The Benefits of Whole-Exome Sequencing in the Differential Diagnosis of Hypophosphatasia
Abstract
:1. Introduction
2. Results
2.1. Molecular Doking of TNSALP
2.2. Clinical and Genetic Characterization of HPP Patients
3. Discussion
3.1. Biochemical Parameters
3.2. The Presence of Variants in the ALPL Gene and Other Genes
3.3. No Variants in the ALPL Gene
4. Materials and Methods
4.1. Clinical and Biochemical Surveillances of Patients with Tentatively Diagnosed HPP
4.2. Inclusion and Exclusion Criteria
4.3. Sample Preparation
4.4. Sanger Sequencing of the ALPL Gene
4.5. Whole-Exome Sequencing
4.6. Bioinformatic Data Analysis and Variant Calling in Patient Exomes
4.7. Molecular Docking of TNSALP
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rathbun, J.C. Hypophosphatasia; a new developmental anomaly. Am. J. Dis. Child. 1948, 75, 822–831. [Google Scholar] [CrossRef] [PubMed]
- Nunes, M.E. Hypophosphatasia. In Gene Reviews® [Internet]; Adam, M.P., Mirzaa, G.M., Pagon, R.A., Eds.; University of Washington: Seattle, WA, USA, 2023; Available online: https://www.ncbi.nlm.nih.gov/books/NBK1150 (accessed on 26 September 2024).
- Baranov, A.A.; Namazova-Baranova, L.S.; Savostianov, K.V.; Margieva, T.V.; Vishneva, E.A.; Yakhyaeva, G.T. Clinical recomendation to the diagnostics and treatment of hypophosphatasia in children. Pediatr. Pharmacol. 2016, 13, 539–543. [Google Scholar] [CrossRef]
- Mornet, E.; Yvard, A.; Taillandier, A.; Fauvert, D.; Simon-Bouy, B. A molecular-based estimation of the prevalence of hypophosphatasia in the European population. Ann. Hum. Genet. 2011, 75, 439–445. [Google Scholar] [CrossRef]
- Watanabe, A.; Karasugi, T.; Sawai, H.; Naing, B.T.; Ikegawa, S.; Orimo, H.; Shimada, T. Prevalence of c.1559delT in ALPL, a common mutation resulting in the perinatal (lethal) form of hypophosphatasia in Japanese and effects of the mutation on heterozygous carriers. J. Hum. Genet. 2011, 56, 166–168. [Google Scholar] [CrossRef]
- Zhang, Q.; Qin, Z.; Yi, S.; Wei, H.; Zhou, X.Z.; Shen, F. Case Report: Variations in the ALPL Gene in Chinese Patients With Hypophosphatasia. Front. Genet. 2021, 12, 732621. [Google Scholar] [CrossRef]
- Triggs-Raine, B.; Dyck, T.; Boycott, K.M.; Innes, A.M.; Ober, C.; Parboosingh, J.S.; Botkin, A.; Greenberg, C.R.; Spriggs, E.L. Development of a diagnostic DNA chip to screen for 30 autosomal recessive disorders in the Hutterite population. Mol. Genet. Genomic. Med. 2016, 4, 312–321. [Google Scholar] [CrossRef]
- Mornet, E.; Taillandier, A.; Domingues, C.; Dufour, A.; Benaloun, E.; Lavaud, N.; Wallon, F.; Rousseau, N.; Charle, C.; Guberto, M.; et al. Hypophosphatasia: A genetic-based nosology and new insight in genotype-phenotype correlation. Eur. J. Hum. Genet. 2021, 29, 289–299. [Google Scholar] [CrossRef]
- Whyte, M.P. Physiological role of alkaline phosphatase explored in hypophosphatasia. Ann. N. Y. Acad. Sci. 2010, 1192, 190–200. [Google Scholar] [CrossRef]
- Weiss, M.J.; Cole, D.E.; Ray, K.; Whyte, M.P.; Lafferty, M.A.; Mulivor, R.A.; Harris, H. A missense mutation in the human liver/bone/kidney alkaline phosphatase gene causing a lethal form of hypophosphatasia. Proc. Natl. Acad. Sci. USA 1988, 85, 7666–7669. [Google Scholar] [CrossRef]
- RUSeq. Available online: http://ruseq.ru/#/gene/249 (accessed on 26 September 2024).
