Significance | 95% CI for Exp(B) |
ANCHOR2 | 0.401 | 0.012 | 0.197–0.816 |
Age at diagnosis | 0.795 | 0.196 | 0.561–1.126 |
Gender | 0.602 | 0.194 | 0.280–1.294 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sahoo, A.; Gozlan, E.C.; Song, J.J.; Angelakakis, G.; Yeagley, M.; Chobrutskiy, B.I.; Huda, T.I.; Blanck, G. Survival Distinctions for Cases Representing Immunologically Cold Tumors via Intrinsic Disorder Assessments for Blood-Sourced TRB Variable Regions. Int. J. Mol. Sci. 2024, 25, 11691. https://doi.org/10.3390/ijms252111691
Sahoo A, Gozlan EC, Song JJ, Angelakakis G, Yeagley M, Chobrutskiy BI, Huda TI, Blanck G. Survival Distinctions for Cases Representing Immunologically Cold Tumors via Intrinsic Disorder Assessments for Blood-Sourced TRB Variable Regions. International Journal of Molecular Sciences. 2024; 25(21):11691. https://doi.org/10.3390/ijms252111691
Chicago/Turabian StyleSahoo, Arpan, Etienne C. Gozlan, Joanna J. Song, George Angelakakis, Michelle Yeagley, Boris I. Chobrutskiy, Taha I. Huda, and George Blanck. 2024. "Survival Distinctions for Cases Representing Immunologically Cold Tumors via Intrinsic Disorder Assessments for Blood-Sourced TRB Variable Regions" International Journal of Molecular Sciences 25, no. 21: 11691. https://doi.org/10.3390/ijms252111691
APA StyleSahoo, A., Gozlan, E. C., Song, J. J., Angelakakis, G., Yeagley, M., Chobrutskiy, B. I., Huda, T. I., & Blanck, G. (2024). Survival Distinctions for Cases Representing Immunologically Cold Tumors via Intrinsic Disorder Assessments for Blood-Sourced TRB Variable Regions. International Journal of Molecular Sciences, 25(21), 11691. https://doi.org/10.3390/ijms252111691