Concordance Between Biochemical and Molecular Diagnosis Obtained by WES in Mexican Patients with Inborn Errors of Intermediary Metabolism: Utility for Therapeutic Management
Abstract
:1. Introduction
2. Results
2.1. Study Population and WES Diagnostic Yield
2.2. The Genotypic Spectrum of IEiM-Positive Cases
2.3. Unsolved Cases
2.4. Patients with Co-Occurrence of Other Monogenic Diseases
2.5. Syndromic Entities Not Related to IEiM Identified by WES
2.6. Decisions Taken in Medical or Nutritional Management After WES Results
3. Discussion
4. Materials and Methods
4.1. Study Population
4.2. Biochemical Testing and Phenotyping
4.3. WES and Variant Analysis
4.4. Statistical Analyses
4.5. Ethical Considerations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wojcik, M.H.; Reuter, C.M.; Marwaha, S.; Mahmoud, M.; Duyzend, M.H.; Barseghyan, H.; Yuan, B.; Boone, P.M.; Groopman, E.E.; Délot, E.C.; et al. Beyond the exome: What’s next in diagnostic testing for Mendelian conditions. Am. J. Hum. Genet. 2023, 110, 1229–1248. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, H.; Nozaki, M.; Yoshihashi, H.; Imagawa, K.; Kajikawa, D.; Yamada, M.; Yamaguchi, Y.; Morisada, N.; Eguchi, M.; Ohashi, S.; et al. Genome analysis in sick neonates and infants: High-yield phenotypes and contribution of small copy number variations. J. Pediatr. 2022, 244, 38–48.e31. [Google Scholar] [CrossRef] [PubMed]
- Migliavacca, M.P.; Sobreira, J.; Bermeo, D.; Gomes, M.; Alencar, D.; Sussuchi, L.; Souza, C.A.; Silva, J.S.; Kroll, J.E.; Burger, M.; et al. Whole genome sequencing as a first-tier diagnostic test for infants in neonatal intensive care units: A pilot study in Brazil. Am. J. Med. Genet. Part A 2024, 194, e63544. [Google Scholar] [CrossRef]
- Farwell, K.D.; Shahmirzadi, L.; El-Khechen, D.; Powis, Z.; Chao, E.C.; Davis, B.T.; Baxter, R.M.; Zeng, W.; Mroske, C.; Parra, M.C.; et al. Enhanced utility of family-centered diagnostic exome sequencing with inheritance model–based analysis: Results from 500 unselected families with undiagnosed genetic conditions. Genet. Med. 2015, 17, 578–586. [Google Scholar] [CrossRef]
- Ediae, G.U.; Lemire, G.; Chisholm, C.; Hartley, T.; Eaton, A.; Osmond, M.; Rojas, S.K.; Huang, L.; Gillespie, M.; Care4Rare Canada Consortium; et al. The implementation of an enhanced clinical model to improve the diagnostic yield of exome sequencing for patients with a rare genetic disease: A Canadian experience. Am. J. Med. Genet. Part A 2023, 191, 338–347. [Google Scholar] [CrossRef]
- Shakiba, M.; Keramatipour, M. Effect of whole exome sequencing in diagnosis of inborn errors of metabolism and neurogenetic disorders. Iran. J. Child Neurol. 2018, 12, 7. [Google Scholar]
- Marom, D.; Mory, A.; Reytan-Miron, S.; Amir, Y.; Kurolap, A.; Cohen, J.G.; Morhi, Y.; Smolkin, T.; Cohen, L.; Zangen, S.; et al. National rapid genome sequencing in neonatal intensive care. JAMA Netw. Open 2024, 7, e240146. [Google Scholar] [CrossRef]
- Mavura, Y.; Sahin-Hodoglugil, N.; Hodoglugil, U.; Kvale, M.; Martin, P.-M.; Van Ziffle, J.; Devine, W.P.; Ackerman, S.L.; Koenig, B.A.; Kwok, P.-Y.; et al. Genetic ancestry and diagnostic yield of exome sequencing in a diverse population. NPJ Genom. Med. 2024, 9, 1. [Google Scholar] [CrossRef]
- Wu, E.-T.; Hwu, W.-L.; Chien, Y.-H.; Hsu, C.; Chen, T.-F.; Chen, N.-Q.; Chou, H.-C.; Tsao, P.-N.; Fan, P.-C.; Tsai, I.-J.; et al. Critical Trio Exome Benefits In-Time Decision-Making for Pediatric Patients with Severe Illnesses*. Pediatr. Crit. Care Med. 2019, 20, 1021–1026. [Google Scholar] [CrossRef]
- Freed, A.S.; Candadai, S.V.C.; Sikes, M.C.; Thies, J.; Byers, H.M.; Dines, J.N.; Ndugga-Kabuye, M.K.; Smith, M.B.; Fogus, K.; Mefford, H.C.; et al. The impact of rapid exome sequencing on medical management of critically ill children. J. Pediatr. 2020, 226, 202–212.e201. [Google Scholar] [CrossRef]
- Saudubray, J.-M.; Garcia-Cazorla, À. Inborn errors of metabolism overview: Pathophysiology, manifestations, evaluation, and management. Pediatr. Clin. 2018, 65, 179–208. [Google Scholar]
- Adhikari, A.N.; Gallagher, R.C.; Wang, Y.; Currier, R.J.; Amatuni, G.; Bassaganyas, L.; Chen, F.; Kundu, K.; Kvale, M.; Mooney, S.D.; et al. The role of exome sequencing in newborn screening for inborn errors of metabolism. Nat. Med. 2020, 26, 1392–1397. [Google Scholar] [CrossRef] [PubMed]
- Morava, E.; Baumgartner, M.; Patterson, M.; Peters, V.; Rahman, S. Newborn screening: To WES or not to WES, that is the question. J. Inherit. Metab. Dis. 2020, 43, 904–905. [Google Scholar] [CrossRef] [PubMed]
- Harthan, A.A. An Introduction to Pharmacotherapy for Inborn Errors of Metabolism. J. Pediatr. Pharmacol. Ther. 2018, 23, 15. [Google Scholar] [CrossRef]
- Wu, B.; Kang, W.; Wang, Y.; Zhuang, D.; Chen, L.; Li, L.; Su, Y.; Pan, X.; Wei, Q.; Tang, Z.; et al. Application of full-spectrum rapid clinical genome sequencing improves diagnostic rate and clinical outcomes in critically ill infants in the China Neonatal Genomes Project. Crit. Care Med. 2021, 49, 1674–1683. [Google Scholar] [CrossRef]
- Richards, S.; Aziz, N.; Bale, S.; Bick, D.; Das, S.; Gastier-Foster, J.; Grody, W.W.; Hegde, M.; Lyon, E.; Spector, E.; et al. Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 2015, 17, 405–423. [Google Scholar] [CrossRef]
- Barbitoff, Y.A.; Skitchenko, R.K.; Poleshchuk, O.I.; Shikov, A.E.; Serebryakova, E.A.; Nasykhova, Y.A.; Polev, D.E.; Shuvalova, A.R.; Shcherbakova, I.V.; Fedyakov, M.A.; et al. Whole-exome sequencing provides insights into monogenic disease prevalence in Northwest Russia. Mol. Genet. Genom. Med. 2019, 7, e964. [Google Scholar] [CrossRef]
- Blackburn, P.R.; Gass, J.M.; Vairo, F.P.E.; Farnham, K.M.; Atwal, H.K.; Macklin, S.; Klee, E.W.; Atwal, P.S. Maple syrup urine disease: Mechanisms and management. Appl. Clin. Genet. 2017, 10, 57–66. [Google Scholar] [CrossRef]
- Blackburn, P.R.; Hickey, R.D.; Nace, R.A.; Giama, N.H.; Kraft, D.L.; Bordner, A.J.; Chaiteerakij, R.; McCormick, J.B.; Radulovic, M.; Graham, R.P.; et al. Silent tyrosinemia type I without elevated tyrosine or succinylacetone associated with liver cirrhosis and hepatocellular carcinoma. Hum. Mutat. 2016, 37, 1097–1105. [Google Scholar] [CrossRef]
- Harting, I.; Boy, N.; Heringer, J.; Seitz, A.; Bendszus, M.; Pouwels, P.J.; Kölker, S. 1 H-MRS in glutaric aciduria type 1: Impact of biochemical phenotype and age on the cerebral accumulation of neurotoxic metabolites. J. Inherit. Metab. Dis. 2015, 38, 829–838. [Google Scholar] [CrossRef]
- Mori, J.; Furukawa, T.; Kodo, K.; Nakajima, H.; Yuasa, M.; Kubota, M.; Shigematsu, Y. A patient with urinary succinylacetone-negative hereditary tyrosinemia type 1. Pediatr. Int. Off. J. Jpn. Pediatr. Soc. 2023, 65, e15644. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, C.R.; van Karnebeek, C.D.; Vockley, J.; Blau, N. A proposed nosology of inborn errors of metabolism. Genet. Med. 2019, 21, 102–106. [Google Scholar] [CrossRef] [PubMed]