- Glotov, O.S.; Savostyanov, K.V.; Nagornova, T.S.; Chernov, A.N.; Fedyakov, M.A.; Raspopova, A.N.; Krasnoukhov, K.N.; Danilov, L.G.; Moiseeva, N.V.; Kalinin, R.S.; et al. Clinical and Genetic Characteristics of Pediatric Patients with Hypophosphatasia in the Russian Population. Int. J. Mol. Sci. 2022, 23, 12976. [Google Scholar] [CrossRef]
- Whyte, M.P.; Zhang, F.; Wenkert, D.; Mack, K.E.; Bijanki, V.N.; Ericson, K.L.; Coburn, S.P. Hypophosphatasia: Vitamin B6 status of affected children and adults. Bone 2021, 20, 116204. [Google Scholar] [CrossRef] [PubMed]
- Millán, J.L.; Whyte, M.P. Alkaline Phosphatase and Hypophosphatasia. Calcif. Tissue Int. 2016, 98, 398–416. [Google Scholar] [CrossRef] [PubMed]
- Whyte, M.P.; Coburn, S.P.; Ryan, L.M.; Ericson, K.L.; Zhang, F. Hypophosphatasia: Biochemical hallmarks validate the expanded pediatric clinical nosology. Bone 2018, 110, 96–106. [Google Scholar] [CrossRef]
- Rush, E.; Brandi, M.L.; Khan, A.; Ali, D.S.; Al-Alwani, H.; Almonaei, K.; Alsarraf, F.; Bacrot, S.; Alsarraf, F.; Bacrot, S.; et al. Proposed diagnostic criteria for the diagnosis of hypophosphatasia in children and adolescents: Results from the HPP International Working Group. Osteoporos. Int. 2024, 35, 1–10. [Google Scholar] [CrossRef]
- Schmidt, T.; Schmidt, C.; Amling, M.; Kramer, J.; Barvencik, F. Prevalence of low alkaline phosphatase activity in laboratory assessment: Is hypophosphatasia an underdiagnosed disease? Orphanet J. Rare Dis. 2021, 16, 452. [Google Scholar] [CrossRef]
- González-Cejudo, T.; Villa-Suárez, J.M.; Ferrer-Millán, M.; Andújar-Vera, F.; Contreras-Bolívar, V.; Andreo-López, M.C.; Gómez-Vida, V.; Martínez-Heredia, L.; González-Salvatierra, S.; Muñoz, T.d.H.; et al. Mild hypophosphatasia may be twice as prevalent as previously estimated: An effective clinical algorithm to detect undiagnosed cases. Clin. Chem. Lab Med. 2023, 62, 128–137. [Google Scholar] [CrossRef]
- Cinque, L.; Pugliese, F.; Salcuni, A.S.; Trombetta, D.; Battista, C.; Biagini, T.; Augello, B.; Nardella, G.; Conti, F.; Corbetta, S.; et al. Clinical and molecular description of the first Italian cohort of 33 subjects with hypophosphatasia. Front. Endocrinol. 2023, 14, 1205977. [Google Scholar] [CrossRef]
- Srivastava, S.; Love-Nichols, J.A.; Dies, K.A.; Ledbetter, D.H.; Martin, C.L.; Chung, W.K.; Firth, H.V.; Frazier, T.; Hansen, R.L.; Prock, L.; et al. Meta-analysis and multidisciplinary consensus statement: Exome sequencing is a first-tier clinical diagnostic test for individuals with neurodevelopmental disorders. Genet. Med. 2019, 21, 2413–2421. [Google Scholar] [CrossRef]
- Baroncelli, G.I.; Carlucci, G.; Freri, E.; Giuca, M.R.; Guarnieri, V.; Navarra, G.; Toschi, B.; Mora, S. The diagnosis of hypophosphatasia in children as a multidisciplinary effort: An expert opinion. J. Endocrinol. Investig. 2024, 47, 739–747. [Google Scholar] [CrossRef]
- Seefried, L.; Dahir, K.; Petryk, A.; Högler, W.; Linglart, A.; Martos-Moreno, G.Á.; Ozono, K.; Fang, S.; Rockman-Greenberg, C.; Kishnani, P.S. Burden of illness in adults with hypophosphatasia: Data from the Global Hypophosphatasia Patient Registry. J. Bone Miner. Res. 2020, 35, 2171–2178. [Google Scholar] [CrossRef]
