The Effects of Lead and Cross-Talk Between Lead and Pea Aphids on Defence Responses of Pea Seedlings
Abstract
:1. Introduction
2. Results
2.1. Effects of Lead and A. pisum on the Growth of Pea Seedlings
2.2. Effects of Lead and A. pisum on Semiquinone Radical and Manganese Ion Concentrations in Pea Seedlings
2.3. Effects of Lead and A. pisum on Concentrations of Phytohormones
2.4. Effects of Lead and A. pisum on Pisatin Content in Pea Seedlings
2.5. Effects of Lead and A. pisum on Soluble Sugar Content in Pea Seedlings
2.6. Effects of Lead and A. pisum on Acid Invertase and Alkaline Invertase Activities
2.7. Correlation Coefficients Between Observed Traits in Relation to Roots and Leaves of Pea Seedlings in the Context of the Effects of Lead and A. pisum
2.8. Effects of Lead and A. pisum on Expression Levels of Isoflavone Synthase (IFS) and 6α-Hydroxymaackiain 3-O-Methyltransferase (HMM) in Roots and Leaves of Pea Seedlings
3. Discussion
4. Materials and Methods
4.1. Plant Material and Growth Conditions
4.2. Aphids and Infestation Experiment
4.3. Morphometric Measurements of the Epicotyl and Roots of Pea Seedlings
4.4. Determination of Semiquinone Radical and Manganese Ion Concentrations
4.5. Detection of Phytohormones and Pisatin Concentrations
4.6. Determination of Sucrose, Glucose and Total Soluble Sugar Contents
4.7. Extraction and Activity Assay of Invertases
4.8. Extraction of Total RNA and Analysis Using Reverse Transcription Polymerase Chain Reaction (RT-qPCR)
4.9. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Agathokleous, E.; Calabrese, E.J. Hormesis: The Dose Response for the 21st Century: The Future Has Arrived. Toxicology 2019, 425, 152249. [Google Scholar] [CrossRef] [PubMed]
- Calabrese, E.J. Hormesis and Medicine. Br. J. Clin. Pharma 2008, 66, 594–617. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.-R.; Tian, Y.; Wang, X.-R.; Yu, H.-X.; Lu, X.-W.; Wang, C.; Wang, H. Hormesis Effects and Implicative Application in Assessment of Lead-Contaminated Soils in Roots of Vicia Faba Seedlings. Chemosphere 2010, 80, 965–971. [Google Scholar] [CrossRef] [PubMed]
- Yu, R.; He, L.; Cai, R.; Li, B.; Li, Z.; Yang, K. Heavy Metal Pollution and Health Risk in China. Glob. Health J. 2017, 1, 47–55. [Google Scholar] [CrossRef]
- Pinho, S.; Ladeiro, B. Phytotoxicity by Lead as Heavy Metal Focus on Oxidative Stress. J. Bot. 2012, 2012, 369572. [Google Scholar] [CrossRef]
- Verma, S.; Dubey, R.S. Lead Toxicity Induces Lipid Peroxidation and Alters the Activities of Antioxidant Enzymes in Growing Rice Plants. Plant Sci. 2003, 164, 645–655. [Google Scholar] [CrossRef]
- Morkunas, I.; Woźniak, A.; Mai, V.; Rucińska-Sobkowiak, R.; Jeandet, P. The Role of Heavy Metals in Plant Response to Biotic Stress. Molecules 2018, 23, 2320. [Google Scholar] [CrossRef]
- Salinitro, M.; Mattarello, G.; Guardigli, G.; Odajiu, M.; Tassoni, A. Induction of Hormesis in Plants by Urban Trace Metal Pollution. Sci. Rep. 2021, 11, 20329. [Google Scholar] [CrossRef]
- Woźniak, A.; Kęsy, J.; Glazińska, P.; Glinkowski, W.; Narożna, D.; Bocianowski, J.; Rucińska-Sobkowiak, R.; Mai, V.C.; Krzesiński, W.; Samardakiewicz, S.; et al. The Influence of Lead and Acyrthosiphon pisum (Harris) on Generation of Pisum sativum Defense Signaling Molecules and Expression of Genes Involved in Their Biosynthesis. Int. J. Mol. Sci. 2023, 24, 10671. [Google Scholar] [CrossRef]
- Davies, J.M.S.; Lowry, C.V.; Davies, K.J.A. Transient Adaptation to Oxidative Stress in Yeast. Arch. Biochem. Biophys. 1995, 317, 1–6. [Google Scholar] [CrossRef]