- Ibarra-González, I.; Fernández-Lainez, C.; Vela-Amieva, M.; Guillén-López, S.; Belmont-Martínez, L.; López-Mejía, L.; Carrillo-Nieto, R.I.; Guillén-Zaragoza, N.A. A Review of Disparities and Unmet Newborn Screening Needs over 33 Years in a Cohort of Mexican Patients with Inborn Errors of Intermediary Metabolism. Int. J. Neonatal Screen. 2023, 9, 59. [Google Scholar] [CrossRef] [PubMed]
- Tekola-Ayele, F.; Rotimi, C.N. Translational genomics in low-and middle-income countries: Opportunities and challenges. Public Health Genom. 2015, 18, 242–247. [Google Scholar] [CrossRef] [PubMed]
- Sawyer, S.; Hartley, T.; Dyment, D.; Beaulieu, C.; Schwartzentruber, J.; Smith, A.; Bedford, H.; Bernard, G.; Bernier, F.; Brais, B.; et al. Utility of whole-exome sequencing for those near the end of the diagnostic odyssey: Time to address gaps in care. Clin. Genet. 2016, 89, 275–284. [Google Scholar] [CrossRef]
- Navarrete, R.; Leal, F.; Vega, A.I.; Morais-López, A.; Garcia-Silva, M.T.; Martín-Hernández, E.; Quijada-Fraile, P.; Bergua, A.; Vives, I.; García-Jiménez, I.; et al. Value of genetic analysis for confirming inborn errors of metabolism detected through the Spanish neonatal screening program. Eur. J. Hum. Genet. 2019, 27, 556–562. [Google Scholar] [CrossRef]
- Kose, M.; Isik, E.; Aykut, A.; Durmaz, A.; Kose, E.; Ersoy, M.; Diniz, G.; Adebali, O.; Ünalp, A.; Yilmaz, Ü.; et al. The utility of next-generation sequencing technologies in diagnosis of Mendelian mitochondrial diseases and reflections on clinical spectrum. J. Pediatr. Endocrinol. Metab. 2021, 34, 417–430. [Google Scholar] [CrossRef]
- Shickh, S.; Mighton, C.; Uleryk, E.; Pechlivanoglou, P.; Bombard, Y. The clinical utility of exome and genome sequencing across clinical indications: A systematic review. Hum. Genet. 2021, 140, 1403–1416. [Google Scholar] [CrossRef]
- Rahman, J.; Rahman, S. The utility of phenomics in diagnosis of inherited metabolic disorders. Clin. Med. 2019, 19, 30. [Google Scholar] [CrossRef]
- Chen, P.S.; Chao, C.C.; Tsai, L.K.; Huang, H.Y.; Chien, Y.H.; Huang, P.H.; Hwu, W.L.; Hsieh, S.T.; Lee, N.C.; Hsueh, H.W.; et al. Diagnostic Challenges of Neuromuscular Disorders after Whole Exome Sequencing. J. Neuromuscul. Dis. 2023, 10, 667–684. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sedlackova, L.; Sterbova, K.; Vlckova, M.; Seeman, P.; Zarubova, J.; Marusic, P.; Krsek, P.; Krijtova, H.; Musilova, A.; Lassuthova, P. Yield of exome sequencing in patients with developmental and epileptic encephalopathies and inconclusive targeted gene panel. Eur. J. Paediatr. Neurol. 2024, 48, 17–29. [Google Scholar] [CrossRef] [PubMed]
- Ling, S.; Qiu, W.; Zhang, H.; Liang, L.; Lu, D.; Chen, T.; Zhan, X.; Wang, Y.; Gu, X.; Han, L. Clinical, biochemical, and genetic analysis of 28 Chinese patients with holocarboxylase synthetase deficiency. Orphanet J. Rare Dis. 2023, 18, 48. [Google Scholar] [CrossRef] [PubMed]
- Quinonez, S.C.; Seeley, A.H.; Lam, C.; Glover, T.W.; Barshop, B.A.; Keegan, C.E. Paracentric inversion of chromosome 21 leading to disruption of the HLCS gene in a family with holocarboxylase synthetase deficiency. JIMD Rep. 2017, 34, 55–61. [Google Scholar] [PubMed]
- Suzuki, Y.; Yang, X.; Aoki, Y.; Kure, S.; Matsubara, Y. Mutations in the holocarboxylase synthetase gene HLCS. Hum. Mutat. 2005, 26, 285–290. [Google Scholar] [CrossRef]
- Donti, T.R.; Blackburn, P.R.; Atwal, P.S. Holocarboxylase synthetase deficiency pre and post newborn screening. Mol. Genet. Metab. Rep. 2016, 7, 40–44. [Google Scholar] [CrossRef]
- Ventura, F.; Leandro, P.; Luz, A.; Rivera, I.; Silva, M.; Ramos, R.; Rocha, H.; Lopes, A.; Fonseca, H.; Gaspar, A.; et al. Retrospective study of the medium-chain acyl-CoA dehydrogenase deficiency in Portugal. Clin. Genet. 2014, 85, 555–561. [Google Scholar] [CrossRef]
- Maier, E.M.; Liebl, B.; Röschinger, W.; Nennstiel-Ratzel, U.; Fingerhut, R.; Olgemöller, B.; Busch, U.; Krone, N.; Kries, R.v.; Roscher, A.A. Population spectrum of ACADM genotypes correlated to biochemical phenotypes in newborn screening for medium-chain acyl-CoA dehydrogenase deficiency. Hum. Mutat. 2005, 25, 443–452. [Google Scholar] [CrossRef]
- Gong, Z.; Liang, L.; Qiu, W.; Zhang, H.; Ye, J.; Wang, Y.; Ji, W.; Chen, T.; Gu, X.; Han, L. Clinical, biochemical, and molecular analyses of medium-chain acyl-CoA dehydrogenase deficiency in Chinese patients. Front. Genet. 2021, 12, 577046. [Google Scholar] [CrossRef]
- Tajima, G.; Hara, K.; Tsumura, M.; Kagawa, R.; Okada, S.; Sakura, N.; Hata, I.; Shigematsu, Y.; Kobayashi, M. Screening of MCAD deficiency in Japan: 16 years’ experience of enzymatic and genetic evaluation. Mol. Genet. Metab. 2016, 119, 322–328. [Google Scholar] [CrossRef]
- Grosse, S.D.; Khoury, M.J.; Greene, C.L.; Crider, K.S.; Pollitt, R.J. The epidemiology of medium chain acyl-CoA dehydrogenase deficiency: An update. Genet. Med. 2006, 8, 205–212. [Google Scholar] [CrossRef]
- Wortmann, S.B.; Oud, M.M.; Alders, M.; Coene, K.L.; van der Crabben, S.N.; Feichtinger, R.G.; Garanto, A.; Hoischen, A.; Langeveld, M.; Lefeber, D.; et al. How to proceed after “negative” exome: A review on genetic diagnostics, limitations, challenges, and emerging new multiomics techniques. J. Inherit. Metab. Dis. 2022, 45, 663–681. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Qiang, R.; Song, C.; Ma, X.; Zhang, Y.; Li, F.; Wang, R.; Yu, W.; Feng, M.; Yang, L.; et al. Spectrum analysis of inborn errors of metabolism for expanded newborn screening in a northwestern Chinese population. Sci. Rep. 2021, 11, 2699. [Google Scholar] [CrossRef] [PubMed]
- Hertzog, A.; Selvanathan, A.; Farnsworth, E.; Tchan, M.; Adams, L.; Lewis, K.; Tolun, A.A.; Bennetts, B.; Ho, G.; Bhattacharya, K. Intronic variants in inborn errors of metabolism: Beyond the exome. Front. Genet. 2022, 13, 1031495. [Google Scholar] [CrossRef]
- Soriano-Sexto, A.; Gallego, D.; Leal, F.; Castejón-Fernández, N.; Navarrete, R.; Alcaide, P.; Couce, M.L.; Martín-Hernández, E.; Quijada-Fraile, P.; Peña-Quintana, L.; et al. Identification of Clinical Variants beyond the Exome in Inborn Errors of Metabolism. Int. J. Mol. Sci. 2022, 23, 12850. [Google Scholar] [CrossRef]
- Dharmadhikari, A.V.; Ghosh, R.; Yuan, B.; Liu, P.; Dai, H.; Al Masri, S.; Scull, J.; Posey, J.E.; Jiang, A.H.; He, W.; et al. Copy number variant and runs of homozygosity detection by microarrays enabled more precise molecular diagnoses in 11,020 clinical exome cases. Genome Med. 2019, 11, 30. [Google Scholar] [CrossRef]
- Butterworth, J.L.; MacGregor, D.T. Physician’s Guide to the Diagnosis, Treatment, and Follow-Up of Inherited Metabolic Diseases, 2nd ed.; Blau, N., Dionisi-Vici, C., Ferreira, C., Vianey-Saban, C., van Karnebeek, C., Eds.; Springer: Cham, Switzerland, 2022; pp. 41–74. [Google Scholar]