- Wanjian, G.; Jie, H.; Liang, G.; Cheng, W.; Tian, X.; Jianjiang, S.; Chunni, Z. Establishment of Reference Interval for Alkaline Phosphatase in Healthy Children of Various Ethnicities, Aged 0–12 Years. Lab Med. 2017, 48, 166–171. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.A.; Josse, R.; Kannu, P.; Villeneuve, J.; Paul, T.; Van Uum, S.; Greenberg, C.R. Hypophosphatasia: Canadian update on diagnosis and management. Osteoporos Int. 2019, 30, 1713–1722. [Google Scholar] [CrossRef] [PubMed]
- Ray, C.S.; Singh, B.; Jena, I.; Behera, S.; Ray, S. Low alkaline phosphatase (ALP) in adult population an indicator of zinc (Zn) and magnesium (Mg) deficiency. Curr. Res. Nutr. Food Sci. J. 2017, 5, 347–352. [Google Scholar] [CrossRef]
- Jain, A.; Jadhav, A.A.; Varma, M. Relation of oxidative stress, zinc and alkaline phosphatase in protein energy malnutrition. Arch. Physiol. Biochem. 2013, 119, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Naik, V.D.; Lee, J.; Wu, G.; Washburn, S.; Ramadoss, J. Effects of nutrition and gestational alcohol consumption on fetal growth and development. Nutr. Rev. 2022, 80, 1568–1579. [Google Scholar] [CrossRef]
- Barry, C.V.; Chrysanthopoulou, S.A.; Tallo, V.; Jarilla, B.; Vargas, Z.; McDonald, E.; Gundogan, F.; Friedman, J.F. The Impact of Prenatal Alcohol Exposure on Longitudinal Growth, Nutritional Status, and Insulin-Like Growth Factor 1 in Early Childhood in Leyte, the Philippines. J. Pediatr. 2024, 269, 113977. [Google Scholar] [CrossRef]
- Blionas, A.; Friehs, G.M.; Zerris, V.A. Hypophosphatasia and cleidocranial dysplasia-a case report and review of the literature: The role of the neurosurgeon. Childs Nerv. Syst. 2022, 38, 461–464. [Google Scholar] [CrossRef]
- Taillandier, A.; Domingues, C.; De Cazanove, C.; Porquet-Bordes, V.; Monnot, S.; Kiffer-Moreira, T.; Rothenbuhler, A.; Guggenbuhl, P.; Cormier, C.; Baujat, G.; et al. Molecular diagnosis of hypophosphatasia and differential diagnosis by targeted Next Generation Sequencing. Mol. Genet. Metab. 2015, 116, 215–220. [Google Scholar] [CrossRef]
- Socha, P.; Janczyk, W.; Dhawan, A.; Baumann, U.; D’Antiga, L.; Tanner, S.; Iorio, R.; Vajro, P.; Houwen, R.; Fischleret, B.; et al. Wilson’s Disease in Children: A Position Paper by the Hepatology Committee of the European Society for Paediatric Gastroenterology, Hepatology and Nutrition. J. Pediatr. Gastroenterol. Nutr. 2018, 66, 334–344. [Google Scholar] [CrossRef]
- Glotov, O.S.; Chernov, A.N.; Glotov, A.S. Human Exome Sequencing and Prospects for Predictive Medicine: Analysis of International Data and Own Experience. J. Pers. Med. 2023, 13, 1236. [Google Scholar] [CrossRef]
- Jandl, N.M.; Schmidt, T.; Rolvien, T.; Stürznickel, J.; Chrysostomou, K.; von Vopelius, E.; Volk, A.E.; Schinke, T.; Kubisch, C.; Amling, M.; et al. Genotype-phenotype associations in 72 adults with suspected ALPL-associated hypophosphatasia. Calcif. Tissue Int. 2021, 3, 288–301. [Google Scholar] [CrossRef] [PubMed]
- ALPL Mutation Database. Available online: http://alplmutationdatabase.hypophosphatasie.com (accessed on 27 September 2024).