- Morkunas, I.; Woźniak, A.; Formela, M.; Mai, V.C.; Marczak, Ł.; Narożna, D.; Borowiak-Sobkowiak, B.; Kühn, C.; Grimm, B. Pea Aphid Infestation Induces Changes in Flavonoids, Antioxidative Defence, Soluble Sugars and Sugar Transporter Expression in Leaves of Pea Seedlings. Protoplasma 2016, 253, 1063–1079. [Google Scholar] [CrossRef] [PubMed]
- Mai, V.C.; Bednarski, W.; Borowiak-Sobkowiak, B.; Wilkaniec, B.; Samardakiewicz, S.; Morkunas, I. Oxidative Stress in Pea Seedling Leaves in Response to Acyrthosiphon pisum Infestation. Phytochemistry 2013, 93, 49–62. [Google Scholar] [CrossRef] [PubMed]
- Pettersson, J.; Tjallingii, W.F.; Hardie, J. Host-Plant Selection and Feeding. In Aphids as Crop Pests; van Emden, H.F., Harrington, R., Eds.; CABI: Wallingford, UK, 2007; pp. 87–113. [Google Scholar]
- Tjallingii, W.F.; Esch, T.H. Fine Structure of Aphid Stylet Routes in Plant Tissues in Correlation with EPG Signals. Physiol. Entomol. 1993, 18, 317–328. [Google Scholar] [CrossRef]
- De Vos, M.; Jander, G. Myzus Persicae (Green Peach Aphid) Salivary Components Induce Defence Responses in Arabidopsis thaliana. Plant Cell Environ. 2009, 32, 1548–1560. [Google Scholar] [CrossRef] [PubMed]
- DiCenzo, G.L.; VanEtten, H.D. Studies on the Late Steps of (+) Pisatin Biosynthesis: Evidence for (−) Enantiomeric Intermediates. Phytochemistry 2006, 67, 675–683. [Google Scholar] [CrossRef]
- Cruickshank, I.A.; Perrin, D.R. Isolation of a Phytoalexin from Pisum sativum L. Nature 1960, 187, 799–800. [Google Scholar] [CrossRef]
- Dixon, A.F.G. Aphid Ecology; Chapman & Hall: London, UK, 1998. [Google Scholar]
- Jeandet, P. Phytoalexins: Current Progress and Future Prospects. Molecules 2015, 20, 2770–2774. [Google Scholar] [CrossRef]
- Bolouri Moghaddam, M.R.; Van Den Ende, W. Sweet Immunity in the Plant Circadian Regulatory Network. J. Exp. Bot. 2013, 64, 1439–1449. [Google Scholar] [CrossRef]
- Foyer, C.H.; Rasool, B.; Davey, J.W.; Hancock, R.D. Cross-Tolerance to Biotic and Abiotic Stresses in Plants: A Focus on Resistance to Aphid Infestation. J. Exp. Bot. 2016, 67, 2025–2037. [Google Scholar] [CrossRef]
- Rossatto, T.; Souza, G.M.; Do Amaral, M.N.; Auler, P.A.; Pérez-Alonso, M.-M.; Pollmann, S.; Braga, E.J.B. Cross-Stress Memory: Salt Priming at Vegetative Growth Stages Improves Tolerance to Drought Stress during Grain-Filling in Rice Plants. Environ. Exp. Bot. 2023, 206, 105187. [Google Scholar] [CrossRef]
- Sandhi, R.K.; Reddy, G.V.P. Biology, Ecology, and Management Strategies for Pea Aphid (Hemiptera: Aphididae) in Pulse Crops. J. Integr. Pest Manag. 2020, 11, 18. [Google Scholar] [CrossRef]
- Tesfaye, A.; Wale, M.; Azerefegne, F. Acyrthosiphon pisum (Harris) (Homoptera: Aphididae) Feeding Preference and Performance on Cool-Season Food Legumes in Northwestern Ethiopia. Int. J. Pest Manag. 2013, 59, 319–328. [Google Scholar] [CrossRef]
- Soleimani, S.; Madadi, H. Seasonal Dynamics of: The Pea Aphid, Acyrthosiphon pisum (Harris), Its Natural Enemies the Seven Spotted Lady Beetle Coccinella septempunctata Linnaeus and Variegated Lady Beetle Hippodamia variegata Goeze, and Their Parasitoid Dinocampus Coccinellae (Schrank). J. Plant Prot. Res. 2015, 55, 421–428. [Google Scholar] [CrossRef]
- Aznar-Fernández, T.; Cimmino, A.; Masi, M.; Rubiales, D.; Evidente, A. Antifeedant Activity of Long-Chain Alcohols, and Fungal and Plant Metabolites against Pea Aphid (Acyrthosiphon pisum) as Potential Biocontrol Strategy. Nat. Prod. Res. 2019, 33, 2471–2479. [Google Scholar] [CrossRef] [PubMed]
