High-Fructose Diet and Chronic Unpredictable Stress Modify Each Other’s Neurobehavioral Effects in Female Rats
Abstract
:1. Introduction
2. Results
2.1. Feeding Behavior in Stress-Exposed, Fructose-Fed, and Stress-Exposed Fructose-Fed Female Rats
2.2. Behavioral Response of Stress-Exposed, Fructose-Fed, and Stress-Exposed Fructose-Fed Female Rats to an Inescapable Novel Environment
2.3. The Expression of Protein Indicators of Neuronal Activation and Synaptic Potentiation in the Medial Prefrontal Cortex of Stress-Exposed, Fructose-Fed, and Stress-Exposed Fructose-Fed Female Rats
2.4. The Expression of Protein Indicators of Altered Synaptic Plasticity in the Medial Prefrontal Cortex of Stress-Exposed, Fructose-Fed, and Stress-Exposed Fructose-Fed Female Rats
2.5. The Expression of the Glucocorticoid Receptor in the Medial Prefrontal Cortex and the Level of Corticosterone in the Blood of Stress-Exposed, Fructose-Fed, and Stress-Exposed Fructose-Fed Female Rats
2.6. The Efficacy of a 9-Week CUS Protocol in Achieving an Increase in Circulating Corticosterone Levels in Female Rats
2.7. The Expression of Protein Markers of the GABAergic System in the Medial Prefrontal Cortex of Stress-Exposed, Fructose-Fed, and Stress-Exposed Fructose-Fed Female Rats
2.8. The Expression of AMPK in the Medial Prefrontal Cortex of Stress-Exposed, Fructose-Fed, and Stress-Exposed Fructose-Fed Female Rats
3. Discussion
4. Materials and Methods
4.1. Material
4.2. Animals and Treatment
4.3. Behavioral Testing—Exploratory/Motor Activity in the Novel Open Arena
4.4. Tissue Preparation
4.5. SDS Polyacrylamide Gel Electrophoresis and Western Blotting
4.6. Determination of Plasma Corticosterone
4.7. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dekker, M.J.; Su, Q.; Baker, C.; Rutledge, A.C.; Adeli, K. Fructose: A highly lipogenic nutrient implicated in insulin resistance, hepatic steatosis, and the metabolic syndrome. Am. J. Physiol. Endocrinol. Metab. 2010, 299, E685–E694. [Google Scholar] [CrossRef]
- Ter Horst, K.W.; Serlie, M.J. Fructose Consumption, Lipogenesis, and Non-Alcoholic Fatty Liver Disease. Nutrients 2017, 9, 981. [Google Scholar] [CrossRef]
- Aoun, R.; Chokor, F.A.Z.; Taktouk, M.; Nasrallah, M.; Ismaeel, H.; Tamim, H.; Nasreddine, L. Dietary fructose and its association with the metabolic syndrome in Lebanese healthy adults: A cross-sectional study. Diabetol. Metab. Syndr. 2022, 14, 29. [Google Scholar] [CrossRef]
- Choo, V.L.; Viguiliouk, E.; Mejia, S.B.; I Cozma, A.; A Khan, T.; Ha, V.; Wolever, T.M.S.; A Leiter, L.; Vuksan, V.; Kendall, C.W.C.; et al. Food sources of fructose-containing sugars and glycaemic control: Systematic review and meta-analysis of controlled intervention studies. BMJ 2018, 363, k4644. [Google Scholar] [CrossRef]
- Stricker, S.; Rudloff, S.; Geier, A.; Steveling, A.; Roeb, E.; Zimmer, K.P. Fructose Consumption-Free Sugars and Their Health Effects. Dtsch. Arztebl. Int. 2021, 118, 71–78. [Google Scholar] [CrossRef]