- Farman, M.R.; Rehder, C.; Malli, T.; Rockman-Greenberg, C.; Dahir, K.; Martos-Moreno, G.Á.; Linglart, A.; Ozono, K.; Seefried, L.; Del Angelet, G.; et al. The Global ALPL gene variant classification project: Dedicated to deciphering variants. Bone 2024, 178, 116947. [Google Scholar] [CrossRef] [PubMed]
- Fratzl-Zelman, N.; Linglart, A.; Bin, K.; Rauch, F.; Blouin, S.; Coutant, R.; Donzeau, A. Combination of osteogenesis imperfecta and hypophosphatasia in three children with multiple fractures, low bone mass and severe osteomalacia, a challenge for therapeutic management. Eur. J. Med. Genet. 2023, 66, 104856. [Google Scholar] [CrossRef] [PubMed]
- Nielson, C.M.; Zmuda, J.M.; Carlos, A.S.; Wagoner, W.J.; Larson, E.A.; Orwoll, E.S.; Klein, R.F. Rare coding variants in ALPL are associated with low serum alkaline phosphatase and low bone mineral density. J. Bone Miner. Res 2012, 27, 93–103. [Google Scholar] [CrossRef]
- McCray, B.A.; Schindler, A.; Hoover-Fong, J.E.; Sumner, C.J. Autosomal Dominant TRPV4 Disorders. In GeneReviews® [Internet]; Adam, M.P., Feldman, J., Mirzaa, G.M., Pagon, R.A., Wallace, S.E., Bean, L.J.H., Gripp, K.W., Amemiya, A., Eds.; University of Washington: Seattle, WA, USA, 2024. [Google Scholar]
- Whyte, M.P.; Rockman-Greenberg, C.; Ozono, K.; Riese, R.; Moseley, S.; Melian, A.; Thompson, D.D.; Bishop, N.; Hofmann, C. Asfotase Alfa Treatment Improves Survival for Perinatal and Infantile Hypophosphatasia. J. Clin. Endocrinol. Metab. 2016, 101, 334–342. [Google Scholar] [CrossRef]
- Rosina, E.; Pezzani, L.; Pezzoli, L.; Marchetti, D.; Bellini, M.; Pilotta, A.; Calabrese, O.; Nicastro, E.; Cirillo, F.; Cereda, A.; et al. Atypical, Composite, or Blended Phenotypes: How Different Molecular Mechanisms Could Associate in Double-Diagnosed Patients. Genes 2022, 13, 1275. [Google Scholar] [CrossRef]
- Smith, E.D.; Blanco, K.; Sajan, S.A.; Hunter, J.M.; Shinde, D.N.; Wayburn, B.; Rossi, M.; Huang, J.; Stevens, C.A.; Muss, C.; et al. A retrospective review of multiple findings in diagnostic exome sequencing: Half are distinct and half are overlapping diagnoses. Genet. Med. 2019, 21, 2199–2207. [Google Scholar] [CrossRef]
- Villa-Suárez, J.M.; García-Fontana, C.; Andújar-Vera, F.; González-Salvatierra, S.; de Haro-Muñoz, T.; Contreras-Bolívar, V.; García-Fontana, B.; Muñoz-Torres, M. Hypophosphatasia: A Unique Disorder of Bone Mineralization. Int. J. Mol. Sci. 2021, 22, 4303. [Google Scholar] [CrossRef]
- Mentrup, B.; Girschick, H.; Jakob, F.; Hofmann, C. A homozygous intronic branch-point deletion in the ALPL gene causes infantile hypophosphatasia. Bone 2017, 94, 75–83. [Google Scholar] [CrossRef]
- Seefried, L.; Petryk, A.; Del Angel, G.; Reder, F.; Bauer, P. Whole genome sequencing in adults with clinical hallmarks of hypophosphatasia negative for ALPL variants. Mol. Biol. Rep 2024, 51, 984. [Google Scholar] [CrossRef]
- Alamoudi, L.O.; Alfaraidi, A.T.; Althagafi, S.S.; Al-Thaqafy, M.S.; Hasosah, M. Congenital Glucose-Galactose Malabsorption: A Case With a Novel SLC5A1 Mutation in a Saudi Infant. Cureus 2021, 13, e18440. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, S.J.; Davies, T.; Cole, R.; Whitaker, P.; Chapman, C. Neutrophil alkaline phosphatase (NAP) score in the diagnosis of hypophosphatasia. Clin. Chim. Acta 2000, 302, 49–57. [Google Scholar] [CrossRef] [PubMed]
- McKiernan, F.E.; Shrestha, L.K.; Berg, R.L.; Fuehrer, J. Acute hypophosphatasemia. Osteoporos Int. 2014, 25, 519–523. [Google Scholar] [CrossRef] [PubMed]
- Richards, S.; Aziz, N.; Bale, S.; Bick, D.; Das, S.; Gastier-Foster, J.; Grody, W.W.; Hegde, M.; Lyon, E.; Spector, E.; et al. Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 2015, 17, 405–424. [Google Scholar] [CrossRef]
