Nlrp3 Deficiency Does Not Substantially Affect Femoral Fracture Healing in Mice
Abstract
:1. Introduction
2. Results
2.1. X-Ray
2.2. Biomechanics
2.3. µCT
2.4. Histology and Histomorphometry
2.5. Immunohistochemistry
2.6. Western Blot
3. Discussion
4. Materials and Methods
4.1. Animals
4.2. Surgical Procedure
4.3. X-Ray
4.4. Biomechanics
4.5. µCT
4.6. Histology and Histomorphometry
4.7. Immunohistochemistry
4.8. Western Blot
4.9. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Einhorn, T.A.; Gerstenfeld, L.C. Fracture healing: Mechanisms and interventions. Nat. Rev. Rheumatol. 2015, 11, 45–54. [Google Scholar] [CrossRef] [PubMed]
- Victoria, G.; Petrisor, B.; Drew, B.; Dick, D. Bone stimulation for fracture healing: What’s all the fuss? Indian. J. Orthop. 2009, 43, 117–120. [Google Scholar] [CrossRef] [PubMed]
- Menger, M.M.; Laschke, M.W.; Nussler, A.K.; Menger, M.D.; Histing, T. The vascularization paradox of non-union formation. Angiogenesis 2022, 25, 279–290. [Google Scholar] [CrossRef] [PubMed]
- Hak, D.J.; Fitzpatrick, D.; Bishop, J.A.; Marsh, J.L.; Tilp, S.; Schnettler, R.; Simpson, H.; Alt, V. Delayed union and nonunions: Epidemiology, clinical issues, and financial aspects. Injury 2014, 45 (Suppl. S2), S3–S7. [Google Scholar] [CrossRef] [PubMed]
- Medhat, D.; Rodriguez, C.I.; Infante, A. Immunomodulatory Effects of MSCs in Bone Healing. Int. J. Mol. Sci. 2019, 20, 5467. [Google Scholar] [CrossRef]
- Loi, F.; Cordova, L.A.; Pajarinen, J.; Lin, T.H.; Yao, Z.; Goodman, S.B. Inflammation, fracture and bone repair. Bone 2016, 86, 119–130. [Google Scholar] [CrossRef]
- Hankenson, K.D.; Zimmerman, G.; Marcucio, R. Biological perspectives of delayed fracture healing. Injury 2014, 45 (Suppl. S2), S8–S15. [Google Scholar] [CrossRef]
- Menger, M.M.; Laschke, M.W.; Scheuer, C.; Bauer, D.; Bleimehl, M.; Spater, T.; Rollmann, M.F.; Braun, B.J.; Herath, S.C.; Raza, A.; et al. Establishment of a reliable model to study the failure of fracture healing in aged mice. J. Gerontol. A Biol. Sci. Med. Sci. 2022, 77, 909–917. [Google Scholar] [CrossRef]
- Kelley, N.; Jeltema, D.; Duan, Y.; He, Y. The NLRP3 Inflammasome: An Overview of Mechanisms of Activation and Regulation. Int. J. Mol. Sci. 2019, 20, 3328. [Google Scholar] [CrossRef]
- Broz, P.; Dixit, V.M. Inflammasomes: Mechanism of assembly, regulation and signalling. Nat. Rev. Immunol. 2016, 16, 407–420. [Google Scholar] [CrossRef]
- Wrublewsky, S.; Speer, T.; Nalbach, L.; Boewe, A.S.; Pack, M.; Alansary, D.; Roma, L.P.; Hoffmann, M.D.A.; Schmitt, B.M.; Weinzierl, A.; et al. Targeting Pancreatic Islet NLRP3 Improves Islet Graft Revascularization. Diabetes 2022, 71, 1706–1720. [Google Scholar] [CrossRef] [PubMed]
- Detzen, L.; Cheat, B.; Besbes, A.; Hassan, B.; Marchi, V.; Baroukh, B.; Lesieur, J.; Sadoine, J.; Torrens, C.; Rochefort, G.; et al. NLRP3 is involved in long bone edification and the maturation of osteogenic cells. J. Cell Physiol. 2021, 236, 4455–4469. [Google Scholar] [CrossRef] [PubMed]