- Schmidtberg, H.; Vilcinskas, A. Phylogeny of the Aphids. In Biology and Ecology of Aphids; CRC Press Taylor & Francis Group: Boca Raton, FL, USA, 2016; pp. 11–23. ISBN 978-0-429-16109-4. [Google Scholar]
- Srinivasan, S.M.; Pescatello, L.S.; Bhat, A.N. Current Perspectives on Physical Activity and Exercise Recommendations for Children and Adolescents with Autism Spectrum Disorders. Phys. Ther. 2014, 94, 875–889. [Google Scholar] [CrossRef]
- Paudel, S.; Bechinski, E.J.; Stokes, B.S.; Pappu, H.R.; Eigenbrode, S.D. Deriving Economic Models for Pea Aphid (Hemiptera: Aphididae) as a Direct-Pest and a Virus-Vector on Commercial Lentils. J. Econ. Entomol. 2018, 111, 2225–2232. [Google Scholar] [CrossRef]
- Rashed, A.; Feng, X.; Prager, S.M.; Porter, L.D.; Knodel, J.J.; Karasev, A.; Eigenbrode, S.D. Vector-Borne Viruses of Pulse Crops, With a Particular Emphasis on North American Cropping System. Ann. Entomol. Soc. Am. 2018, 111, 205–227. [Google Scholar] [CrossRef]
- Bhatnagar, A. Efficacy and Economics of Some Insecticides and Neem Formulations on Incidence of Pea Aphid (Acrythosiphum pisum) on Pea (Pisum sativum). Ann. Plant Prot. Sci. 1996, 4, 131–133. [Google Scholar]
- The International Aphid Genomics Consortium. Genome Sequence of the Pea Aphid Acyrthosiphon pisum. PLoS Biol. 2010, 8, e1000313. [Google Scholar] [CrossRef]
- Tang, Y.-T.; Qiu, R.-L.; Zeng, X.-W.; Ying, R.-R.; Yu, F.-M.; Zhou, X.-Y. Lead, Zinc, Cadmium Hyperaccumulation and Growth Stimulation in Arabis paniculata Franch. Environ. Exp. Bot. 2009, 66, 126–134. [Google Scholar] [CrossRef]
- Song, Y.; Buettner, G.R. Thermodynamic and Kinetic Considerations for the Reaction of Semiquinone Radicals to Form Superoxide and Hydrogen Peroxide. Free Radic. Biol. Med. 2010, 49, 919–962. [Google Scholar] [CrossRef] [PubMed]
- Rich, P.R. Electron Transfer Reactions between Quinols and Quinones in Aqueous and Aprotic Media. Biochim. Biophys. Acta BBA-Bioenerg. 1981, 637, 28–33. [Google Scholar] [CrossRef]
- Trumpower, B.L. The Protonmotive Q Cycle. Energy Transduction by Coupling of Proton Translocation to Electron Transfer by the Cytochrome Bc1 Complex. J. Biol. Chem. 1990, 265, 11409–11412. [Google Scholar] [CrossRef] [PubMed]
- War, A.R.; Paulraj, M.G.; Ahmad, T.; Buhroo, A.A.; Hussain, B.; Ignacimuthu, S.; Sharma, H.C. Mechanisms of Plant Defense against Insect Herbivores. Plant Signal. Behav. 2012, 7, 1306–1320. [Google Scholar] [CrossRef] [PubMed]
- Leszczyński, B.; Urbańska, A.; Matok, H. Plant Responses to Cereal Aphid Infestation Reakcje Roślin [Pszenicy Ozimej i Czeremchy] Na Porażenie Przez Mszyce Zbożowe. Zesz. Probl. Postępów. Nauk. Rol. 2006, 509, 385–394. [Google Scholar]
- Miles, P.W. Specific Responses and Damage Caused by Aphidoidea: Principles. In Aphids: Their Biology, Natural Enemies and Control; Elsevier: New York, NY, USA, 1989; pp. 23–47. [Google Scholar]
- Elliott, D.I.; Hodgson, C.J. The Distribution of the Vetch Aphid on Bean Stems in Relation to Stylet Length and Phloem Depth. Entomol. Exp. Appl. 1996, 78, 175–180. [Google Scholar] [CrossRef]
- Ponder, K.L.; Pritchard, J.; Harrington, R.; Bale, J.S. Feeding Behaviour of the Aphid Rhopalosiphum Padi (Hemiptera: Aphididae) on Nitrogen and Water-Stressed Barley (Hordeum vulgare) Seedlings. Bull. Entomol. Res. 2001, 91, 125–130. [Google Scholar] [CrossRef]
- Mutti, N.S. Molecular Studies of the Salivary Glands of the Pea Aphid, Acyrthosiphon pisum (Harris). Ph.D. Dissertation, Kansas State University, Manhattan, KS, USA, 2006. Available online: http://hdl.handle.net/2097/154 (accessed on 28 October 2024).