- McKenna, A.; Hanna, M.; Banks, E.; Sivachenko, A.; Cibulskis, K.; Kernytsky, A.; Garimella, K.; Altshuler, D.; Gabriel, S.; Daly, M.; et al. The Genome Analysis Toolkit: A Map Reduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010, 20, 1297–1303. [Google Scholar] [CrossRef]
- Van der Auwera, G.A.; Carneiro, M.O.; Hartl, C.; Poplin, R.; Del Angel, G.; Levy-Moonshine, A.; Jordan, T.; Shakir, K.; Roazen, D.; Thibault, J.; et al. From FastQ data to high confidence variant calls: The Genome Analysis Toolkit best practices pipeline. Curr. Protoc. Bioinform. 2013, 43, 11.10.1–11.10.33. [Google Scholar] [CrossRef]
- Auton, A.; Salcedo, T. The 1000 Genomes Project; Springer: New York, NY, USA, 2015; pp. 71–85. [Google Scholar]
- Lek, M.; Karczewski, K.J.; Minikel, E.V.; Samocha, K.E.; Banks, E.; Fennell, T.; O’Donnell-Luria, A.H.; Ware, J.S.; Hill, A.J.; Cummings, B.B.; et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature 2016, 536, 285–291. [Google Scholar] [CrossRef]
- Barbitoff, Y.A.; Skitchenko, R.K.; Poleshchuk, O.I.; Shikov, A.E.; Serebryakova, E.A.; Nasykhova, Y.A.; Polev, D.E.; Shuvalova, A.R.; Shcherbakova, I.V.; Fedyakov, M.A.; et al. Whole-exome sequencing provides insights into monogenic disease prevalence in Northwest Russia. Mol. Genet. Genom. Med. 2019, 7, e964. [Google Scholar] [CrossRef]
- Shikov, A.E.; Barbitoff, Y.A.; Glotov, A.S.; Danilova, M.M.; Tonyan, Z.N.; Nasykhova, Y.A.; Mikhailova, A.A.; Bespalova, O.N.; Kalinin, R.S.; Mirzorustamova, A.M.; et al. Analysis of the Spectrum of ACE2 Variation Suggests a Possible Influence of Rare and Common Variants on Susceptibility to COVID-19 and Severity of Outcome. Front. Genet. 2020, 11, 551220. [Google Scholar] [CrossRef]
- Liu, X.; Jian, X.; Boerwinkle, E. dbNSFP v2.0: A Database of Human Non-synonymous SNVs and Their Functional Predictions and Annotations. Hum. Mutat. 2013, 34, E2393–E2402. [Google Scholar] [CrossRef]
- The ALPL Mutation Database. Available online: https://alplmutationdatabase.jku.at/ (accessed on 8 July 2024).
- Jörga, H.; Mohr, J.; Bürki, S.; Lemke, J.R. A case of cohesinopathy with a novel de-novo SMC1A splice site mutation. Clin. Dysmorphol. 2013, 22, 143–145. [Google Scholar] [CrossRef]
Symptoms | Patient 1 | Patient 2 | Patient 3 | Patient 4 | Patient 5 | Patient 6 | Patient 7 |
---|---|---|---|---|---|---|---|
Obligate diagnostic criterion for HPP in children | |||||||
ALP level in serum 1 (age) | 1 year 8 months 38 IU/L (reference 150–370 IU/L) | 3.5 years 119 IU/L (reference 180–720 IU/L) | 14 years 43 IU/L (reference 160–500 IU/L) | 1 year 8 months 85 IU/L (reference 150–370 IU/L) | 3 months 70 IU/L (reference 70–350 IU/L) | 1 year 1 month 139 IU/L (reference 150–370 IU/L) | 3 years 9 months 126 IU/L, (reference 125–320 IU/L) |
ALP level in serum 2 (age) | 5 years 69–73 IU/L (reference 180–720 IU/L) | 4 years 120.3 IU/L (reference 180–720 IU/L) | 14.5 years 81 IU/L (reference 160–500 IU/L) | - | 8.5 months 233.2 IU/L (reference 70–350 IU/L) | 4 years 6 months 118 IU/L (reference 180–720 IU/L) | - |
Major diagnostic criteria for HPP in children | |||||||
WES results: variants in ALPL gene | c.1447G>A in exon 12 of ALPL gene (chr1:g.21904013G>A; rs1256212515), heterozygous (78x) | c.1447G>A in exon 12 of ALPL gene (chr1:g.21904013G>A; rs1256212515), heterozygous (59x) | c.205G>A in exon 4 of ALPL gene (chr1:21887613G>A; rs1178008018), heterozygous (31x) | Not detected | Not detected | Not detected | Not detected |
Elevation of natural substrates of TNSALP | Yes | No data | No data | No data | No data | No data | No data |
Early non-traumatic loss of primary teeth | No data | Yes | No | No data | No data | Yes | Yes |
Minor diagnostic criteria for HPP in children | |||||||
