Boosting Acetylcholine Signaling by Cannabidiol in a Murine Model of Alzheimer’s Disease
Abstract
:1. Introduction
2. Results
2.1. Long-Term Treatment with Inhaled CBD Increased Expression of Hippocampal ACh in AD Mice
2.2. Inhalant CBD Improved Cerebral Blood Flow in AD
2.3. CBD-Induced ACh Was Associated with Improvement in Cognitive Function in AD
2.4. Long-Term Inhaled CBD Reduced Senile Plaques in AD
2.5. Inhaled CBD Changed the Profile of ILC2s in the Meninges and Choroid Plexus of 5xFAD Mice and Their Level of ACh Expression
3. Discussion
Study Limitations
4. Materials and Methods
4.1. Declaration Regarding Humane Use of Animals
4.2. Experimental Design and Treatment Protocol
4.3. Photoacoustic Imaging of Brain
4.4. Behavioral Tests
4.5. Immunohistochemistry
4.6. Bielschowsky Silver Staining
4.7. Analytical Flow Cytometry
4.8. Statistical Analysis
5. Conclusions
Clues for Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Khodadadi, H.; Salles, É.L.; Jarrahi, A.; Costigliola, V.; Khan, M.B.; Yu, J.C.; Morgan, J.C.; Hess, D.C.; Vaibhav, K.; Dhandapani, K.M.; et al. Cannabidiol Ameliorates Cognitive Function via Regulation of IL-33 and TREM2 Upregulation in a Murine Model of Alzheimer’s Disease. J. Alzheimer’s Dis. 2021, 80, 973–977. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, A.; Irwin, M.; Singh, A.; Riccetti, M.; Singh, A. Alzheimer’s disease: The silver tsunami of the 21st century. Neural Regen. Res. 2016, 11, 693–697. [Google Scholar] [PubMed]
- van der Flier, W.M.; de Vugt, M.E.; Smets, E.M.A.; Blom, M.; Teunissen, C.E. Towards a future where Alzheimer’s disease pathology is stopped before the onset of dementia. Nat. Aging 2023, 3, 494–505. [Google Scholar] [CrossRef] [PubMed]
- Ameen, T.B.; Kashif, S.N.; Abbas, S.M.I.; Babar, K.; Ali, S.M.S.; Raheem, A. Unraveling Alzheimer’s: The promise of aducanumab, lecanemab, and donanemab. Egypt. J. Neurol. Psychiatry Neurosurg 2024, 60, 72. [Google Scholar] [CrossRef]
- Bhunia, S.; Kolishetti, N.; Arias, A.Y.; Vashist, A.; Nair, M. Cannabidiol for neurodegenerative disorders: A comprehensive review. Front. Pharmacol. 2022, 13, 989717. [Google Scholar] [CrossRef]
- Marin, I.; Kipnis, J. Learning and memory, and the immune system. Learn Mem 2013, 20, 601–606. [Google Scholar] [CrossRef]
- Marques, R.E.; Marques, P.E.; Guabiraba, R.; Teixeira, M.M. Exploring the Homeostatic and Sensory Roles of the Immune System. Front. Immunol. 2016, 7, 125. [Google Scholar] [CrossRef]
- Halder, N.; Lal, G. Cholinergic System and Its Therapeutic Importance in Inflammation and Autoimmunity. Front. Immunol. 2021, 12, 660342. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, X.; Shi, P.; Yuan, J.; Jia, Q.; Pi, C.; Chen, T.; Xiong, L.; Chen, J.; Tang, J.; et al. α7 Nicotinic acetylcholine receptor: A key receptor in the cholinergic anti-inflammatory pathway exerting an antidepressant effect. J. Neuroinflammation 2023, 20, 84. [Google Scholar] [CrossRef]
- Sam, C.; Bordoni, B. Physiology, Acetylcholine. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar] [PubMed]
- Changeux, J.P. Discovery of the First Neurotransmitter Receptor: The Acetylcholine Nicotinic Receptor. Biomolecules 2020, 10, 547. [Google Scholar] [CrossRef]
- Sofuoglu, M.; Mooney, M. Cholinergic functioning in stimulant addiction: Implications for medications development. CNS Drugs 2009, 23, 939–952. [Google Scholar] [CrossRef] [PubMed]
- Rajmohan, R.; Reddy, P.H. Amyloid-Beta and Phosphorylated Tau Accumulations Cause Abnormalities at Synapses of Alzheimer’s disease Neurons. J. Alzheimers Dis. 2017, 57, 975–999. [Google Scholar] [CrossRef] [PubMed]
- Moreira, N.C.D.S.; Lima, J.E.B.F.; Marchiori, M.F.; Carvalho, I.; Sakamoto-Hojo, E.T. Neuroprotective Effects of Cholinesterase Inhibitors: Current Scenario in Therapies for Alzheimer’s Disease and Future Perspectives. J. Alzheimer’s Dis. Rep. 2022, 6, 177–193. [Google Scholar] [CrossRef]