- He, L.; Babar, G.S.; Redel, J.M.; Young, S.L.; Chagas, C.E.; Moore, W.V.; Yan, Y. Fructose Intake: Metabolism and Role in Diseases. In Sugar Intake—Risks and Benefits and the Global Diabetes Epidemic; IntechOpen: London, UK, 2021. [Google Scholar] [CrossRef]
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, 5th ed.; American Psychiatric Association: Washington, DC, USA, 2013. [Google Scholar]
- Kessler, R.C.; McLeod, J.D.; Wethington, E. The costs of caring: A perspective on the relationship between sex and psychological distress. In Social Support: Theory, Research and Applications; Sarason, I.G., Ed.; Springer: Dordrecht, The Netherlands, 1985; pp. 491–506. [Google Scholar] [CrossRef]
- Kowal, M.; Coll-Martín, T.; Ikizer, G.; Rasmussen, J.; Eichel, K.; Studzińska, A.; Koszałkowska, K.; Karwowski, M.; Najmussaqib, A.; Pankowski, D.; et al. Who is the Most Stressed During the COVID-19 Pandemic? Data From 26 Countries and Areas. Appl. Psychol. Health Well-Being 2020, 12, 946–966. [Google Scholar] [CrossRef]
- Jacques, A.; Chaaya, N.; Beecher, K.; Ali, S.A.; Belmer, A.; Bartlett, S. The impact of sugar consumption on stress driven, emotional and addictive behaviors. Neurosci. Biobehav. Rev. 2019, 103, 178–199. [Google Scholar] [CrossRef]
- Spagnuolo, M.S.; Iossa, S.; Cigliano, L. Sweet but Bitter: Focus on Fructose Impact on Brain Function in Rodent Models. Nutrients 2020, 13, 1. [Google Scholar] [CrossRef]
- Howland, J.G.; Ito, R.; Lapish, C.C.; Villaruel, F.R. The rodent medial prefrontal cortex and associated circuits in orchestrating adaptive behavior under variable demands. Neurosci. Biobehav. Rev. 2022, 135, 104569. [Google Scholar] [CrossRef]
- Guirado, R.; Perez-Rando, M.; Ferragud, A.; Gutierrez-Castellanos, N.; Umemori, J.; Carceller, H.; Nacher, J.; Castillo-Gómez, E. A Critical Period for Prefrontal Network Configurations Underlying Psychiatric Disorders and Addiction. Front. Behav. Neurosci. 2020, 14, 51. [Google Scholar] [CrossRef]
- Payant, M.A.; Chee, M.J. Neural mechanisms underlying the role of fructose in overfeeding. Neurosci. Biobehav. Rev. 2021, 128, 346–357. [Google Scholar] [CrossRef]
- Iacono, W.G.; Malone, S.M.; McGue, M. Substance use disorders, externalizing psychopathology, and P300 event-related potential amplitude. Int. J. Psychophysiol. 2003, 48, 147–178. [Google Scholar] [CrossRef]
- Johnson, R.J.; Wilson, W.L.; Bland, S.T.; Lanaspa, M.A. Fructose and Uric Acid as Drivers of a Hyperactive Foraging Response: A Clue to Behavioral Disorders Associated with Impulsivity or Mania? Evol. Hum. Behav. 2021, 42, 194–203. [Google Scholar] [CrossRef]
- Tryon, M.S.; Stanhope, K.L.; Epel, E.S.; Mason, A.E.; Brown, R.; Medici, V.; Havel, P.J.; Laugero, K.D. Excessive Sugar Consumption May Be a Difficult Habit to Break: A View From the Brain and Body. J. Clin. Endocrinol. Metab. 2015, 100, 2239–2247. [Google Scholar] [CrossRef]