- Will, T.; Van Bel, A.J.E. Physical and Chemical Interactions between Aphids and Plants. J. Exp. Bot. 2006, 57, 729–737. [Google Scholar] [CrossRef]
- Dias, M.C.; Mariz-Ponte, N.; Santos, C. Lead Induces Oxidative Stress in Pisum sativum Plants and Changes the Levels of Phytohormones with Antioxidant Role. Plant Physiol. Biochem. 2019, 137, 121–129. [Google Scholar] [CrossRef]
- Campanella, J.J.; Larko, D.; Smalley, J. A Molecular Phylogenomic Analysis of the ILR1-Like Family of IAA Amidohydrolase Genes. Comp. Funct. Genom. 2003, 4, 584–600. [Google Scholar] [CrossRef]
- Janse Van Rensburg, H.C.; Van Den Ende, W. UDP-Glucose: A Potential Signaling Molecule in Plants? Front. Plant Sci. 2018, 8, 2230. [Google Scholar] [CrossRef] [PubMed]
- Morkunas, I.; Ratajczak, L. The Role of Sugar Signaling in Plant Defense Responses against Fungal Pathogens. Acta Physiol. Plant 2014, 36, 1607–1619. [Google Scholar] [CrossRef]
- Jeandet, P.; Formela-Luboińska, M.; Labudda, M.; Morkunas, I. The Role of Sugars in Plant Responses to Stress and Their Regulatory Function during Development. Int. J. Mol. Sci. 2022, 23, 5161. [Google Scholar] [CrossRef]
- Rolland, F.; Moore, B.; Sheen, J. Sugar Sensing and Signaling in Plants. Plant Cell 2002, 14, S185–S205. [Google Scholar] [CrossRef] [PubMed]
- Van Den Ende, W. Sugars Take a Central Position in Plant Growth, Development and, Stress Responses. A Focus on Apical Dominance. Front. Plant Sci. 2014, 5, 102866. [Google Scholar] [CrossRef]
- Bolouri Moghaddam, M.R.; Van Den Ende, W. Sugars and Plant Innate Immunity. J. Exp. Bot. 2012, 63, 3989–3998. [Google Scholar] [CrossRef]
- Wang, M.; Zang, L.; Jiao, F.; Perez-Garcia, M.-D.; Ogé, L.; Hamama, L.; Le Gourrierec, J.; Sakr, S.; Chen, J. Sugar Signaling and Post-Transcriptional Regulation in Plants: An Overlooked or an Emerging Topic? Front. Plant Sci. 2020, 11, 578096. [Google Scholar] [CrossRef]
- Sakr, S.; Wang, M.; Dédaldéchamp, F.; Perez-Garcia, M.-D.; Ogé, L.; Hamama, L.; Atanassova, R. The Sugar-Signaling Hub: Overview of Regulators and Interaction with the Hormonal and Metabolic Network. Int. J. Mol. Sci. 2018, 19, 2506. [Google Scholar] [CrossRef]
- Eveland, A.L.; Jackson, D.P. Sugars, Signalling, and Plant Development. J. Exp. Bot. 2012, 63, 3367–3377. [Google Scholar] [CrossRef]
- Ciereszko, I. Regulatory Roles of Sugars in Plant Growth and Development. Acta Soc. Bot. Pol. 2018, 87, e3583. [Google Scholar] [CrossRef]
- Doidy, J.; Grace, E.; Kühn, C.; Simon-Plas, F.; Casieri, L.; Wipf, D. Sugar Transporters in Plants and in Their Interactions with Fungi. Trends Plant Sci. 2012, 17, 413–422. [Google Scholar] [CrossRef] [PubMed]
- Van den Ende, W.; Peshev, D. Sugars as Antioxidants in Plants. In Crop Improvement Under Adverse Conditions; Tuteja, N., Gill, S.S., Eds.; Springer: New York, NY, USA, 2013; pp. 285–307. ISBN 978-1-4614-4632-3. [Google Scholar]