Skeletal deformities | Funnel chest Skull deformities Hydrocephalus | Planovalgus foot deformity | No | Incomplete ossification of parietal bones, open sagittal suture, chest deformity | Funnel chest | Valgus Knee, valgus foot deformity, chest deformity, hyperkyphosis | Valgus foot deformity, chest asymmetry |
Short stature | No data | Yes | No | Yes | No | Yes | Yes |
Height/Weight/Age | No data/14.5 kg (10 years) ▼ | 94 sm/14.5 kg (4 years) ▼ | 172 sm/91 kg (14 years) ▲ | 69 sm/5 kg (2 years) ▼ | 72 sm/9.3 kg (1 year) Normal | 95 sm/14.5 kg (4.5 years) ▼ | 74 sm/5.86 kg (3.9 years) ▼ |
Limb shortening | No | No | No data | Yes | No | Yes | No data |
Gait disturbance | Unable to walk | No | No | Unable to walk | Unable to walk (young age) | No data | No data |
Joint pathology | No | No | Pain in the left knee joint No data | Contracture in the right hand thumb, stiffness of knee and ankle joints | Contractures of wrist joints | No data | No data |
Muscular hypotension | Yes | Yes | No data | Yes | Yes | Yes | Yes |
Delayed motor development | Yes | Yes | No | Yes | Yes | Yes | Yes |
Neurological symptoms | Mental and speech delay | No | Tension headaches | Mental and speech delay | Signs of peripheral polyneuropathy by electroneuromyography | Perinatal hypoxic- ischemic damage, mental and speech delay | Mental and speech delay |
Digestive disorders, malnutrition | Low weight, frequent regurgitation in infancy | Low weight, constipation | High weight | Low weight | No | Severe infectious gastroenterocolitis, hypotrophy, malabsorption | Low weight |
Fractures | Yes | No | No | No | No | No data | No |
Poorly healed fractures | No data | No | No | No | No | No data | No |
Hypomineralization of bone tissue/osteoporosis | Yes | Yes | Yes | No data | No | No | No |
Respiratory failure | No | Yes | No | No data | No | No data | No |
Hypercalcemia | No | No | No | No | No | No | No data |
Hypercalciuria | No | No | No | No | No | No data | No data |
Hyperphosphatemia | No | Yes | No | No | No | No data | No data |
Nephrocalcinosis/kidney damage | Pyeloectasia of kidneys | No | No data | No data | No | Pyeloectasia of the right kidney, calcenates | Pyeloectasia of the right kidney, hydrocalicosis with incomplete bilateral doubling of the renal pelvis |
Convulsions | Pharmaco- resistant epilepsy | No | No | No data | No | No data | No |
Multiple organ failure | No | No | No | No | No | Yes | No |
Visual disorders | Myopia, astigmatism | Hypermetropia, astigmatism | Micropsia | No | No | No data | Myopia, strabismus |
Hair features | No | Brittle hair | Hair loss | No | No | No data | No data |
Preliminary diagnosis | HPP? Focal epilepsy | HPP? | HPP? | HPP? Protein-energy malnutrition | HPP? | HPP? | HPP? Protein-energy malnutrition. |
WES results: variants in other genes | c.3470del in exon 23 of SMC1A gene (chrX:g.53407975CT>C), heterozygous (30x) | c.682T>A in exon 3 of WNT10A gene(chr2:g.219755011T>A; rs121908120), homozygous (67x) | Not detected | c.5651A>C in exon 36 of TRIO gene(chr5:g.14463018A>C), heterozygous (45x); c.880T>G ʙ exon 6 of TRPV4 gene (chr12:g.110236691A>C), heterozygous (68x) | c.32078-1G>T in intron 159 of TTN gene (chr2:g.179516477C>A), heterozygous (100x); c.47720_47721del in exon 235 of TTN gene (chr2:g.179466391CTT>C), heterozygous (121x) | c.1946G>A in exon 15 of SLC5A1 gene (chr22:g.32506151G>A), homozygous (125x) | Not detected |
Post-WES diagnosis | HPP infantile. Developmental and epileptic encephalopathy 85, with or without midline brain defects (DEE85) | HPP childhood | HPP childhood | Hereditary motor and sensory neuropathy, type IIc; mental developmental disorder, autosomal dominant 63, with macrocephaly (OMIM: 618825)? | Hereditary neuromuscular disease: congenital myopathy 5 with cardiomyopathy; CMYP5(OMIM: 611705) Muscular dystrophy, limb–girdle, autosomal recessive 10? | Glucose–galactose malabsorption | Fetal alcohol syndrome |