- Hannou, S.A.; Haslam, D.E.; McKeown, N.M.; Herman, M.A. Fructose metabolism and metabolic disease. J. Clin. Investig. 2018, 128, 545–555. [Google Scholar] [CrossRef]
- McKlveen, J.M.; Myers, B.; Flak, J.N.; Bundzikova, J.; Solomon, M.B.; Seroogy, K.B.; Herman, J.P. Role of prefrontal cortex glucocorticoid receptors in stress and emotion. Biol. Psychiatry 2013, 74, 672–679. [Google Scholar] [CrossRef]
- McKlveen, J.M.; Morano, R.L.; Fitzgerald, M.; Zoubovsky, S.; Cassella, S.N.; Scheimann, J.R.; Ghosal, S.; Mahbod, P.; Packard, B.A.; Myers, B.; et al. Chronic Stress Increases Prefrontal Inhibition: A Mechanism for Stress-Induced Prefrontal Dysfunction. Biol. Psychiatry 2016, 80, 754–764. [Google Scholar] [CrossRef]
- Banasr, M.; Lepack, A.; Fee, C.; Duric, V.; Maldonado-Aviles, J.; DiLeone, R.; Sibille, E.; Duman, R.S.; Sanacora, G. Characterization of GABAergic marker expression in the chronic unpredictable stress model of depression. Chronic Stress 2017, 1, 2470547017720459. [Google Scholar] [CrossRef]
- Li, N.; Liu, R.J.; Dwyer, J.M.; Banasr, M.; Lee, B.; Son, H.; Li, X.Y.; Aghajanian, G.; Duman, R.S. Glutamate N-methyl-D-aspartate receptor antagonists rapidly reverse behavioral and synaptic deficits caused by chronic stress exposure. Biol. Psychiatry 2011, 69, 754–761. [Google Scholar] [CrossRef]
- Ghosal, S.; Duman, C.H.; Liu, R.J.; Wu, M.; Terwilliger, R.; Girgenti, M.J.; Wohleb, E.; Fogaca, M.V.; Teichman, E.M.; Hare, B.; et al. Ketamine rapidly reverses stress-induced impairments in GABAergic transmission in the prefrontal cortex in male rodents. Neurobiol. Dis. 2020, 134, 104669. [Google Scholar] [CrossRef]
- Shansky, R.M.; Hamo, C.; Hof, P.R.; McEwen, B.S.; Morrison, J.H. Stress-induced dendritic remodeling in the prefrontal cortex is circuit specific. Cereb. Cortex. 2009, 19, 2479–2484. [Google Scholar] [CrossRef]
- Woo, E.; Sansing, L.H.; Arnsten, A.F.T.; Datta, D. Chronic Stress Weakens Connectivity in the Prefrontal Cortex: Architectural and Molecular Changes. Chronic Stress 2021, 5, 24705470211029254. [Google Scholar] [CrossRef]
- Liu, X.B.; Murray, K.D. Neuronal excitability and calcium/calmodulin-dependent protein kinase type II: Location, location, location. Epilepsia 2012, 53 (Suppl. 1), 45–52. [Google Scholar] [CrossRef]
- Lisman, J.; Yasuda, R.; Raghavachari, S. Mechanisms of CaMKII action in long-term potentiation. Nat. Rev. Neurosci. 2012, 13, 169–182. [Google Scholar] [CrossRef]
- Shepard, R.; Coutellier, L. Changes in the Prefrontal Glutamatergic and Parvalbumin Systems of Mice Exposed to Unpredictable Chronic Stress. Mol. Neurobiol. 2018, 55, 2591–2602. [Google Scholar] [CrossRef]
- Page, C.E.; Shepard, R.; Heslin, K.; Coutellier, L. Prefrontal parvalbumin cells are sensitive to stress and mediate anxiety-related behaviors in female mice. Sci. Rep. 2019, 9, 19772. [Google Scholar] [CrossRef]