- Schobers, G.; Schieving, J.H.; Yntema, H.G.; Pennings, M.; Pfundt, R.; Derks, R.; Hofste, T.; de Wijs, I.; Wieskamp, N.; van den Heuvel, S.; et al. Reanalysis of exome negative patients with rare disease: A pragmatic workflow for diagnostic applications. Genome Med. 2022, 14, 66. [Google Scholar] [CrossRef]
- Waters, D.; Adeloye, D.; Woolham, D.; Wastnedge, E.; Patel, S.; Rudan, I. Global birth prevalence and mortality from inborn errors of metabolism: A systematic analysis of the evidence. J. Glob. Health 2018, 8, 021102. [Google Scholar] [CrossRef]
- Pokora, P.; Jezela-Stanek, A.; Różdżyńska-Świątkowska, A.; Jurkiewicz, E.; Bogdańska, A.; Szymańska, E.; Rokicki, D.; Ciara, E.; Rydzanicz, M.; Stawiński, P.; et al. Mild phenotype of glutaric aciduria type 1 in polish patients–novel data from a group of 13 cases. Metab. Brain Dis. 2019, 34, 641–649. [Google Scholar] [CrossRef]
- Luzzatto, L.; Ally, M.; Notaro, R. Glucose-6-phosphate dehydrogenase deficiency. Blood 2020, 136, 1225–1240. [Google Scholar] [CrossRef]
- Brown, C.M.; Amendola, L.M.; Chandrasekhar, A.; Hagelstrom, R.T.; Halter, G.; Kesari, A.; Thorpe, E.; Perry, D.L.; Taft, R.J.; Coffey, A.J. A framework for the evaluation and reporting of incidental findings in clinical genomic testing. Eur. J. Hum. Genet. 2024, 32, 665–672. [Google Scholar] [CrossRef]
- Charafeddine, K.; Habbal, M.-Z. Serendipity in inborn errors of metabolism: Combining two genetic mutations in a single patient. J. Rare Dis. Res. Treat. 2016, 1, 18–22. [Google Scholar]
- Miller, D.T.; Lee, K.; Chung, W.K.; Gordon, A.S.; Herman, G.E.; Klein, T.E.; Stewart, D.R.; Amendola, L.M.; Adelman, K.; Bale, S.J.; et al. ACMG SF v3. 0 list for reporting of secondary findings in clinical exome and genome sequencing: A policy statement of the American College of Medical Genetics and Genomics (ACMG). Genet. Med. 2021, 23, 1381–1390. [Google Scholar] [CrossRef]
- Meng, L.; Pammi, M.; Saronwala, A.; Magoulas, P.; Ghazi, A.R.; Vetrini, F.; Zhang, J.; He, W.; Dharmadhikari, A.V.; Qu, C.; et al. Use of Exome Sequencing for Infants in Intensive Care Units: Ascertainment of Severe Single-Gene Disorders and Effect on Medical Management. JAMA Pediatr. 2017, 171, e173438. [Google Scholar] [CrossRef]
- Vela-Amieva, M.; Alcántara-Ortigoza, M.A.; Ibarra-González, I.; González-Del Angel, A.; Fernández-Hernández, L.; Guillén-López, S.; López-Mejía, L.; Carrillo-Nieto, R.I.; Fiesco-Roa, M.O.; Fernández-Lainez, C. Genotypic spectrum underlying tetrahydrobiopterin metabolism defects: Experience in a single Mexican reference center. Front. Genet. 2022, 13, 993612. [Google Scholar] [CrossRef]
- Fernández-Lainez, C.; Aguilar-Lemus, J.; Vela-Amieva, M.; Ibarra-González, I. Tandem mass spectrometry newborn screening for inborn errors of intermediary metabolism: Abnormal profile interpretation. Curr. Med. Chem. 2012, 19, 4511–4522. [Google Scholar] [CrossRef]
- Ibarra-González, I.; Fernández-Lainez, C.; Vela-Amieva, M. Clinical and biochemical characteristics of patients with urea cycle disorders in a developing country. Clin. Biochem. 2010, 43, 461–466. [Google Scholar] [CrossRef]
- Ibarra-González, I.; Fernández-Lainez, C.; Guillén-López, S.; López-Mejía, L.; Belmont-Martínez, L.; Nieto-Carrillo, R.I.; Vela-Amieva, M. Importance of Studying Older Siblings of Patients Identified by Newborn Screening: A Single-Center Experience in Mexico. J. Inborn Errors Metab. Screen. 2021, 9, e20210001. [Google Scholar] [CrossRef]
- Seo, G.H.; Kim, T.; Choi, I.H.; Park, J.y.; Lee, J.; Kim, S.; Won, D.G.; Oh, A.; Lee, Y.; Choi, J.; et al. Diagnostic yield and clinical utility of whole exome sequencing using an automated variant prioritization system, EVIDENCE. Clin. Genet. 2020, 98, 562–570. [Google Scholar] [CrossRef]
- Karczewski, K.J.; Francioli, L.C.; Tiao, G.; Cummings, B.B.; Alföldi, J.; Wang, Q.; Collins, R.L.; Laricchia, K.M.; Ganna, A.; Birnbaum, D.P.; et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature 2020, 581, 434–443. [Google Scholar] [CrossRef]
- Tavtigian, S.V.; Harrison, S.M.; Boucher, K.M.; Biesecker, L.G. Fitting a naturally scaled point system to the ACMG/AMP variant classification guidelines. Hum. Mutat. 2020, 41, 1734–1737. [Google Scholar] [CrossRef]
- Köhler, S.; Gargano, M.; Matentzoglu, N.; Carmody, L.C.; Lewis-Smith, D.; Vasilevsky, N.A.; Danis, D.; Balagura, G.; Baynam, G.; Brower, A.M.; et al. The human phenotype ontology in 2021. Nucleic Acids Res. 2021, 49, D1207–D1217. [Google Scholar] [CrossRef] [PubMed]
- Greene, D.; Richardson, S.; Turro, E. Phenotype similarity regression for identifying the genetic determinants of rare diseases. Am. J. Hum. Genet. 2016, 98, 490–499. [Google Scholar] [CrossRef]
- Köhler, S.; Schulz, M.H.; Krawitz, P.; Bauer, S.; Dölken, S.; Ott, C.E.; Mundlos, C.; Horn, D.; Mundlos, S.; Robinson, P.N. Clinical diagnostics in human genetics with semantic similarity searches in ontologies. Am. J. Hum. Genet. 2009, 85, 457–464. [Google Scholar] [CrossRef] [PubMed]
- Green, R.C.; Berg, J.S.; Grody, W.W.; Kalia, S.S.; Korf, B.R.; Martin, C.L.; McGuire, A.L.; Nussbaum, R.L.; O’Daniel, J.M.; Ormond, K.E.; et al. ACMG recommendations for reporting of incidental findings in clinical exome and genome sequencing. Genet. Med. 2013, 15, 565–574. [Google Scholar] [CrossRef] [PubMed]
- Saelaert, M.; Mertes, H.; De Baere, E.; Devisch, I. Incidental or secondary findings: An integrative and patient-inclusive approach to the current debate. Eur. J. Hum. Genet. 2018, 26, 1424–1431. [Google Scholar] [CrossRef]
- Miller, D.T.; Lee, K.; Abul-Husn, N.S.; Amendola, L.M.; Brothers, K.; Chung, W.K.; Gollob, M.H.; Gordon, A.S.; Harrison, S.M.; Hershberger, R.E.; et al. ACMG SF v3.2 list for reporting of secondary findings in clinical exome and genome sequencing: A policy statement of the American College of Medical Genetics and Genomics (ACMG). Genet. Med. 2023, 25, 100866. [Google Scholar] [CrossRef]
Type of Disorder | Disease | Gene | Total Number of Variants | Pathogenic | Likely Pathogenic | Variant of Uncertain Significance |
---|---|---|---|---|---|---|
Amino acid disorders | Maple syrup urine disease (MSUD) type Ib (OMIM #620698) | BCKDHB | 6 | 4 | 2 | 0 |
MSUD, type II (OMIM #620699) | DBT | 6 | 3 | 1 | 2 | |
MSUD, type Ia (OMIM #248600) | BCKDHA | 2 | 1 | 1 | 0 | |
Homocystinuria, B6-responsive and nonresponsive types (OMIM #236200) | CBS | 2 | 2 | 0 | 0 | |
Cystinosis, nephropathic (OMIM #219800) | CTNS | 2 | 0 | 2 | 0 | |
Hyperornithinemia-hyperammonemia-homocitrullinuria syndrome (OMIM #238970) | SLC25A15 | 1 | 1 | 0 | 0 | |
Organic acid disorders | HMG-CoA lyase deficiency, 3-OH-3-methylglutaric acidemia (OMIM #246450) | HMGCL | 7 | 5 | 2 | 0 |
Glutaric Acidemia Type 1 (OMIM #231670) | GCDH | 5 | 5 | 0 | 0 | |