Diagnostic and management tactics | Treatment of comorbid conditions | Further observation, HPP treatment | HPP treatment | Additional examination | Additional examination | Additional examination | Symptomatic treatment |
Case No. | Gene | Protein | Gene-Associated Diseases | Variants | Mutation Type | AF (gnomAD) | AF (RUSeq) | Pathogenicity |
---|---|---|---|---|---|---|---|---|
1, 2 | ALPL | Alkaline phosphatase, biomineralization associated | OMIM: 146300, 241500, 241510 | c.1447G>A in exon 12 (chr1:g.21904013G>A; rs1256212515) | missens | 0.00001971 * | 0.0002966 * | Likely pathogenic (IV) |
3 | c.205G>A in exon 4 (chr1:21887613G>A; rs1178008018) | missens | N/A | N/A | Uncertain significance | |||
1 | SMC1A | Structural maintenance of chromosomes 1A | OMIM: 300590; 301044 | c.3470del in exon 23 (chrX:g.53407975CT>C) | frameshift | N/A | N/A | Pathogenic (V)/VUS |
2 | WNT10A | Wnt family member 10A | OMIM: 257980; 224750; 150400 | c.682T>A in exon 3 (chr2:g.219755011T>A; rs121908120) | missens | 0.01405 * | 0.01130 | Conflicting interpretations of pathogenicity |
4 | TRIO | Trio Rho guanine nucleotide exchange factor | OMIM: 617061; 618825 | c.5651A>C in 36 exon (chr5:g.14463018A>C) | missens | N/A | N/A | Uncertain significance (VUS, III) |
4 | TRPV4 | Transient receptor potential cation channel subfamily V member 4 | OMIM: 606071 | c.880T>G ʙ exon 6 (chr12:g.110236691A>C) | missens | N/A | N/A | Uncertain significance (VUS, III) |
5 | TTN | Titin | OMIM:611705; 608807 | c.32078-1G>T in intron 159(chr2:g.179516477C>A) | splicing site | N/A | N/A | Likely pathogenic (IV) |
c.47720_47721del in exon 235 (chr2:g.179466391CTT>C) | Frameshift | N/A | N/A | Likely pathogenic (IV) | ||||
6 | SLC5A1 | Solute carrier family 5 member 1 | OMIM: 606824 | c.1946G>A in exon 15 (chr22:g.32506151G>A) | missens | 0.00000657 * | N/A | Likely pathogenic (IV) |
Case | Sex | Age; Years | Age of HPP Diagnosis | Features Consistent with HPP | Detected Genetic Variants | An Alternative Diagnosis | Features Typical for an Alternative Diagnosis and Not Typical for HPP | Phenotypic Overlaps | |
---|---|---|---|---|---|---|---|---|---|
1st Molecular Mechanism (Variants in ALPL Gene) | 2nd Molecular Mechanism (Variants in Other Genes) | ||||||||
1 | f | 10 | 6 | ↓ ALP in serum; ↑ Pi and PEA; muscle hypotonia; epileptic paroxysms; rickets-like bone deformities; osteoporosis; developmental delay | c.1447G>A (chr1:g.21904013G>A; rs1256212515); heterozygous | c.3470del in SMC1A gene (chrX:g.53407975CT>C; heterozygous | Developmental and epileptic encephalopathy type 85 (DEE85; OMIM# 301044) | Refractory seizures in the first year of life; global developmental delay with impaired intellectual development and poor or absent speech; dysmorphic features. | Epileptic paroxysms; developmental delay |
2 | f | 4 | 4 | ↓ ALP in serum; muscle hypotonia; short stature; developmental delay; respiratory attacks; brittle hair; tooth decay | c.1447G>A (chr1:g.21904013G>A; rs1256212515); heterozygous | c.682T>A in WNT10A gene (chr2:g.219755011T>A; rs121908120); homozygous | Ectodermal dysplasias: odontoonychodermal dysplasia (OMIM: 257980); Schopf-Schulz-Passarge syndrome (OMIM: 224750); tooth agenesis; selective; 4 (OMIM: 150400) | Ectodermal pathology; tooth agenesis | ↓ ALP in serum; brittle hair and tooth decay |