- Perrotti, L.I.; Hadeishi, Y.; Ulery, P.G.; Barrot, M.; Monteggia, L.; Duman, R.S.; Nestler, E.J. Induction of deltaFosB in reward-related brain structures after chronic stress. J. Neurosci. 2004, 24, 10594–10602. [Google Scholar] [CrossRef]
- Sapolsky, R.M. Glucocorticoid toxicity in the hippocampus: Reversal by supplementation with brain fuels. J. Neurosci. 1986, 6, 2240–2244. [Google Scholar] [CrossRef]
- Zhu, S.; Wang, J.; Zhang, Y.; Li, V.; Kong, J.; He, J.; Li, X.M. Unpredictable chronic mild stress induces anxiety and depression-like behaviors and inactivates AMP-activated protein kinase in mice. Brain Res. 2014, 1576, 81–90. [Google Scholar] [CrossRef]
- Toop, C.R.; Gentili, S. Fructose Beverage Consumption Induces a Metabolic Syndrome Phenotype in the Rat: A Systematic Review and Meta-Analysis. Nutrients 2016, 8, 577. [Google Scholar] [CrossRef]
- Herman, J.P. Neural control of chronic stress adaptation. Front. Behav. Neurosci. 2013, 7, 61. [Google Scholar] [CrossRef]
- Kovačević, S.; Nestorov, J.; Matić, G.; Elaković, I. Fructose and stress induce opposite effects on lipid metabolism in the visceral adipose tissue of adult female rats through glucocorticoid action. Eur. J. Nutr. 2017, 56, 2115–2128. [Google Scholar] [CrossRef]
- Kovačević, S.; Nestorov, J.; Matić, G.; Elaković, I. Chronic Stress Combined with a Fructose Diet Reduces Hypothalamic Insulin Signaling and Antioxidative Defense in Female Rats. Neuroendocrinology 2019, 108, 278–290. [Google Scholar] [CrossRef]
- Kovačević, S.; Elaković, I.; Vojnović Milutinović, D.; Nikolić-Kokić, A.; Blagojević, D.; Matić, G.; Tappy, L.; Djordjevic, A.; Brkljačić, J. Fructose-Rich Diet Attenuates Stress-Induced Metabolic Disturbances in the Liver of Adult Female Rats. J. Nutr. 2021, 151, 3661–3670. [Google Scholar] [CrossRef]
- Kovačević, S.; Brkljačić, J.; Milutinović, D.V.; Gligorovska, L.; Bursać, B.; Elaković, I.; Djordjevic, A. Fructose Induces Visceral Adipose Tissue Inflammation and Insulin Resistance Even without Development of Obesity in Adult Female but Not in Male Rats. Front. Nutr. 2021, 8, 749328. [Google Scholar] [CrossRef]
- Sequeira-Cordero, A.; Salas-Bastos, A.; Fornaguera, J.; Brenes, J.C. Behavioural characterisation of chronic unpredictable stress based on ethologically relevant paradigms in rats. Sci. Rep. 2019, 9, 17403. [Google Scholar] [CrossRef]
- Dellu, F.; Piazza, P.V.; Mayo, W.; Le Moal, M.; Simon, H. Novelty-seeking in rats--biobehavioral characteristics and possible relationship with the sensation-seeking trait in man. Neuropsychobiology 1996, 34, 136–145. [Google Scholar] [CrossRef]
- Belin, D.; Deroche-Gamonet, V. Responses to novelty and vulnerability to cocaine addiction: Contribution of a multi-symptomatic animal model. Cold Spring Harb. Perspect. Med. 2012, 2, a011940. [Google Scholar] [CrossRef]
- Walz, N.; Mühlberger, A.; Pauli, P. A Human Open Field Test Reveals Thigmotaxis Related to Agoraphobic Fear. Biol. Psychiatry 2016, 80, 390–397. [Google Scholar] [CrossRef]