Isovaleric acidemia (OMIM #243500) | IVD | 5 | 4 | 1 | 0 | |
Biotinidase deficiency (OMIM #253260) | BTD | 4 | 3 | 1 | 0 | |
Mitochondrial DNA depletion syndrome 9 (encephalomyopathic type with methylmalonic aciduria) (OMIM #245400) | SUCLG1 | 2 | 1 | 1 | 0 | |
Beta-ketothiolase deficiency or mitochondrial acetoacetyl-CoA thiolase deficiency or alphamethylacetoacetic aciduria (OMIM #203750) | ACAT1 | 3 | 1 | 2 | 0 | |
Holocarboxylase synthetase deficiency (OMIM #253270) | HLCS | 1 | 1 | 0 | 0 | |
3-Methylcrotonyl-CoA carboxylase 2 deficiency (OMIM #210210) | MCCC2 | 1 | 0 | 1 | 0 | |
Succinyl CoA:3-oxoacid CoA transferase deficiency (OMIM #245050) | OXCT1 | 1 | 1 | 0 | 0 | |
Urea cycle disorders | Argininemia (OMIM #207800) | ARG1 | 8 | 5 | 3 | 0 |
Citrullinemia (OMIM #215700) | ASS1 | 6 | 4 | 2 | 0 | |
Ornithine transcarbamylase deficiency (OMIM #311250) | OTC | 2 | 2 | 0 | 0 | |
Argininosuccinic aciduria (OMIM #207900) | ASL | 1 | 0 | 1 | 0 | |
Carbohydrate disorders | Glycogen storage disease Ia (OMIM #232200) | G6PC1 | 5 | 4 | 1 | 0 |
Glycogen storage disease IIIb (OMIM #232400) | AGL | 1 | 0 | 1 | 0 | |
Glycogen storage disease Ib (OMIM: 232220) | SLC37A4 | 2 | 1 | 1 | 0 | |
Diarrhea type 4, malabsorptive, congenital (OMIM #610370) | NEUROG3 | 1 | 1 | 0 | 0 | |
Galactokinase deficiency with cataracts (OMIM #230200) | GALK1 | 2 | 0 | 0 | 2 | |
Hyperinsulinemic hypoglycemia, familial, type 1 (OMIM #256450) | ABCC8 | 1 | 1 | 0 | 0 | |
Hyperinsulinism-hyperammonemia syndrome (OMIM #606762) | GLUD1 | 1 | 0 | 1 | 0 | |
Hyperinsulinemic hypoglycemia, familial, type 2 (OMIM #601820) | KCNJ11 | 1 | 0 | 1 | 0 | |
Lipid disorders | Acyl-CoA dehydrogenase, medium chain deficiency (MCAD, OMIM #201450) | ACADM | 3 | 3 | 0 | 0 |
Hypercholesterolemia familial type 1 (OMIM #143890) | LDLR | 1 | 1 | 0 | 0 | |
Total | 83 | 54 | 25 | 4 |
Amino Acid Disorders | ||||||||
---|---|---|---|---|---|---|---|---|
Biochemical Phenotype | Initialy Suspected Disease | Responsible Gene (Reference Sequence) | Patient ID | LOVD Individual Accession Number | Genotype A | Protein Change | Final Diagnosis | Inheritance |
Elevated circulating branched chain amino acid concentration (HP:0008344) | MSUD | BCKDHB (NM_183050.4) | 3bINP-066 | 451632 | c.[152del];[152del] | p.[Val51GlyfsTer21];[Val51GlyfsTer21] | MSUD type Ib (OMIM #620698) | AR |
3bINP-080 | 451644 | c.[564T>A];[564T>A] | p.[Cys188Ter];[Cys188Ter] | |||||
3bINP-020 | 451365 | c.564T>A(;)1087T>A | p.(Cys188Ter)(;)(Tyr363Asn) | |||||
3bINP-077 | 451640 | c.853C>T(;)667G>C | p.(Arg285Ter)(;)(Gly223Arg) | |||||
3bINP-004 | 450321 | c.[970C>T];[970C>T] | p.[Arg324Ter];[Arg324Ter] | |||||
3bINP-013 | 450471 | c.[1087T>A];[1087T>A] | p.[Tyr363Asn];[Tyr363Asn] | |||||
DBT (NM_001918.5) | 3bINP-069 | 451637 | c.[75_76del];[75_76del] B | p.[Cys26TrpfsTer2];[Cys26TrpfsTer2] | MSUD type II (OMIM #620699) | |||
3bINP-092 | 451652 | |||||||
3bINP-104 | 451662 | c.[263_265del];[263_265del] | p.[Glu88del];[Glu88del] | |||||
3bINP-027 | 451439 | c.[434-15_434-4del];[434-15_434-4del] | p.[?];[?] | |||||
3bINP-081 | 451645 | c.670G>T(;)434-15_434-4del | p.(Glu224Ter)(;)(?) | |||||
BCKDHA (NM_000709.4) | 3bINP-062 | 451630 | c.890G>A(;)1192G>T | p.(Arg297His)(;)(Glu398Ter) | MSUD type Ia (OMIM #248600) | |||
Hyperammonemia (HP:0001987) | Gyrate atrophy or HHH Sx | SLC25A15 (NM_014252.4) | 3bINP-021 | 451367 | c.[113_116dup];[113_116dup] | p.[Phe40AspfsTer4];[Phe40AspfsTer4] | Hyperornithinemia-hyperammonemia-homocitrullinuria syndrome (OMIM #238970) | AR |
Homocystinuria (HP:0002156) | Homocystinuria | CBS (NM_000071.3) | 3bINP-046 | 451595 | c.[572C>T];[572C>T] C | p.[Thr191Met];[Thr191Met] | Homocystinuria (OMIM #236200) | AR |
3bINP-087 | 451647 | |||||||
3bINP-109 | 451663 | |||||||
3bINP-049 | 451597 | c.[1126G>A];[1126G>A] | p.[Asp376Asn];[Asp376Asn] | |||||
Corneal crystals (HP: 0000531), Fanconi syndrome (HP: 0011463) C | Cystinosis | CTNS (NM_004937.3) | 3bINP-082 | 451648 | c.[22_23del];[1036_1047del] D | p.[Ile8PhefsTer13];[Asp346_Phe349del] | Cystinosis, nephropathic (OMIM #219800) | AR |
Organic acid disorders | ||||||||
Biochemical phenotype | Initialy suspected disease | Responsible gene | Patient ID | LOVD individual accession number | Genotype A | Protein change | Final diagnosis | Inheritance |
Decreased circulating biotinidase concentration (HP:0410145) | Biotinidase deficiency | BTD (NM_001370658.1) | 3bINP-054 | 451617 | c.468G>T(;)1270G>C | p.(Lys156Asn)(;)(Asp424His) | Biotinidase deficiency(OMIM #253260) | AR |
Biotinidase deficiency with atypical outcome, epilepsy | 3bINP-101 | 451656 | c.[754T>G];[754T>G] | p.[Trp252Gly];[Trp252Gly] | ||||
Biotinidase deficiency | 3bINP-053 | 451616 | c.1270G>C(;)754T>G | p.(Asp424His)(;)(Trp252Gly) | ||||
Biotinidase deficiency | 3bINP-011 | 450470 | c.[1270G>C];[1270G>C] | p.[Asp424His];[Asp424His] | ||||
Elevated circulating acylcarnitine concentration (HP: 0045045), organic aciduria (HP:0001992) | Multiple carboxylase deficiency | 3bINP-090 | 451651 | c.[1352G>C];[1352G>C] | p.[Cys451Ser];[Cys451Ser] | |||
Organic aciduria (HP:0001992) | Multiple carboxylase deficiency | SUCLG1 (NM_003849.4) | 3bINP-028 | 451440 | c.40A>T(;)548T>C | p.(Met14Leu)(;)(Ile183Thr) | Succinate-CoA ligase, alpha subunit deficiency (OMIM #245400) | AR |
Elevated circulating acylcarnitine concentration (HP:0045045) | Multiple carboxylase deficiency | 3bINP-084 | 451646 | |||||
Increased circulating isovaleric acid concentration (HP:0033148) | Isovaleric acidemia | IVD (NM_002225.5, NC_000015.9) | 3bINP-057 | 451600 | c.[149G>C];[149G>C] | p.[Arg50Pro];[Arg50Pro] | Isovaleric acidemia (OMIM #243500) | AR |
3bINP-019 | 451363 | c.[850C>T];[850C>T] | p.[Arg284Trp];[Arg284Trp] | |||||
3bINP-003 | 450320 | c.[1065G>C];[1065G>C] | p.[Lys355Asn];[Lys355Asn] | |||||
3bINP-079 | 451643 | c.[1175G>A];[1175G>A] | p.[Arg392His];[Arg392His] | |||||
3bINP-005 | 450322 | g.[(?_40710329)_(40710462_?)del];[(?_40710329)_(40710462_?)del](homozygous exon 12 deletion) | p.[?];[?] | |||||
3-methylglutaric aciduria (HP:0410051) | 3-hydroxy-3-methylglutaryl-CoA lyase deficiency | HMGCL (NM_000191.3) | 3bINP-042 | 451460 | c.[109G>T];[109G>T] | p.[Glu37Ter];[Glu37Ter] | 3-hydroxy-3-methylglutaryl-CoA lyase deficiency (OMIM #246450) | AR |
3bINP-035 | 451457 | c.[112G>T];[112G>T] | p.[Val38Phe];[Val38Phe] | |||||
3bINP-010 | 450325 | c.121C>T(;)233C>T | p.(Arg41Ter)(;)(Ser78Phe) | |||||
3bINP-074 | 451639 | c.230del(;)31C>T | p.(Val77GlyfsTer16)(;)(Arg11Ter) | |||||
3bINP-032 | 451445 | c.[505_506del];[505_506del] | p.[Ser169LeufsTer8];[Ser169LeufsTer8] | |||||
Concentration of glutaric acid in the urine above the upper limit of normal (HP:0003150) | Glutaric aciduria | GCDH (NM_000159.4) | 3bINP-018 | 451362 | c.263G>A(;)1204C>T | p.(Arg88His)(;)(Arg402Trp) | Glutaric aciduria (OMIM #231670) | AR |