4 | m | 2 | 2 | ↓ ALP in serum; ↓ionized calcium skeletal deformities; muscle hypotonia; short stature; limb shortening; joint pathology; developmental delay | no | c.5651A>C in exon 36 of TRIO gene (chr5:g.14463018A>C; heterozygous; c.880T>G ʙ exon 6 of TRPV4 gene (chr12:g.110236691A>C; heterozygous | Hereditary motor and sensory neuropathy; type IIc; Mental developmental disorder; autosomal dominant 63; with macrocephaly (OMIM: 618825) | Dysmorphic features: deformed auricles, sunken nose bridge, microretrogenia | ↓ ALP in serum(?); Skeletal deformities; muscle hypotonia; short stature; limb shortening; joint pathology; developmental delay |
5 | f | 1 | 0 | ↓ ALP in serum; muscle hypotonia; skeletal deformities (funnel chest); joint pathology; developmental delay | no | c.32078-1G>T (chr2:g.179516477C>A); heterozygous; c.47720_47721del (chr2:g.179466391CTT>C); heterozygous in TTN gene | Congenital myopathy 5 with cardiomyopathy; CMYP5 (OMIM: 611705 Muscular dystrophy; limb-girdle; autosomal recessive 10 | ↑Creatinine phosphate kinase; polyneuropathy; early disease onset; contractures | Skeletal deformities; developmental delay |
6 | f | 4 | 1 | ↓ ALP in serum; muscle hypotonia; short stature; skeletal deformities; limb shortening; developmental delay; urolithiasis; gastroenteritis; early loss of primary teeth | no | c.1946G>A in SLC5A1 gene (chr22:g.32506151G>A); homozygous | Glucose-galactose malabsorption (OMIM: 606824) | Born in a consanguineous marriage; sibling malabsorption syndrome; diarrhea; hypokalemia; hyponatremia | ↓ ALP in serum; Developmental delay; muscular hypotonia; skeletal deformities; urolithiasis |
Drugs | Anti-Resorptive Therapy, Chemotherapy, Excess Vitamin D |
---|---|
Endocrine disorders | Hypoparathyroidism Hypothyroidism Hypercortisolism Renal osteodystrophy and adynamic bone disease Delayed growth and puberty |
Hematological conditions | Pernicious anemia Massive blood transfusions Myeloproliferative disorders Myeloma |
Nutritional deficiencies | Magnesium Zinc Vitamin C B6, B12, and folate Protein/calorie Copper Celiac disease Milk-alkali syndrome Starvation |
Miscellaneous | Severe illness Major surgery or trauma Wilson’s disease Achondroplasia Osteogenesis imperfecta Cleidocranial dysplasia Mseleni joint disease Disorders affecting linear growth in childhood |
Obligate Diagnostic Criterion | Major Diagnostic Criteria for | Minor Diagnostic Criteria |
---|---|---|
|
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Glotov, O.S.; Zhuchenko, N.A.; Balashova, M.S.; Raspopova, A.N.; Tsai, V.V.; Chernov, A.N.; Chuiko, I.V.; Danilov, L.G.; Morozova, L.D.; Glotov, A.S. The Benefits of Whole-Exome Sequencing in the Differential Diagnosis of Hypophosphatasia. Int. J. Mol. Sci. 2024, 25, 11728. https://doi.org/10.3390/ijms252111728
Glotov OS, Zhuchenko NA, Balashova MS, Raspopova AN, Tsai VV, Chernov AN, Chuiko IV, Danilov LG, Morozova LD, Glotov AS. The Benefits of Whole-Exome Sequencing in the Differential Diagnosis of Hypophosphatasia. International Journal of Molecular Sciences. 2024; 25(21):11728. https://doi.org/10.3390/ijms252111728
Chicago/Turabian StyleGlotov, Oleg S., Natalya A. Zhuchenko, Maria S. Balashova, Aleksandra N. Raspopova, Victoria V. Tsai, Alexandr N. Chernov, Iana V. Chuiko, Lavrentii G. Danilov, Lyudmila D. Morozova, and Andrey S. Glotov. 2024. "The Benefits of Whole-Exome Sequencing in the Differential Diagnosis of Hypophosphatasia" International Journal of Molecular Sciences 25, no. 21: 11728. https://doi.org/10.3390/ijms252111728
APA StyleGlotov, O. S., Zhuchenko, N. A., Balashova, M. S., Raspopova, A. N., Tsai, V. V., Chernov, A. N., Chuiko, I. V., Danilov, L. G., Morozova, L. D., & Glotov, A. S. (2024). The Benefits of Whole-Exome Sequencing in the Differential Diagnosis of Hypophosphatasia. International Journal of Molecular Sciences, 25(21), 11728. https://doi.org/10.3390/ijms252111728