- Khan, A.G.; Kuek, C.; Chaudhry, T.M.; Khoo, C.S.; Hayes, W.J. Role of Plants, Mycorrhizae and Phytochelators in Heavy Metal Contaminated Land Remediation. Chemosphere 2000, 41, 197–207. [Google Scholar] [CrossRef] [PubMed]
- Preisig, C.L.; Bell, J.N.; Sun, Y.; Hrazdina, G.; Matthews, D.E.; VanEtten, H.D. Biosynthesis of the Phytoalexin Pisatin: Isoflavone Reduction and Further Metabolism of the Product Sophorol by Extracts of Pisum sativum. Plant Physiol. 1990, 94, 1444–1448. [Google Scholar] [CrossRef]
- Hadwiger, L.; Tanaka, K. A Simple and Rapid Assay for Measuring Phytoalexin Pisatin, an Indicator of Plant Defense Response in Pea (Pisum sativum L.). Bio-Protocol. 2017, 7, e2362. [Google Scholar] [CrossRef]
- Coculo, D.; Lionetti, V. The Plant Invertase/Pectin Methylesterase Inhibitor Superfamily. Front. Plant Sci. 2022, 13, 863892. [Google Scholar] [CrossRef]
- Woźniak, A.; Bednarski, W.; Dancewicz, K.; Gabryś, B.; Borowiak-Sobkowiak, B.; Bocianowski, J.; Samardakiewicz, S.; Rucińska-Sobkowiak, R.; Morkunas, I. Oxidative Stress Links Response to Lead and Acyrthosiphon pisum in Pisum sativum L. J. Plant Physiol. 2019, 240, 152996. [Google Scholar] [CrossRef] [PubMed]
- Mai, V.C.; Drzewiecka, K.; Jeleń, H.; Narożna, D.; Rucińska-Sobkowiak, R.; Kęsy, J.; Floryszak-Wieczorek, J.; Gabryś, B.; Morkunas, I. Differential Induction of Pisum sativum Defense Signaling Molecules in Response to Pea Aphid Infestation. Plant Sci. 2014, 221–222, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Davis, J. The Pea Aphis with Relation to Forage Crops. In Aphids As Crop Pests; CABI: Wallingford, UK, 1915. [Google Scholar]
- Simon, J.-C.; Rispe, C.; Sunnucks, P. Ecology and Evolution of Sex in Aphids. Trends Ecol. Evol. 2002, 17, 34–39. [Google Scholar] [CrossRef]
- Duncan, E.J.; Leask, M.P.; Dearden, P.K. The Pea Aphid (Acyrthosiphon pisum) Genome Encodes Two Divergent Early Developmental Programs. Dev. Biol. 2013, 377, 262–274. [Google Scholar] [CrossRef]
- Moran, N.A. The Evolution of Aphid Life Cycles. Annu. Rev. Entomol. 1992, 37, 321–348. [Google Scholar] [CrossRef]
- Milner, R.J. On the Occurrence of Pea Aphids, Acyrthosiphon pisum, Resistant to Isolates of the Fungal Pathogen Erynia neoaphidis. Entomol. Exp. Appl. 1982, 32, 23–27. [Google Scholar] [CrossRef]
- Milner, R.J. Distribution in Time and Space of Resistance to the Pathogenic Fungus Erynia neoaphidis in the Pea Aphid Acyrthosiphon pisum. Entomol. Exp. Appl. 1985, 37, 235–240. [Google Scholar] [CrossRef]
- Stacey, D.A.; Thomas, M.B.; Blanford, S.; Pell, J.K.; Pugh, C.; Fellowes, M.D.E. Genotype and Temperature Influence Pea Aphid Resistance to a Fungal Entomopathogen. Physiol. Entomol. 2003, 28, 75–81. [Google Scholar] [CrossRef]