- Gromer, D.; Kiser, D.P.; Pauli, P. Thigmotaxis in a virtual human open field test. Sci. Rep. 2021, 11, 6670. [Google Scholar] [CrossRef]
- Hoerr, J.; Fogel, J.; Van Voorhees, B. Ecological correlations of dietary food intake and mental health disorders. J. Epidemiol. Glob. Health 2017, 7, 81–89. [Google Scholar] [CrossRef] [PubMed]
- Gannon, L.; Pardie, L. The importance of chronicity and controllability of stress in the context of stress-illness relationships. J. Behav. Med. 1989, 12, 357–372. [Google Scholar] [CrossRef]
- Markov, D.D.; Novosadova, E.V. Chronic Unpredictable Mild Stress Model of Depression: Possible Sources of Poor Reproducibility and Latent Variables. Biology 2022, 11, 1621. [Google Scholar] [CrossRef]
- Ivanov, A.; Esclapez, M.; Ferhat, L. Role of drebrin A in dendritic spine plasticity and synaptic function: Implications in neurological disorders. Commun. Integr. Biol. 2009, 2, 268–270. [Google Scholar] [CrossRef]
- Cook, S.C.; Wellman, C.L. Chronic stress alters dendritic morphology in rat medial prefrontal cortex. J. Neurobiol. 2004, 60, 236–248. [Google Scholar] [CrossRef]
- Radley, J.J.; Rocher, A.B.; Rodriguez, A.; Ehlenberger, D.B.; Dammann, M.; McEwen, B.S.; Morrison, J.H.; Wearne, S.L.; Hof, P.R. Repeated stress alters dendritic spine morphology in the rat medial prefrontal cortex. J. Comp. Neurol. 2008, 507, 1141–1150. [Google Scholar] [CrossRef]
- Qiao, H.; Li, M.X.; Xu, C.; Chen, H.B.; An, S.C.; Ma, X.M. Dendritic Spines in Depression: What We Learned from Animal Models. Neural Plast. 2016, 2016, 8056370. [Google Scholar] [CrossRef]
- Garrett, J.E.; Wellman, C.L. Chronic stress effects on dendritic morphology in medial prefrontal cortex: Sex differences and estrogen dependence. Neuroscience 2009, 162, 195–207. [Google Scholar] [CrossRef]
- Tyagarajan, S.K.; Fritschy, J.M. Gephyrin: A master regulator of neuronal function? Nat. Rev. Neurosci. 2014, 15, 141–156. [Google Scholar] [CrossRef]
- Alibhai, I.N.; Green, T.A.; Potashkin, J.A.; Nestler, E.J. Regulation of fosB and DeltafosB mRNA expression: In vivo and in vitro studies. Brain Res. 2007, 1143, 22–33. [Google Scholar] [CrossRef]
- Giese, K.P.; Fedorov, N.B.; Filipkowski, R.K.; Silva, A.J. Autophosphorylation at Thr286 of the alpha calcium-calmodulin kinase II in LTP and learning. Science 1998, 279, 870–873. [Google Scholar] [CrossRef]
- Bhattacharyya, M.; Karandur, D.; Kuriyan, J. Structural Insights into the Regulation of Ca2+/Calmodulin-Dependent Protein Kinase II (CaMKII). Cold Spring Harb. Perspect. Biol. 2020, 12, a035147. [Google Scholar] [CrossRef]
- Jia, W.; Kawahata, I.; Cheng, A.; Fukunaga, K. The Role of CaMKII and ERK Signaling in Addiction. Int. J. Mol. Sci. 2021, 22, 3189. [Google Scholar] [CrossRef]
- World Health Organization. Available online: https://www.who.int/news-room/fact-sheets/detail/depression (accessed on 7 January 2021).