3bINP-023 | 451436 | c.[700C>T];[1173_1174insT] G | p.[Arg234Trp];[Asn392Ter] | |||||
3bINP-068 | 451635 | c.[1082+31_1243+678del];[1082+31_1243+678del](homozygous whole exon 11 deletion) | p.[Ala362Tyrfs*3];[Ala362TyrfsTer3] | |||||
Elevated circulating acylcarnitine concentration (HP:0045045) | Organic aciduria | ACAT1 (NM_000019.4) | 3bINP-047 | 451615 | c.[473A>G];[473A>G] | p.[Asn158Ser];[Asn158Ser] | Alpha-methylacetoacetic aciduria (OMIM #203750) | AR |
Organic aciduria (HP:0001992) | Organic aciduria | 3bINP-017 | 450485 | c.826+3_826+6del(;)200T>G | p.(?)(;)(Leu67Arg) | |||
Organic aciduria (HP:0001992) | 3-Methylcrotonyl-CoA carboxylase deficiency | MCCC2 (NM_022132.5) | 3bINP-059 | 451602 | c.[1356G>A];[1356G>A] | p.[Met452Ile];[Met452Ile] | 3-Methylcrotonyl-CoA carboxylase deficiency (OMIM #210210) | AR |
Ketosis (HP:0001946) | Ketone bodies defect | OXCT1 (NM_000436.4) | 3bINP-060 | 451603 | c.[1243del];[1243del] | p.[Ile415TyrfsTer6];[Ile415TyrfsTer6] | Succinyl-CoA:3-oxoacid- CoA transferase deficiency (OMIM #245050) | AR |
Urea cycle disorders | ||||||||
Biochemical phenotype | Initialy suspected disease | Responsible gene | Patient ID | LOVD individual accession number | Genotype A | Protein change | Final diagnosis | Inheritance |
Hyperargininemia (HP:0500153) | Argininemia | ARG1 (NM_000045.4) | 3bINP-033 | 451456 | c.3G>A(;)767_769del | p.(Met1?)(;)(Glu256del) | Argininemia (OMIM #207800) | AR |
3bINP-067 | 451634 | c.61C>T(;)466-1G>C E | p.(Arg21Ter)(;)(?) | |||||
3bINP-078 | 451642 | |||||||
3bINP-037 | 451458 | c.61C>T(;)892G>C | p.(Arg21Ter)(;)(Ala298Pro) | |||||
3bINP-055 | 451599 | c.[425G>A];[425G>A] | p.[Gly142Glu];[Gly142Glu] | |||||
3bINP-073 | 451638 | c.466-1G>C(;)787G>T | p.(?)(;)(Glu263Ter) | |||||
3bINP-105 | 451658 | c.425G>A(;)871C>T | p.(Gly142Glu)(;)(Arg291Ter) | |||||
Elevated plasma citrulline (HP:0011966) | Citrullinemia | ASS1 (NM_054012.4) | 3bINP-022 | 451368 | c.[34A>G];[34A>G] | p.[Ser12Gly];[Ser12Gly] | Citrullinemia (OMIM #215700) | AR |
3bINP-106 | 451659 | c.[256C>T];[256C>T] | p.[Arg86Cys];[Arg86Cys] | |||||
3bINP-008 | 450323 | c.256C>T(;)836G>A F | p.(Arg86Cys)(;)(Arg279GIn) | |||||
3bINP-065 | 451631 | |||||||
3bINP-095 | 451654 | c.256C>T(;)1194-19_1197dup | p.(Arg86Cys)(;)(?) | |||||
3bINP-015 | 450482 | c.970G>A(;)40G>A | p.Gly324Ser)(;)(Gly14Ser) | |||||
Orotic aciduria (HP:0003218) | Ornithine transcarbamylase deficiency | OTC (NM_000531.6) | 3bINP-043 | 451463 | c.[583G>A];[583=] (heterozygous female) | p.[Gly195Arg];[Gly=] (heterozygous female) | Ornithine transcarbamylase deficiency (OMIM #311250) | X-linked |
3bINP-048 | 451596 | c.[803T>C];[0] (hemizygous male) | p.[Met268Thr];[0] (hemizygous male) | |||||
Argininosuccinic aciduria (HP:0025630) | Argininosuccinic aciduria | ASL (NM_000048.4) | 3bINP-014 | 450472 | c.[209T>C];[209T>C] | p.[Val70Ala];[Val70Ala] | Argininosuccinic aciduria (OMIM #207900) | AR |
Carbohydrate disorders | ||||||||
Biochemical phenotype | Initialy suspected disease | Responsible gene | Patient ID | LOVD individual accession number | Genotype A | Protein change | Final diagnosis | Inheritance |
Abnormal hepatic glycogen storage (HP:0500030), hypoglycemia (HP:0001943) | Glycogen storage disease type I | G6PC1 (NM_000151.4) | 3bINP-029 | 451441 | c.379_380dup(;)1039C>T | p.(Tyr128ThrfsTer3)(;)(Gln347Ter) | Glycogen storage disease Ia (OMIM #232200) | AR |
Hepatomegaly (HP:0002240), hypoglycemia (HP:0001943), hypertriglyceridemia (HP:0002155), hypercholesterolemia (HP:0003124), hepatic steatosis (HP:0001397), abnormal hepatic glycogen storage (HP:0500030) | 3bINP-107 | 451660 | c.[533C>T];[500G>A] | p.[Pro178Leu];[Cys167Tyr] | ||||
Hepatomegaly (HP:0002240), hypoglycemia (HP:0001943) | 3bINP-102 | 451657 | c.[809G>T];[809G>T] | p.[Gly270Val];[Gly270Val] | ||||
Abnormal hepatic glycogen storage (HP:0500030), hypoglycemia (HP:0001943) | Glycogen storage disease type III | AGL (NM_000642.3) | 3bINP-025 | 451437 | c.[2803G>T];[2803G>T] | p.[Gly935Cys];[Gly935Cys] | Glycogen storage disease IIIb (OMIM #232400) | AR |
Abnormal hepatic glycogen storage (HP:0500030), hypoglycemia (HP:0001943), neutropenia (HP: 0001875) | Glycogen storage disease Ib | SLC37A4 (NM_001164277.1) | 3bINP-097 | 451655 | c.82C>T(;)1130G>A | p.(Arg28Cys)(;)(Gly377Asp) | Glycogen storage disease Ib (OMIM #232220) | AR |
Type 1 diabetes mellitus (HP:0100651) | Mauriac syndrome, type 1 diabetes mellitus | NEUROG3 (NM_020999.4) | 3bINP-100 | 451661 | c.[117del];[117del] | p.[Thr40LeufsTer38];[Thr40LeufsTer38] | Diarrhea type 4, malabsorptive, congenital (OMIM #610370) | AR |
Hypoglycemia (HP:0001943) | Hypoglycemia | ABCC8 (NM_000352.6) | 3bINP-045 | 451461 | c.[2506C>T];[2506=] H | p.[Arg836Ter];[Arg=] | Hyperinsulinemic hypoglycemia, familial, type 1 (OMIM #256450) | AD |
Hypoglycemia, abnormal circulating glucose-6-phosphate dehydrogenase concentration (HP:0001943, HP:0410176) | Hypoglycemia and glucose-6-phosphate dehydrogenase deficiency | GLUD1 (NM_005271.5) | 3bINP-085 | 451650 | c.[1466C>G];[1466=] | p.[Pro489Arg];[Pro=] | Hyperinsulinism-hyperammonemia syndrome (OMIM #606762) | AD |
Hypoglycemia (HP:0001943) | Hypoglycemia | KCNJ11 (NM_000525.4) | 3bINP-030 | 451442 | c.[560C>T];[560=] H | p.[Ala187Val];[Ala=] | Hyperinsulinemic hypoglycemia, familial, type 2 (OMIM #601820) | AD |
Lipid defects | ||||||||
Biochemical phenotype | Initialy suspected disease | Responsible gene | Patient ID | LOVD individual accession number | Genotype A | Protein change | Final diagnosis | Inheritance |
Elevated circulating acylcarnitine concentration (HP:0045045) | Acyl-CoA dehydrogenase deficiency (MCAD) | ACADM (NM_000016.6) | 3bINP-044 | 451464 | c.799G>A(;)959C>A | p.(Gly267Arg)(;)(Ser320Ter) | MCAD (OMIM #201450) | AR |
Hypercholesterolemia (HP:0003124) | Familial hypercholesterolemia | LDLR (NM_000527.5) | 3bINP-058 | 451601 | c.[337dup];[337=] | p.[Glu113GlyfsTer17];[Glu=] | Familial hypercholesterolemia type 1 (OMIM #143890) | AD |
Study Group | Patient ID | HPO | Biomarker | Concentration (Reference Value) | Suspected Disease | Gene (Reference Sequence, Encoded Protein) | Variant 1 (Classification) | Variant 2 (Classification) | Conclusion |
---|---|---|---|---|---|---|---|---|---|
1 | 3bINP-036 | 0045045 | 3-hydroxy-isovalerylcanitine + methylmalonylcarnitine | 1.36 μmol/L (0.83) | Organic acidemia | HLCS (NM_001352514.2, Holocarboxylase synthetase) | c.2361_2362insT or p.(Val788CysfsTer108) (pathogenic) | Not identified | Inconclusive A |
3bINP-052 | 0045045 | Hexanoylcarnitine | 0.16 μmol/L (0.12) | Medium chain acyl-CoA dehydrogenase deficiency | ACADM (NM_000016.6, Medium chain acyl-CoA dehydrogenase) | c.985A>G or p.(Lys329Glu) (pathogenic) | Not identified | Inconclusive B | |
Octanoylcarnitine | 0.36 μmol/L (0.16) | ||||||||
Decanoylcarnitine | 0.37 μmol/L (0.21) | ||||||||