- Perestrelo, R.; Silva, P.; Porto-Figueira, P.; Pereira, J.A.M.; Silva, C.; Medina, S.; Câmara, J.S. QuEChERS-Fundamentals, Relevant Improvements, Applications and Future Trends. Anal. Chim. Acta 2019, 1070, 1–28. [Google Scholar] [CrossRef]
- Antonio, C.; Larson, T.; Gilday, A.; Graham, I.; Bergström, E.; Thomas-Oates, J. Hydrophilic Interaction Chromatography/Electrospray Mass Spectrometry Analysis of Carbohydrate-related Metabolites from Arabidopsis thaliana Leaf Tissue. Rapid Commun. Mass Spectrom. 2008, 22, 1399–1407. [Google Scholar] [CrossRef] [PubMed]
- Björnesjö, K.B. Analysis of Protein-Bound Serum Polysaccharides with Anthrone Reagent. Scand. J. Clin. Lab. Investig. 1955, 6, 147–152. [Google Scholar] [CrossRef] [PubMed]
- Bradford, M.M. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Shapiro, S.S.; Wilk, M.B. An Analysis of Variance Test for Normality (Complete Samples). Biometrika 1965, 52, 591–611. [Google Scholar] [CrossRef]
- Zali, H.; Barati, A.; Pour-Aboughadareh, A.; Gholipour, A.; Koohkan, S.; Marzoghiyan, A.; Bocianowski, J.; Bujak, H.; Nowosad, K. Identification of Superior Barley Genotypes Using Selection Index of Ideal Genotype (SIIG). Plants 2023, 12, 1843. [Google Scholar] [CrossRef]
- Bocianowski, J.; Liersch, A. Multi-Environmental Evaluation of Winter Oilseed Rape Genotypic Performance Using Mixed Models. Euphytica 2021, 217, 80. [Google Scholar] [CrossRef]
- Abbasi, Z.; Majidi, M.M.; Arzani, A.; Rajabi, A.; Mashayekhi, P.; Bocianowski, J. Association of SSR Markers and Morpho-Physiological Traits Associated with Salinity Tolerance in Sugar Beet (Beta Vulgaris L.). Euphytica 2015, 205, 785–797. [Google Scholar] [CrossRef]
- VSN International. VSN International Genstat for Windows, 23rd ed.; VSN International: Hemel Hempstead, UK; London, UK, 2023. [Google Scholar]
Time | Variant | Length | Fresh Weight | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Epicotyl | Roots | Epicotyl | Roots | ||||||||||
Mean | SE | Mean | SE | Mean | SE | Mean | SE | ||||||
0 h | Control | 6.58 | ab * | 0.363 | 11.2 | a | 0.276 | 0.415 | a | 0.1017 | 0.36 | b | 0.0011 |
0.025 mM Pb (NO3)2 | 7.06 | a | 0.027 | 10.94 | ab | 0.375 | 0.455 | a | 0.0134 | 0.374 | b | 0.0006 | |
0.050 mM Pb (NO3)2 | 6.7 | ab | 0.176 | 10.76 | ab | 0.796 | 0.418 | a | 0.001 | 0.365 | b | 0.0202 | |
0.0625 mM Pb (NO3)2 | 6.64 | ab | 0.461 | 11.23 | a | 0.424 | 0.452 | a | 0.0239 | 0.411 | a | 0.0133 | |
0.1 mM Pb (NO3)2 | 6.09 | b | 0.137 | 10.51 | ab | 0.518 | 0.425 | a | 0.0353 | 0.318 | c | 0.0123 | |
0.25 mM Pb (NO3)2 | 6.29 | b | 0.018 | 9.53 | b | 0.08 | 0.385 | a | 0.0018 | 0.234 | d | 0.0056 | |
0.325 mM Pb (NO3)2 | 6.34 | ab | 0.104 | 7.51 | c | 0.468 | 0.351 | a | 0.0385 | 0.15 | e | 0.0136 | |
LSD0.05 | 0.73 | 1.42 | 0.13 | 0.035 | |||||||||
24 h | Control | 7.62 | ab | 0.092 | 11.69 | abc | 0.009 | 0.49 | abc | 0.0107 | 0.383 | ab | 0.0203 |