- Cen, M.; Song, L.; Fu, X.; Gao, X.; Zuo, Q.; Wu, J. Associations between metabolic syndrome and anxiety, and the mediating role of inflammation: Findings from the UK Biobank. Brain Behav. Immun. 2024, 116, 1–9. [Google Scholar] [CrossRef]
- Gomez-Pinilla, F.; Cipolat, R.P.; Royes, L.F.F. Dietary fructose as a model to explore the influence of peripheral metabolism on brain function and plasticity. Biochim. Biophys. Acta Mol. Basis Dis. 2021, 1867, 166036. [Google Scholar] [CrossRef]
- Jiménez-Maldonado, A.; Ying, Z.; Byun, H.R.; Gomez-Pinilla, F. Short-term fructose ingestion affects the brain independently from establishment of metabolic syndrome. Biochim. Biophys. Acta Mol. Basis Dis. 2018, 1864, 24–33. [Google Scholar] [CrossRef]
- Joëls, M.; Karst, H.; Alfarez, D.; Heine, V.M.; Qin, Y.; van Riel, E.; Verkuyl, M.; Lucassen, P.J.; Krugers, H.J. Effects of chronic stress on structure and cell function in rat hippocampus and hypothalamus. Stress 2004, 7, 221–231. [Google Scholar] [CrossRef]
- Ventura, E.E.; Davis, J.N.; Goran, M.I. Sugar content of popular sweetened beverages based on objective laboratory analysis: Focus on fructose content. Obesity 2011, 19, 868–874. [Google Scholar] [CrossRef]
- Potrebić, M.S.; Pavković, Ž.Z.; Srbovan, M.M.; Dmura, G.M.; Pešić, V.T. Changes in the Behavior and Body Weight of Mature, Adult Male Wistar Han Rats after Reduced Social Grouping and Social Isolation. J. Am. Assoc. Lab. Anim. Sci. 2022, 61, 615–623. [Google Scholar] [CrossRef]
Parameter | Experimental Groups | ||
---|---|---|---|
F | S | SF | |
Novelty-induced behavioral response | |||
Locomotor activity | / | ↑ | / |
Stereotypy-like activity | / | / | / |
Vertical/rearing activity | / | ↑ | / |
Time spent in the central zone | / | / | ↓ |
Protein indicators of neuronal activation | |||
EGR1 | / | / | / |
FosB | / | ↓ | / |
ΔFosB | / | / | / |
Protein indicators of synaptic potentiation | |||
CaMKIIα | ↓ | ↓ | / |
pCaMKIIThr286 | ↑ | ↑ | / |
pCaMKIIThr286/CaMKIIα | ↑ | ↑ | / |
Protein indicators of altered synaptic plasticity | |||
PSD95 | / | / | / |
Synaptophysin | / | / | / |
Gephyrin | / | / | ↓ |
Drebrin | / | / | ↑ |
Mediators of the stress response | |||
Glucocorticoid receptor | / | ↓ | ↓ |
Corticosterone | / | / | / |
Markers of the GABAergic system | |||
Parvalbumin | / | ↑ | / |
GAD67 | / | / | / |
Protein sensors of cellular energy status | |||
AMPK | / | / | / |
pAMPKThr172 | / | / | / |
pAMPKThr172/AMPK | / | / | / |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kovačević, S.; Pavković, Ž.; Brkljačić, J.; Elaković, I.; Vojnović Milutinović, D.; Djordjevic, A.; Pešić, V. High-Fructose Diet and Chronic Unpredictable Stress Modify Each Other’s Neurobehavioral Effects in Female Rats. Int. J. Mol. Sci. 2024, 25, 11721. https://doi.org/10.3390/ijms252111721
Kovačević S, Pavković Ž, Brkljačić J, Elaković I, Vojnović Milutinović D, Djordjevic A, Pešić V. High-Fructose Diet and Chronic Unpredictable Stress Modify Each Other’s Neurobehavioral Effects in Female Rats. International Journal of Molecular Sciences. 2024; 25(21):11721. https://doi.org/10.3390/ijms252111721
Chicago/Turabian StyleKovačević, Sanja, Željko Pavković, Jelena Brkljačić, Ivana Elaković, Danijela Vojnović Milutinović, Ana Djordjevic, and Vesna Pešić. 2024. "High-Fructose Diet and Chronic Unpredictable Stress Modify Each Other’s Neurobehavioral Effects in Female Rats" International Journal of Molecular Sciences 25, no. 21: 11721. https://doi.org/10.3390/ijms252111721
APA StyleKovačević, S., Pavković, Ž., Brkljačić, J., Elaković, I., Vojnović Milutinović, D., Djordjevic, A., & Pešić, V. (2024). High-Fructose Diet and Chronic Unpredictable Stress Modify Each Other’s Neurobehavioral Effects in Female Rats. International Journal of Molecular Sciences, 25(21), 11721. https://doi.org/10.3390/ijms252111721