3bINP-072 | 0500030 | Glycogen | Positive liver biopsy | Glycogen storage disease | Not identified | Not identified | Not identified | Negative | |
3bINP-076 | 0008344 | Leucine + isoleucine | 1924 μmol/L (40–228) | Maple syrup urine disease | DBT (NM_001918.5, Dihydrolipoamide branched-chain transacylase) | c.1210-3T>A or p.(?) (VUS) | c.1210-3T>A or p.(?) (VUS) | Inconclusive | |
Valine | 443 μmol/L (37–237) | ||||||||
Alloisoleucine | Not determined | ||||||||
0001992 | Urinay organic acid profile | Elevated excretion of branched chain keto acids | |||||||
3bINP-089 | 0012024 | Galactose (with Galactose-1-P uridyltransferase normal activity) | 19.99 mg/dL (<12) | Galactosemia | GALK1 (NM_000154.2, Galctose kinase) | c.56C>A or p.(Ala19Asp) (VUS) | c.182C>T or p.(Thr61Met) (VUS) | Inconclusive | |
3bINP-094 | 0008344 | Leucine + isoleucine | 3226 μmol/L (<253) | Maple syrup urine disease | DBT (NM_001918.5, Dihydrolipoamide branched-chain transacylase) | c.1261G>T or p.(Gly421Trp) (VUS) | c.1261G>T or p.(Gly421Trp) (VUS) | Inconclusive | |
Valine | 1286 μmol/L (<282) | ||||||||
Alloisoleucine | 64 μmol/L (Not detectable) | ||||||||
0001992 | Urinay organic acid profile | Elevated excretion of branched chain keto acids | |||||||
2 | 3bINP-001 | 0004359 | Propionylcarnitine | 4.6 μmol/L (<2.5) | Organic acidemia | Not identified | Not identified | Not identified | Negative |
3bINP-006 | 0045045 | Tetradecanoylcarnitine | 0.33 μmol/L (<0.31) | Organic acidemia | Not identified | Not identified | Not identified | Negative | |
0001992 | Urinay organic acid profile | Elevated excretion of adipic, suberic and sebasic acids | |||||||
3bINP-007 | 0008358 | Proline | 393 μmol/L (<290) | Hyperprolinemia | Not identified | Not identified | Not identified | Negative | |
3bINP-009 | 0001943 | Glucose | <40 mg/dL (70) | Carbohydrate disorder | Not identified | Not identified | Not identified | Negative | |
0000842 | Hyperinsulinemia | 19.3 uU/mL (<2) | |||||||
3bINP-012 | 0001943 | Glucose | <40 mg/dL (70) | Carbohydrate disorder | Not identified | Not identified | Not identified | Inconclusive C | |
0000842 | Hyperinsulinemia | 26.8 uU/mL (<2) | |||||||
3bINP-016 | 0003235 | Methionine | 99 μmol/L (9–42) | Hypermethioninemia | Not identified | Not identified | Not identified | Negative | |
0002156 | Homocysteine | 8 μmol/L (0–6.4) | |||||||
3bINP-024 | 0001987 | Hyperammonemia | 117 μmol/L (9–35) | Urea cycle disorder | Not identified | Not identified | Not identified | Negative | |
3bINP-026 | 0003348 | Alanine | 1007 μmol/L (<605) | Hyperalaninemia | Not identified | Not identified | Not identified | Negative | |
3bINP-031 | 0003235 | Methionine | 209 μmol/L (<52), | Hypermethioninemia | Not identified | Not identified | Not identified | Negative | |
Met/Phe ratio | Met/Phe 4.2 (<1.4) | ||||||||
3bINP-034 | 0045045 | Hexadecanoylcarnitine | 2.98 μmol/L (<2.4) | Fatty acid oxidation defect | Not identified | Not identified | Not identified | Negative | |
Octadecenoylcarnitine | 2.45 μmol/L (<1.6) | ||||||||
3-hydroxy-octadecenoylcarnitine | 0.06 μmol/L (<0.03) | ||||||||
Octadecadienoylcarnitine | 0.69 μmol/L (<0.47) | ||||||||
3bINP-038 | 0008344 | Leucine + isoleucine | 426 (<253) | Maple syrup urine disease | Not identified | Not identified | Not identified | Negative | |
Valine | 446 μmol/L (<282) | ||||||||
Xleu (Leu + Ile)/Phe ratio | 7.12 (<3.95) | ||||||||
Xleu (Leu + Ile)/Ala ratio | 10.7 (<0.43) | ||||||||
Val/Phe ratio | 7.42 (<4.95) | ||||||||
3bINP-039 | 0008358 | Proline | 338 μmol/L (<290) | Hyperprolinemia | Not identified | Not identified | Not identified | Negative | |
3bINP-041 | 0012556 | beta-Alanine | 8 μmol/L (<5) | Hyperbeta-alaninemia | Not identified | Not identified | Not identified | Negative | |
0020079 | beta-Alaninuria | 256 mmol/mol creatinine (<6) | |||||||
0500138 | Serine | 194 μmol/L (85-185) | |||||||
0002154 | Glycine | 356 μmol/L (138-349) | |||||||
3bINP-050 | 0001992 | Propionylcarnitine | 10.7 μmol/L (<4.3) | Organic acidemia | Not identified | Not identified | Not identified | Negative | |
3bINP-051 | 0045045 | Free carnitine | 134 μmol/L (<53) | Fatty acid oxidation defect | Not identified | Not identified | Not identified | Negative | |
Propionylcarnitine | 29 μmol/L (<4.2) | ||||||||
Butyrylcarnitine | 1.5 μmol/L (<0.5) | ||||||||
Hexadecanoylcarnitine | 5.1 μmol/L (<2.2) | ||||||||
Tetradecanoylcarnitine | 0.41 μmol/L (<0.19) | ||||||||
Octadecanoylcarnitine | 2.7 μmol/L (<0.87) | ||||||||
Octadecenoylcarnitine | 6.5 μmol/L (<2.8) | ||||||||
3bINP-056 | 0045045 | Free carnitine | 456 μmol/L (<87) | Fatty acid oxidation defect | Not identified | Not identified | Not identified | Negative | |
Hexadecanoylcarnitine | 0.32 μmol/L (<0.23) | ||||||||
Octadecanoylcarnitine | 0.13 μmol/L (<0.1) | ||||||||
Free carnitine/(hexadecanoylcarnitine + octadecanoylcarnitine) ratio | 1013 (<69) | ||||||||
3bINP-063 | 0001992 | Urinay organic acid profile | Elevated excretion of 3-hydroxybutiric and acetoacetic acids | Organic acidemia | Not identified | Not identified | Not identified | Negative | |
3bINP-070 | 0008344 | Leucine + isoleucine | 265 μmol/L (<253) | Maple syrup urine disease | Not identified | Not identified | Not identified | Negative | |
Valine | 303 μmol/L (<282) | ||||||||
0008358 | Proline | 439 μmol/L (<290) | |||||||
3bINP-093 | 0008344 | Leucine + isoleucine | 349 μmol/L (<253) | Organic acidemia | Not identified | Not identified | Not identified | Negative | |
Valine | 345 μmol/L(<282) | ||||||||
0045045 | Butyrylcarnitine | 0.52 μmol/L (<0.45) | |||||||
3bINP-103 | 0001992 | Urinay organic acid profile | Elevation of 2-hydroxybutiric and 3-OH butyric acid | Organic acidemia | Not identified | Not identified | Not identified | Negative | |
0001942 | Hyperlactatemia | 5.8 (1-3.3 mmol/L) | |||||||
0045045 | 3-hydroxy-isovalerylcanitine + methylmalonylcarnitine | 1.11 μmol/L (<0.83) |
Study Group | Patient ID | HPO | Observed Biochemical Abnormality | 1st Disease Detected | Gene Responsible of First Disease | Genotype A | Identified Second Monogenic Disease | Gene Responsible of Second Disease | Genotype A | Type of Finding |
---|---|---|---|---|---|---|---|---|---|---|
1 | 3bINP-021 | 12026 | Hyperornithinemia | Hyperornithinemia-hyperammonemia-hyperhomocitrullinuria syndrome (OMIM #238970) | SLC25A15 | NM_014252.4:c.[113_116dup];[113_116dup] or p.[Phe40AspfsTer4];[Phe40AspfsTer4] | Autosomal dominant polydactyly, postaxial, types A1 and B (OMIM #174200) | GLI3 | NM_000168.6:c.[3740_3743dup];[3740=] or p.[Cys1249AlafsTer3];[Cys=] | Expected |
0001987 | Hyperammonemia | |||||||||
3bINP-054 | 0001992 | Biotinidase deficiency | Biotinidase deficiency (OMIM #253260) | BTD | NM_001370658.1:c.468G>T(;)1270G>C or p.(Lys156Asn)(;)(Asp424His) | Autosomal dominant FGFR2-related disorder (OMIM *176943) | FGFR2 | NM_000141.5:c.[923A>G];[923=] or p.[Tyr308Cys];[Tyr=] | Expected | |