0.025 mM Pb (NO3)2 | 7.87 | a | 0.379 | 12.03 | ab | 0.323 | 0.541 | a | 0.0402 | 0.408 | a | 0.0665 | |
0.050 mM Pb (NO3)2 | 8.11 | a | 0.134 | 11.99 | ab | 0.289 | 0.568 | a | 0.0349 | 0.408 | a | 0.032 | |
0.0625 mM Pb (NO3)2 | 7.78 | a | 0.067 | 12.47 | a | 0.365 | 0.512 | ab | 0.0161 | 0.415 | a | 0.0393 | |
0.1 mM Pb (NO3)2 | 7.78 | a | 0.273 | 11.57 | abc | 0.109 | 0.471 | abcd | 0.0322 | 0.36 | abc | 0.0325 | |
0.25 mM Pb (NO3)2 | 7.39 | abc | 0.557 | 10.4 | bc | 0.258 | 0.442 | bcd | 0.0265 | 0.294 | c | 0.0002 | |
0.325 mM Pb (NO3)2 | 6.53 | cd | 0.584 | 6.55 | e | 0.286 | 0.376 | de | 0.0341 | 0.145 | d | 0.0144 | |
Control + aphids | 7.51 | ab | 0.309 | 11.7 | abc | 0.907 | 0.477 | abc | 0.009 | 0.347 | abc | 0.0078 | |
0.025 mM Pb (NO3)2 + aphids | 7.41 | abc | 0.292 | 12.43 | a | 0.888 | 0.474 | abc | 0.0071 | 0.326 | bc | 0.0075 | |
0.050 mM Pb (NO3)2 + aphids | 8.27 | a | 0.522 | 12.34 | a | 0.5 | 0.526 | ab | 0.0088 | 0.368 | abc | 0.0072 | |
0.0625 mM Pb (NO3)2 + aphids | 7.7 | a | 0.319 | 12.92 | a | 0.861 | 0.492 | abc | 0.0302 | 0.358 | abc | 0.0262 | |
0.1 mM Pb (NO3)2 + aphids | 7.44 | abc | 0.196 | 11.43 | abc | 0.827 | 0.412 | cde | 0.0838 | 0.316 | bc | 0.0136 | |
0.25 mM Pb (NO3)2 + aphids | 6.71 | bcd | 0.034 | 10.09 | c | 0.646 | 0.401 | cde | 0.0326 | 0.294 | c | 0.0136 | |
0.325 mM Pb (NO3)2 + aphids | 5.81 | d | 0.062 | 6.59 | d | 0.693 | 0.335 | e | 0.0209 | 0.127 | d | 0.0088 | |
LSD0.05 | 0.95 | 1.672 | 0.097 | 0.077 | |||||||||
48 h | Control | 8.45 | a | 0.08 | 12.37 | a | 0.225 | 0.591 | bc | 0.0061 | 0.406 | abc | 0.0095 |
0.025 mM Pb (NO3)2 | 8.87 | a | 0.263 | 12.6 | a | 0.089 | 0.63 | ab | 0.0277 | 0.434 | abc | 0.0177 | |
0.050 mM Pb (NO3)2 | 9.32 | a | 0.019 | 12.88 | a | 0.299 | 0.67 | a | 0.0623 | 0.455 | a | 0.0482 | |
0.0625 mM Pb (NO3)2 | 9.38 | a | 0.075 | 13.17 | a | 0.195 | 0.625 | ab | 0.0276 | 0.45 | ab | 0.0448 | |
0.1 mM Pb (NO3)2 | 8.51 | a | 0.025 | 11.68 | ab | 0.298 | 0.544 | cd | 0.0061 | 0.383 | c | 0.0046 | |
0.25 mM Pb (NO3)2 | 8.3 | ab | 0.188 | 9.75 | bc | 0.552 | 0.482 | de | 0.0262 | 0.265 | d | 0.0199 | |
0.325 mM Pb (NO3)2 | 6.87 | b | 0.521 | 5.53 | d | 0.027 | 0.362 | g | 0.0029 | 0.113 | e | 0.0069 | |
Control + aphids | 8.07 | ab | 0.769 | 12.64 | a | 1.247 | 0.583 | bc | 0.0136 | 0.395 | abc | 0.0146 | |
0.025 mM Pb (NO3)2 + aphids | 8.51 | a | 0.25 | 12.71 | a | 0.522 | 0.596 | abc | 0.0136 | 0.413 | abc | 0.0136 | |
0.050 mM Pb (NO3)2 + aphids | 8.68 | a | 0.659 | 13.25 | a | 0.888 | 0.594 | abc | 0.0325 | 0.396 | abc | 0.0071 | |
0.0625 mM Pb (NO3)2 + aphids | 8.99 | a | 0.933 | 13.41 | a | 1.193 | 0.591 | bc | 0.0209 | 0.395 | abc | 0.0208 | |
0.1 mM Pb (NO3)2 + aphids | 8.27 | ab | 0.764 | 11.32 | ab | 0.927 | 0.536 | cd | 0.0136 | 0.389 | bc | 0.0069 | |