- Menger, M.M.; Laschke, M.W.; Orth, M.; Pohlemann, T.; Menger, M.D.; Histing, T. Vascularization strategies in the prevention of non-union formation. Tissue Eng. Part. B Rev. 2021, 27, 107–132. [Google Scholar] [CrossRef] [PubMed]
- Kushioka, J.; Chow, S.K.; Toya, M.; Tsubosaka, M.; Shen, H.; Gao, Q.; Li, X.; Zhang, N.; Goodman, S.B. Bone regeneration in inflammation with aging and cell-based immunomodulatory therapy. Inflamm. Regen. 2023, 43, 29. [Google Scholar] [CrossRef]
- Lopez, E.M.; Leclerc, K.; Ramsukh, M.; Parente, P.E.; Patel, K.; Aranda, C.J.; Josephson, A.M.; Remark, L.H.; Kirby, D.J.; Buchalter, D.B.; et al. Modulating the systemic and local adaptive immune response after fracture improves bone regeneration during aging. Bone 2022, 157, 116324. [Google Scholar] [CrossRef]
- Alippe, Y.; Kress, D.; Ricci, B.; Sun, K.; Yang, T.; Wang, C.; Xiao, J.; Abu-Amer, Y.; Mbalaviele, G. Actions of the NLRP3 and NLRC4 inflammasomes overlap in bone resorption. FASEB J. 2021, 35, e21837. [Google Scholar] [CrossRef]
- Li, H.; Zhong, X.; Chen, Z.; Li, W. Suppression of NLRP3 inflammasome improves alveolar bone defect healing in diabetic rats. J. Orthop. Surg. Res. 2019, 14, 167. [Google Scholar] [CrossRef]
- Sun, K.; Wang, C.; Xiao, J.; Brodt, M.D.; Yuan, L.; Yang, T.; Alippe, Y.; Hu, H.; Hao, D.; Abu-Amer, Y.; et al. Fracture healing is delayed in the absence of gasdermin-interleukin-1 signaling. eLife 2022, 11, e75753. [Google Scholar] [CrossRef]
- Lange, J.; Sapozhnikova, A.; Lu, C.; Hu, D.; Li, X.; Miclau, T., 3rd; Marcucio, R.S. Action of IL-1beta during fracture healing. J. Orthop. Res. 2010, 28, 778–784. [Google Scholar] [CrossRef]
- Lin, G.L.; Hankenson, K.D. Integration of BMP, Wnt, and notch signaling pathways in osteoblast differentiation. J. Cell Biochem. 2011, 112, 3491–3501. [Google Scholar] [CrossRef]
- Komori, T. Regulation of Proliferation, Differentiation and Functions of Osteoblasts by Runx2. Int. J. Mol. Sci. 2019, 20, 1694. [Google Scholar] [CrossRef] [PubMed]
- Rivera, J.C.; Strohbach, C.A.; Wenke, J.C.; Rathbone, C.R. Beyond osteogenesis: An in vitro comparison of the potentials of six bone morphogenetic proteins. Front. Pharmacol. 2013, 4, 125. [Google Scholar] [CrossRef] [PubMed]
- Histing, T.; Marciniak, K.; Scheuer, C.; Garcia, P.; Holstein, J.H.; Klein, M.; Matthys, R.; Pohlemann, T.; Menger, M.D. Sildenafil accelerates fracture healing in mice. J. Orthop. Res. 2011, 29, 867–873. [Google Scholar] [CrossRef] [PubMed]
- Teitelbaum, S.L. Osteoclasts: What do they do and how do they do it? Am. J. Pathol. 2007, 170, 427–435. [Google Scholar] [CrossRef]
- Charles, J.F.; Aliprantis, A.O. Osteoclasts: More than ‘bone eaters’. Trends Mol. Med. 2014, 20, 449–459. [Google Scholar] [CrossRef]
- Meng, J.; Li, N.; Liu, X.; Qiao, S.; Zhou, Q.; Tan, J.; Zhang, T.; Dong, Z.; Qi, X.; Kijlstra, A.; et al. NLRP3 Attenuates Intraocular Inflammation by Inhibiting AIM2-Mediated Pyroptosis Through the Phosphorylated Salt-Inducible Kinase 1/Sterol Regulatory Element Binding Transcription Factor 1 Pathway. Arthritis Rheumatol. 2023, 75, 842–855. [Google Scholar] [CrossRef]