- Gallowitsch-Puerta, M.; Pavlov, V.A. Neuro-immune interactions via the cholinergic anti-inflammatory pathway. Life Sci. 2007, 80, 2325–2329. [Google Scholar] [CrossRef]
- de Oliveira, J.; Kucharska, E.; Garcez, M.L.; Rodrigues, M.S.; Quevedo, J.; Moreno-Gonzalez, I.; Budni, J. Inflammatory Cascade in Alzheimer’s Disease Pathogenesis: A Review of Experimental Findings. Cells 2021, 10, 2581. [Google Scholar] [CrossRef]
- Zieneldien, T.; Kim, J.; Sawmiller, D.; Cao, C. The Immune System as a Therapeutic Target for Alzheimer’s Disease. Life 2022, 12, 1440. [Google Scholar] [CrossRef] [PubMed]
- Ferreira-Vieira, T.H.; Guimaraes, I.M.; Silva, F.R.; Ribeiro, F.M. Alzheimer’s disease: Targeting the Cholinergic System. Curr. Neuropharmacol. 2016, 14, 101–115. [Google Scholar] [CrossRef]
- Chen, Z.R.; Huang, J.B.; Yang, S.L.; Hong, F.F. Role of Cholinergic Signaling in Alzheimer’s Disease. Molecules 2022, 27, 1816. [Google Scholar] [CrossRef]
- Stanciu, G.D.; Luca, A.; Rusu, R.N.; Bild, V.; Chiriac, B.S.I.; Solcan, C.; Bild, W.; Ababei, D.C. Alzheimer’s Disease Pharmacotherapy in Relation to Cholinergic System Involvement. Biomolecules 2020, 10, 40. [Google Scholar] [CrossRef]
- Fujii, T.; Mashimo, M.; Moriwaki, Y.; Misawa, H.; Ono, S.; Horiguchi, K.; Kawashima, K. Expression and Function of the Cholinergic System in Immune Cells. Front. Immunol. 2017, 8, 1085. [Google Scholar] [CrossRef]
- Xiong, L.; Nutt, S.L.; Seillet, C. Innate lymphoid cells: More than just immune cells. Front. Immunol. 2022, 13, 1033904. [Google Scholar] [CrossRef] [PubMed]
- Klose, C.S.N.; Artis, D. Innate lymphoid cells control signaling circuits to regulate tissue-specific immunity. Cell Res. 2020, 30, 475–491. [Google Scholar] [CrossRef] [PubMed]
- Roberts, L.B.; Schnoeller, C.; Berkachy, R.; Darby, M.; Pillaye, J.; Oudhoff, M.J.; Parmar, N.; Mackowiak, C.; Sedda, D.; Quesniaux, V.; et al. Acetylcholine production by group 2 innate lymphoid cells promotes mucosal immunity to helminths. Sci. Immunol. 2021, 6, eabd0359. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Ryu, S.; Kim, H.Y. Innate Lymphoid Cells in Tissue Homeostasis and Disease Pathogenesis. Mol. Cells 2021, 44, 301–309. [Google Scholar] [CrossRef] [PubMed]
- Baban, B.; Malik, A.; Bhatia, J.; Yu, J.C. Presence and Profile of Innate Lymphoid Cells in Human Breast Milk. JAMA Pediatr. 2018, 172, 594–596. [Google Scholar] [CrossRef]
- Willinger, T. Metabolic Control of Innate Lymphoid Cell Migration. Front. Immunol. 2019, 10, 2010. [Google Scholar] [CrossRef]
- Meininger, I.; Carrasco, A.; Rao, A.; Soini, T.; Kokkinou, E.; Mjösberg, J. Tissue-Specific Features of Innate Lymphoid Cells. Trends Immunol. 2020, 41, 902–917. [Google Scholar] [CrossRef]
- Baban, B.; Braun, M.; Khodadadi, H.; Ward, A.; Alverson, K.; Malik, A.; Nguyen, K.; Nazarian, S.; Hess, D.C.; Forseen, S.; et al. AMPK induces regulatory innate lymphoid cells after traumatic brain injury. JCI Insight 2021, 6, e126766. [Google Scholar] [CrossRef]
- Huang, Q.; Seillet, C.; Belz, G.T. Shaping Innate Lymphoid Cell Diversity. Front. Immunol. 2017, 8, 1569. [Google Scholar] [CrossRef]
- Ignacio, A.; Breda, C.N.S.; Camara, N.O.S. Innate lymphoid cells in tissue homeostasis and diseases. World J. Hepatol. 2017, 9, 979–989. [Google Scholar] [CrossRef]
- Yeung, S.S.; Ho, Y.S.; Chang, R.C. The role of meningeal populations of type II innate lymphoid cells in modulating neuroinflammation in neurodegenerative diseases. Exp. Mol. Med. 2021, 53, 1251–1267. [Google Scholar] [CrossRef] [PubMed]