3bINP-069 | 0008344 | Elevated circulating branched chain amino acid concentration | MSUD type II (OMIM #620699) | DBT | NM_001918.5:c.[75_76del];[75_76del] or p.[Cys26TrpfsTer2];[Cys26TrpfsTer2] | Autosomal recessive ATP-binding cassette, subfamily a, member 4 (ABCA4)-related disorder (OMIM *601691) | ABCA4 | NM_000350.3:c.[2453G>A];[2453G>A] or p.[Gly818Glu];[Gly818Glu] | Incidental | |
3bINP-074 | 0410051 | 3-methylglutaric aciduria | HMG-CoA lyase deficiency (OMIM #246450) | HMGCL | NM_000191.3:c.230del(;)31C>T or p.(Val77GlyfsTer16)(;)(Arg11Ter) | Autosomal dominant Lynch syndrome (OMIM #614350) | MSH6 | NM_000179.3:c.[2150_2153del];[2150=] or p.[Val717AlafsTer18];[Val=] | Secondary | |
3bINP-082 | 0000531 | Cystinosis | Nephropathic cystinosis (OMIM #219800) | CTNS | NM_004937.3:c.[22_23del];[1036_1047del] or p.[Ile8PhefsTer13];[Asp346_Phe349del] | X-linked Alport syndrome type 1 (OMIM #301050) | COL4A5 | NM_033380.3:c.[3088G>A];[3088=] or p.[Gly1030Ser];[Gly=] | Expected | |
3bINP-109 | 0002156 | Homocystinuria | Homocystinuria, B6-responsive and nonresponsive types (OMIM #236200) | CBS | NM_000071.3:c.[572C>T];[572C>T] or p.[Thr191Met];[Thr191Met] | Autosomal dominant Fleck corneal dystrophy (OMIM #121850) | PIKFYVE | NM_015040.4:c.[853_854del];[853=] or p.[Leu285PhefsTer19];[Leu=] | Incidental | |
2 | 3bINP-045 | 0001943 | Hypoglycemia | Autosomal dominant form of Hyperinsulinemic hypoglycemia familial type 1 (OMIM #256450) | ABCC8 | NM_000352.6:c.[2506C>T];[2506=] or p.[Arg836Ter];[Arg=] | Autosomal dominant RET-related disorders, including Multiple endocrine neoplasia (MEN) IIA (OMIM #171400), MEN IIB (OMIM #162300), and familial medullary thyroid carcinoma (OMIM #155240) | RET | NM_020975.6:c.[2410G>A];[2410=] or p.[Val804Met];[Val=] | Secondary |
3bINP-047 | 0045045 | Inespecific acylcarnitine alterations | Alpha-methylacetoacetic aciduria (OMIM #203750) | ACAT1 | NM_000019.4:c.[473A>G];[473A>G] or p.[Asn158Ser];[Asn158Ser] | Autosomal dominant Cardiomyopathy, dilated, type 1G (OMIM #604145) | TTN | NM_001267550.2:c.[87470_87471del];[87470=] or p.[Leu29157GlnfsTer6];[Leu=] | Secondary | |
3bINP-085 | 0001943 | Hypoglycemia | Autosomal dominant form of Hyperisulinism-hyperammonemia syndrome (OMIM #606762) | GLUD1 | NM_005271.5:c.[1466C>G];[1466=] orp.[Pro489Arg];[Pro=] | X-linked Glucose-6-phosphate dehydrogenase deficiency (OMIM #300908) | G6PD | Hemizygous male for haplotype NM_001360016.2:c.[376A>G;202G>A];[0] or p.[Asn126Asp;Val68Met];[0] | Expected | |
3bINP-100 | 0100651 | Hypoglycemia, type I diabetes mellitus | Diarrhea 4, malabsotive, congenital (OMIM #610370) | NEUROG3 | NM_020999.4:c.[117del];[117del] or p.[Thr40LeufsTer38];[Thr40LeufsTer38] | Autosomal dominant Wagner vitreoretinopathy (OMIM #143200) | VCAN | NM_004385.5:c.[3455C>A];[3455=] or p.[Ser1152Ter];[Ser=] | Incidental |
Decision | Cause of Change or Mantainance | Patient ID | Initial Biochemical Diagnosis | Final WES Diagnosis | Initial Medical or Nutritional Management | Final Medical or Nutritional Management |
(1) Modification of the initial treatment (n = 18) | Discordance between initial and final diagnosis | 3bINP-001 | Unspecific propionylcarnitine elevation; dysmorphological syndrome | Negative + Coffin-Siris syndrome type 10 (OMIM #618506) A✦ | B12 vitamin supplementation | Gradually B12 vitamin suspension as blood B12 levels normalized, plus closer monitoring by the orthopedics, cardiology, otorhinolaryngology, and neurology services. |
3bINP-041 | Hyper beta-alaninemia | Negative + Autosomal dominant lissencephaly type 1 (OMIM #607432) B✦ | B6 vitamin supplementation | Gradually B6 vitamin suspension, plus closer monitoring by neurology service. | ||
A second disease found | 3bINP-045 | Hypoglycemia | AD Hyperinsulinemic hypoglycemia familial 1 + Autosomal dominant RET-related disorder (secondary finding) | Fasting avoidance | Continue with initial medical management, plus closer monitoring by oncology service, segregation analysis, and genetic counseling as the mother resulted heterozygous for RET pathogenic genotype | |
3bINP-047 | Unspecific acylcarnitine alterations | Alpha-methylacetoacetic aciduria + Autosomal dominant Cardiomyopathy, dilated, type 1G (secondary finding) | None | Initiation of nutritional treatment, plus referal to cardiology service for closer monitoring. | ||
3bINP-069 | MSUD | Maple syrup urine disease + ABCA4-related retinal distrophy (incidental finding) | Branched chain amino acids restricted diet | Continue with initial nutritional management, plus close monitoring by the ophthalmology service. | ||
3bINP-074 | 3-hydroxy-3-methylglutaric aciduria | 3-hydroxy-3-methylglutaric aciduria + Autosomal dominant MSH6-related Lynch syndrome (secondary finding) | Nutritional treatment, leucine and lipid restricted diet, carninite supplementation | Continue with initial nutritional management, plus closer monitoring by oncology service, segregation analysis, and genetic counseling as the father resulted heterozygous for MSH6 pathogenic genotype. | ||
3bINP-085 | Hypoglycemia | Hyperinsulinism hyperammonemia syndrome + X-linked glucose-6-phosphate dehydrogenase deficiency (expected finding) | Fasting avoidance. Diet high in complex carbohydrates such as corn starch, along with the recommended daily protein intake | Continue with initial nutritional management, plus diazoxide prescription, genetic counseling on risks of hemolytic anemia, and closer medical follow-up. | ||
3bINP-100 | Hypoglycemia, diabetes mellitus type 1 | Congenital diarrhea type 4 malabsorptive + Autosomal dominant Wagner vitreoretinopathy (incidental finding) | Fasting avoidance, insulin | Continue with initial medical management, plus close monitoring by the ophthalmology and gastroenterology services. | ||
3bINP-109 | Homocystinuria | Homocystinuria + Autosomal dominant Fleck corneal dystrophy (incidental finding) | Methionine restricted diet, betaine, B6 vitamin and folic acid supplementation, and monthly intake of B12 vitamin | Continue with initial nutritional management, plus close monitoring by the ophthalmology service. | ||
Initial unspecific diagnosis + negative WES | 3bINP-006 | Suspicion of a FAOD for subtle elevation of tetradecanoylcarnitine and urinary excretion of adipic, suberic and sebacic acids | Negative | Long chain fatty acid restricted diet and medium-chain triglycerides supplementation | Gradual release from the nutritional management and redirection of the diagnostic approach | |
3bINP-016 | Suspicion of hypermethioninemia due to subtle elevation of blood methionine and homocysteine | Negative | Methionine restricted diet | Gradual release from the nutritional management and redirection of the diagnostic approach | ||