- Carobbio, S.; Hagen, R.M.; Lelliott, C.J.; Slawik, M.; Medina-Gomez, G.; Tan, C.Y.; Sicard, A.; Atherton, H.J.; Barbarroja, N.; Bjursell, M.; et al. Adaptive changes of the Insig1/SREBP1/SCD1 set point help adipose tissue to cope with increased storage demands of obesity. Diabetes 2013, 62, 3697–3708. [Google Scholar] [CrossRef]
- Garay-Lugo, N.; Dominguez-Lopez, A.; Miliar Garcia, A.; Aguilar Barrera, E.; Gomez Lopez, M.; Gomez Alcala, A.; Martinez Godinez Mde, L.; Lara-Padilla, E. n-3 Fatty acids modulate the mRNA expression of the Nlrp3 inflammasome and Mtor in the liver of rats fed with high-fat or high-fat/fructose diets. Immunopharmacol. Immunotoxicol. 2016, 38, 353–363. [Google Scholar] [CrossRef]
- Hurst, S.M.; Wilkinson, T.S.; McLoughlin, R.M.; Jones, S.; Horiuchi, S.; Yamamoto, N.; Rose-John, S.; Fuller, G.M.; Topley, N.; Jones, S.A. Il-6 and its soluble receptor orchestrate a temporal switch in the pattern of leukocyte recruitment seen during acute inflammation. Immunity 2001, 14, 705–714. [Google Scholar] [CrossRef]
- Wang, Q.S.; Ding, H.G.; Chen, S.L.; Liu, X.Q.; Deng, Y.Y.; Jiang, W.Q.; Li, Y.; Huang, L.Q.; Han, Y.L.; Wen, M.Y.; et al. Hypertonic saline mediates the NLRP3/IL-1beta signaling axis in microglia to alleviate ischemic blood-brain barrier permeability by downregulating astrocyte-derived VEGF in rats. CNS Neurosci. Ther. 2020, 26, 1045–1057. [Google Scholar] [CrossRef]
- Chai, G.; Liu, S.; Yang, H.; Du, G.; Chen, X. NLRP3 Blockade Suppresses Pro-Inflammatory and Pro-Angiogenic Cytokine Secretion in Diabetic Retinopathy. Diabetes Metab. Syndr. Obes. 2020, 13, 3047–3058. [Google Scholar] [CrossRef] [PubMed]
- Deng, Y.; Han, X.; Yao, Z.; Sun, Y.; Yu, J.; Cai, J.; Ren, G.; Jiang, G.; Han, F. PPARalpha Agonist Stimulated Angiogenesis by Improving Endothelial Precursor Cell Function Via a NLRP3 Inflammasome Pathway. Cell Physiol. Biochem. 2017, 42, 2255–2266. [Google Scholar] [CrossRef] [PubMed]
- Kanczler, J.M.; Oreffo, R.O. Osteogenesis and angiogenesis: The potential for engineering bone. Eur. Cell Mater. 2008, 15, 100–114. [Google Scholar] [CrossRef] [PubMed]
- Schlundt, C.; Bucher, C.H.; Tsitsilonis, S.; Schell, H.; Duda, G.N.; Schmidt-Bleek, K. Clinical and Research Approaches to Treat Non-union Fracture. Curr. Osteoporos. Rep. 2018, 16, 155–168. [Google Scholar] [CrossRef] [PubMed]
- Bahney, C.S.; Zondervan, R.L.; Allison, P.; Theologis, A.; Ashley, J.W.; Ahn, J.; Miclau, T.; Marcucio, R.S.; Hankenson, K.D. Cellular biology of fracture healing. J. Orthop. Res. 2019, 37, 35–50. [Google Scholar] [CrossRef]
- Murnaghan, M.; Li, G.; Marsh, D.R. Nonsteroidal anti-inflammatory drug-induced fracture nonunion: An inhibition of angiogenesis? J. Bone Joint Surg. Am. 2006, 88 (Suppl. S3), 140–147. [Google Scholar] [CrossRef]