- Fung, I.T.H.; Sankar, P.; Zhang, Y.; Robison, L.S.; Zhao, X.; D’Souza, S.S.; Salinero, A.E.; Wang, Y.; Qian, J.; Kuentzel, M.L.; et al. Activation of group 2 innate lymphoid cells alleviates aging-associated cognitive decline. J. Exp. Med. 2020, 217, e20190915. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; van de Pavert, S.A. Innate Lymphoid Cells in the Central Nervous System. Front. Immunol. 2022, 13, 837250. [Google Scholar] [CrossRef] [PubMed]
- Mamuladze, T.; Kipnis, J. Type 2 immunity in the brain and brain borders. Cell Mol. Immunol. 2023, 20, 1290–1299. [Google Scholar] [CrossRef]
- Xiong, Y.; Lim, C.S. Understanding the Modulatory Effects of Cannabidiol on Alzheimer’s Disease. Brain Sci. 2021, 11, 1211. [Google Scholar] [CrossRef]
- Xu, Z.Q.; Zhang, J.J.; Kong, N.; Zhang, G.Y.; Ke, P.; Han, T.; Su, D.F.; Liu, C. Autophagy is Involved in Neuroprotective Effect of Alpha7 Nicotinic Acetylcholine Receptor on Ischemic Stroke. Front. Pharmacol. 2021, 12, 676589. [Google Scholar] [CrossRef]
- Han, B.; Li, X.; Hao, J. The cholinergic anti-inflammatory pathway: An innovative treatment strategy for neurological diseases. Neurosci. Biobehav. Rev. 2017, 77, 358–368. [Google Scholar] [CrossRef]
- Barichello, T. The role of innate lymphoid cells (ILCs) in mental health. Discov. Ment. Health. 2022, 2, 2. [Google Scholar] [CrossRef]
- Grigg, J.B.; Shanmugavadivu, A.; Regen, T.; Parkhurst, C.N.; Ahmed, A.; Joseph, A.M.; Mazzucco, M.; Gronke, K.; Diefenbach, A.; Eberl, G.; et al. Antigen-presenting innate lymphoid cells orchestrate neuroinflammation. Nature 2021, 600, 707–712. [Google Scholar] [CrossRef]
- Si, Y.; Zhang, Y.; Zuloaga, K.; Yang, Q. The role of innate lymphocytes in regulating brain and cognitive function. Neurobiol. Dis. 2023, 179, 106061. [Google Scholar] [CrossRef]
- Khodadadi, H.; Salles, É.L.; Alptekin, A.; Mehrabian, D.; Rutkowski, M.; Arbab, A.S.; Yeudall, W.A.; Yu, J.C.; Morgan, J.C.; Hess, D.C.; et al. Inhalant Cannabidiol Inhibits Glioblastoma Progression Through Regulation of Tumor Microenvironment. Cannabis Cannabinoid Res. 2023, 8, 824–834. [Google Scholar] [CrossRef] [PubMed]
- Bhandari, B.; Chagas, H.I.S.; Naeini, S.E.; Chagas, P.S.; Rogers, H.M.; Gouron, J.; Khan, A.; Maciel, L.M.; Seyyedi, M.; MacKinnon, N.J.; et al. Cannabidiol reverses fentanyl-induced addiction and modulates neuroinflammation. bioRxiv 2024. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khodadadi, H.; Salles, É.L.; Naeini, S.E.; Bhandari, B.; Rogers, H.M.; Gouron, J.; Meeks, W.; Terry, A.V., Jr.; Pillai, A.; Yu, J.C.; et al. Boosting Acetylcholine Signaling by Cannabidiol in a Murine Model of Alzheimer’s Disease. Int. J. Mol. Sci. 2024, 25, 11764. https://doi.org/10.3390/ijms252111764
Khodadadi H, Salles ÉL, Naeini SE, Bhandari B, Rogers HM, Gouron J, Meeks W, Terry AV Jr., Pillai A, Yu JC, et al. Boosting Acetylcholine Signaling by Cannabidiol in a Murine Model of Alzheimer’s Disease. International Journal of Molecular Sciences. 2024; 25(21):11764. https://doi.org/10.3390/ijms252111764
Chicago/Turabian StyleKhodadadi, Hesam, Évila Lopes Salles, Sahar Emami Naeini, Bidhan Bhandari, Hannah M. Rogers, Jules Gouron, William Meeks, Alvin V. Terry, Jr., Anilkumar Pillai, Jack C. Yu, and et al. 2024. "Boosting Acetylcholine Signaling by Cannabidiol in a Murine Model of Alzheimer’s Disease" International Journal of Molecular Sciences 25, no. 21: 11764. https://doi.org/10.3390/ijms252111764
APA StyleKhodadadi, H., Salles, É. L., Naeini, S. E., Bhandari, B., Rogers, H. M., Gouron, J., Meeks, W., Terry, A. V., Jr., Pillai, A., Yu, J. C., Morgan, J. C., Vaibhav, K., Hess, D. C., Dhandapani, K. M., Wang, L. P., & Baban, B. (2024). Boosting Acetylcholine Signaling by Cannabidiol in a Murine Model of Alzheimer’s Disease. International Journal of Molecular Sciences, 25(21), 11764. https://doi.org/10.3390/ijms252111764