3bINP-024 | Suspicion of UCD because of hyperammonemia | Negative | Protein restricted diet, sodium benzoate and L-carnitine supplementaion | Gradual release from the nutritional management and redirection of the diagnostic approach | ||
3bINP-026 | Suspicion of hyperalaninemia because of elevation of blood alanine | Negative | Ketogenic diet | Gradual release from the nutritional management and redirection of the diagnostic approach | ||
3bINP-031 | Suspicion of hypermethioninemia because of 4-fold elevation of methionine and 3-fold elevation of Met/Phe ratio | Negative | Methionine restricted diet | Gradual release from the nutritional management and redirection of the diagnostic approach | ||
3bINP-050 | Suspicion of organic acidemia because of subtle propionylcarnitine elevation | Negative | B12 vitamin supplementation | Gradual release from the nutritional management and redirection of the diagnostic approach | ||
3bINP-056 | Suspicion of FAOD due to unspecific elevation of blood long chain acylcarnitines | Negative | Fasting avoidance and long chain fatty acid restricted diet | Gradual release from the nutritional management and redirection of the diagnostic approach | ||
3bINP-063 | Succinyl-CoA:3-oxoacid-CoA transferase deficiency due to elevated excretion of 3-hydroxybutiric and acetoacetic acids | Negative | Isoleucine restricted diet | Gradual release from the nutritional management and redirection of the diagnostic approach | ||
3bINP-072 | Suspicion of GSD due to positive liver biopsy | Negative | Fasting avoidance. Diet high in complex carbohydrates such as corn starch, along with the recommended daily protein intake | Gradual release from the nutritional management and redirection of the diagnostic approach | ||
(2) Continuation of initial treatment (n = 5) | Monoallelic genotype found | 3bINP-036 | Organic acidemia for presence of 3-hydroxy-isovaleryl carnitine + methylmalonyl carnitine | Only one variant in HLCS gene | Biotin supplementation | Maintainance of biotin supplementation |
3bINP-052 | MCAD deficiency for the elevation of hexanoyl, octanoyl, and decanoyl carnitines | Only one variant in ACADM | Fasting avoidance | Maintainance of fasting avoidance | ||
Genotype constituted of two VUS variants | 3bINP-076 | MSUD for remarkable blood elevation of branched chain amino acids and elevated excretion of branched chain keto acids in urine | Presence of two VUS variants in DBT | Branched chain amino acids restricted diet | Maintainance of branched chain amino acids restricted diet | |
3bINP-089 | Galactosemia for blood elevation of galactose, and normal activity of galactose-1P-uridyl transferase | Presence of two VUS variants in GALK1 | Galactose restricted diet | Maintainance of galactose restricted diet | ||
3bINP-094 | MSUD for remarkable blood elevation of branched chain amino acids and alloisoleucine, and elevated excretion of branched chain keto acids in urine | Presence of two VUS variants in DBT | Branched chain amino acids restricted diet | Maintainance of branched chain amino acids restricted diet | ||
(3) No specific treatment was provided before or after WES (n = 9) | Not confirmated unspecific biochemical findings | 3bINP-007 | Suspicion of hyperprolinemia due to subtle elevation of blood proline | Negative | None | Redirection of the diagnostic approach |
3bINP-009 | Suspicion of a carbohydrate disorder due to hypoglycemia and hyperinsulinism | Negative | None | Redirection of the diagnostic approach | ||
3bINP-034 | Suspicion of FAOD due to subtly altered acylcarnitines profile | Negative | None | Redirection of the diagnostic approach | ||
3bINP-038 | Suspicion of MSUD because of subtle elevation of branched chain amino acids | Negative | None | Redirection of the diagnostic approach | ||
3bINP-039 | Suspicion of hyperprolinemia due to subtle elevation of blood proline | Negative | None | Redirection of the diagnostic approach | ||
3bINP-051 | Suspicion of FAOD due to unspecific altered acylcarnitines profile | Negative | None | Redirection of the diagnostic approach | ||
3bINP-070 | Suspicion of MSUD because of subtle elevation of branched chain amino acids | Negative | None | Redirection of the diagnostic approach | ||
3bINP-093 | Suspicion of MSUD vs organic acidemia for subtle elevation of branched chain amino acids and butyrylcarnitine | Negative | None | Redirection of the diagnostic approach | ||
3bINP-103 | Suspicion of organic acidemia for subtle elevation of 3-hydroxy-isovaleryl carnitine + hyperlactatemia | Negative | None | Redirection of the diagnostic approach |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vela-Amieva, M.; Alcántara-Ortigoza, M.A.; González-del Angel, A.; Fernández-Hernández, L.; Reyna-Fabián, M.E.; Estandía-Ortega, B.; Guillén-López, S.; López-Mejía, L.; Belmont-Martínez, L.; Carrillo-Nieto, R.I.; et al. Concordance Between Biochemical and Molecular Diagnosis Obtained by WES in Mexican Patients with Inborn Errors of Intermediary Metabolism: Utility for Therapeutic Management. Int. J. Mol. Sci. 2024, 25, 11722. https://doi.org/10.3390/ijms252111722
Vela-Amieva M, Alcántara-Ortigoza MA, González-del Angel A, Fernández-Hernández L, Reyna-Fabián ME, Estandía-Ortega B, Guillén-López S, López-Mejía L, Belmont-Martínez L, Carrillo-Nieto RI, et al. Concordance Between Biochemical and Molecular Diagnosis Obtained by WES in Mexican Patients with Inborn Errors of Intermediary Metabolism: Utility for Therapeutic Management. International Journal of Molecular Sciences. 2024; 25(21):11722. https://doi.org/10.3390/ijms252111722
Chicago/Turabian StyleVela-Amieva, Marcela, Miguel Angel Alcántara-Ortigoza, Ariadna González-del Angel, Liliana Fernández-Hernández, Miriam Erandi Reyna-Fabián, Bernardette Estandía-Ortega, Sara Guillén-López, Lizbeth López-Mejía, Leticia Belmont-Martínez, Rosa Itzel Carrillo-Nieto, and et al. 2024. "Concordance Between Biochemical and Molecular Diagnosis Obtained by WES in Mexican Patients with Inborn Errors of Intermediary Metabolism: Utility for Therapeutic Management" International Journal of Molecular Sciences 25, no. 21: 11722. https://doi.org/10.3390/ijms252111722
APA StyleVela-Amieva, M., Alcántara-Ortigoza, M. A., González-del Angel, A., Fernández-Hernández, L., Reyna-Fabián, M. E., Estandía-Ortega, B., Guillén-López, S., López-Mejía, L., Belmont-Martínez, L., Carrillo-Nieto, R. I., Ibarra-González, I., Ryu, S. -W., Lee, H., & Fernández-Lainez, C., on behalf of Rare Diseases Mexican Effort Group (RaDiMEG). (2024). Concordance Between Biochemical and Molecular Diagnosis Obtained by WES in Mexican Patients with Inborn Errors of Intermediary Metabolism: Utility for Therapeutic Management. International Journal of Molecular Sciences, 25(21), 11722. https://doi.org/10.3390/ijms252111722