- Fassbender, M.; Strobel, C.; Rauhe, J.S.; Bergmann, C.; Schmidmaier, G.; Wildemann, B. Local inhibition of angiogenesis results in an atrophic non-union in a rat osteotomy model. Eur. Cell Mater. 2011, 22, 1–11. [Google Scholar] [CrossRef]
- Holstein, J.H.; Matthys, R.; Histing, T.; Becker, S.C.; Fiedler, M.; Garcia, P.; Meier, C.; Pohlemann, T.; Menger, M.D. Development of a stable closed femoral fracture model in mice. J. Surg. Res. 2009, 153, 71–75. [Google Scholar] [CrossRef]
- Menger, M.M.; Manuschewski, R.; Ehnert, S.; Rollmann, M.F.; Maisenbacher, T.C.; Tobias, A.L.; Menger, M.D.; Laschke, M.W.; Histing, T. Radiographic, Biomechanical and Histological Characterization of Femoral Fracture Healing in Aged CD-1 Mice. Bioengineering 2023, 10, 275. [Google Scholar] [CrossRef]
- Menger, M.M.; Emmerich, M.; Scheuer, C.; Hans, S.; Braun, B.J.; Herath, S.C.; Rollmann, M.F.; Menger, M.D.; Laschke, M.W.; Histing, T. Sildenafil delays bone remodeling of fractured femora in aged mice by reducing the number and activity of osteoclasts within the callus tissue. Biomed. Pharmacother. 2024, 173, 116291. [Google Scholar] [CrossRef]
- Menger, M.M.; Emmerich, M.; Scheuer, C.; Hans, S.; Ehnert, S.; Nussler, A.K.; Herath, S.C.; Steinestel, K.; Menger, M.D.; Histing, T.; et al. Cilostazol Stimulates Angiogenesis and Accelerates Fracture Healing in Aged Male and Female Mice by Increasing the Expression of PI3K and RUNX2. Int. J. Mol. Sci. 2024, 25, 755. [Google Scholar] [CrossRef] [PubMed]
- Gerstenfeld, L.C.; Wronski, T.J.; Hollinger, J.O.; Einhorn, T.A. Application of histomorphometric methods to the study of bone repair. J. Bone Miner. Res. 2005, 20, 1715–1722. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Menger, M.M.; Speicher, R.; Hans, S.; Histing, T.; El Kayali, M.K.D.; Ehnert, S.; Menger, M.D.; Ampofo, E.; Wrublewsky, S.; Laschke, M.W. Nlrp3 Deficiency Does Not Substantially Affect Femoral Fracture Healing in Mice. Int. J. Mol. Sci. 2024, 25, 11788. https://doi.org/10.3390/ijms252111788
Menger MM, Speicher R, Hans S, Histing T, El Kayali MKD, Ehnert S, Menger MD, Ampofo E, Wrublewsky S, Laschke MW. Nlrp3 Deficiency Does Not Substantially Affect Femoral Fracture Healing in Mice. International Journal of Molecular Sciences. 2024; 25(21):11788. https://doi.org/10.3390/ijms252111788
Chicago/Turabian StyleMenger, Maximilian M., Rouven Speicher, Sandra Hans, Tina Histing, Moses K. D. El Kayali, Sabrina Ehnert, Michael D. Menger, Emmanuel Ampofo, Selina Wrublewsky, and Matthias W. Laschke. 2024. "Nlrp3 Deficiency Does Not Substantially Affect Femoral Fracture Healing in Mice" International Journal of Molecular Sciences 25, no. 21: 11788. https://doi.org/10.3390/ijms252111788
APA StyleMenger, M. M., Speicher, R., Hans, S., Histing, T., El Kayali, M. K. D., Ehnert, S., Menger, M. D., Ampofo, E., Wrublewsky, S., & Laschke, M. W. (2024). Nlrp3 Deficiency Does Not Substantially Affect Femoral Fracture Healing in Mice. International Journal of Molecular Sciences, 25(21), 11788. https://doi.org/10.3390/ijms252111788