0.25 mM Pb (NO3)2 + aphids | 8.26 | ab | 0.483 | 9.08 | c | 1.474 | 0.444 | ef | 0.0382 | 0.289 | d | 0.0188 | |
0.325 mM Pb (NO3)2 + aphids | 6.79 | b | 0.917 | 5.5 | d | 0.744 | 0.366 | fg | 0.0205 | 0.122 | e | 0.0072 | |
LSD0.05 | 1.55 | 2.22 | 0.078 | 0.063 | |||||||||
72 h | Control | 9.92 | a | 0.62 | 13.66 | a | 0.298 | 0.656 | a | 0.0137 | 0.426 | ab | 0.0291 |
0.025 mM Pb (NO3)2 | 9.52 | ab | 0.7 | 13.35 | a | 0.556 | 0.656 | a | 0.0007 | 0.436 | a | 0.0011 | |
0.050 mM Pb (NO3)2 | 9.98 | a | 0.717 | 14.59 | a | 0.119 | 0.703 | a | 0.0387 | 0.447 | a | 0.007 | |
0.0625 mM Pb (NO3)2 | 10.19 | a | 0.95 | 14.35 | a | 0.54 | 0.671 | a | 0.2268 | 0.451 | a | 0.0237 | |
0.1 mM Pb (NO3)2 | 9.84 | ab | 0.401 | 12.5 | ab | 0.365 | 0.637 | a | 0.0258 | 0.389 | bc | 0.0087 | |
0.25 mM Pb (NO3)2 | 9.25 | ab | 1.017 | 10.88 | b | 0.14 | 0.582 | ab | 0.0045 | 0.318 | d | 0.0126 | |
0.325 mM Pb (NO3)2 | 8.23 | ab | 0.8 | 6.19 | c | 0.35 | 0.51 | ab | 0.0677 | 0.149 | e | 0.0202 | |
Control + aphids | 9.82 | ab | 1.55 | 13.29 | a | 1.422 | 0.63 | a | 0.0211 | 0.391 | bc | 0.0072 | |
0.025 mM Pb (NO3)2 + aphids | 9.85 | ab | 0.918 | 12.67 | ab | 1.549 | 0.641 | a | 0.0321 | 0.437 | a | 0.0088 | |
0.050 mM Pb (NO3)2 + aphids | 9.96 | a | 0.687 | 14.44 | a | 0.809 | 0.653 | a | 0.0084 | 0.432 | ab | 0.0136 | |
0.0625 mM Pb (NO3)2 + aphids | 10.1 | a | 0.587 | 14.77 | a | 0.729 | 0.699 | a | 0.0185 | 0.422 | abc | 0.0072 | |
0.1 mM Pb (NO3)2 + aphids | 9.87 | ab | 0.585 | 12.95 | ab | 0.954 | 0.605 | ab | 0.0377 | 0.379 | c | 0.0072 | |
0.25 mM Pb (NO3)2 + aphids | 9.02 | ab | 0.68 | 10.71 | b | 0.598 | 0.576 | ab | 0.0188 | 0.334 | d | 0.0208 | |
0.325 mM Pb (NO3)2 + aphids | 7.59 | b | 0.115 | 6.65 | c | 1.027 | 0.427 | b | 0.0301 | 0.124 | e | 0.0148 | |
LSD0.05 | 2.32 | 2.31 | 0.194 | 0.044 |
Gene Symbol | Gene Name | Sequence Accession Number (NCBI GenBank) | EC Number | Forward Primer | Reverse Primer | UPL Probe No |
---|---|---|---|---|---|---|
Genes encoding pisatin biosynthesis | ||||||
IFS | Isoflavone synthase | AF532999.2 | 1.14.14.87 | caagggtcttgttgtggatttct | tggcagagctgatcaacaatcc | 88 |
HMM | 6α-hydroxymaackiain 3-O-methyltransferase | U69554.1 | 2.1.1.270 | gtcccttctgctgatgctgt | agaagcaatttcacacaaaggga | 22 |
Reference gene | ||||||
PP2A | Phosphoprotein phosphatase 2A | Z25888 | 3.1.3.16 | agctctgtgaagctgttggtc | cgaacatatgcaggaaccaat | 31 |
The Roots | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Parameter | Time After Infestation | Semiquinone Radicals | Mn2+ Ions | IFS Genes | HMM Genes | ABA | SA | JA | IAA | Sucrose | Glucose | Total Soluble Sugars | Pisatin | Acid Invertase | Alkaline Invertase | |
Variant | ||||||||||||||||
+aphids | 24 h | ↑ | ↑ | ↓ | ↓ | ↓ | ↑ | ↓ | ↑ | ↓ | ↑ | ↓ | ↑ | ↓ | ↓ | |
48 h | ↑ | ↑ | ↑ | ↓ | ↓ | ↓ | ↑ | ↑ | ↑ | ↓ | ↑ | ↑ | ↓ | ↓ | ||
72 h | ↓ | ↑ | ↓ | ↑ | ↓ | ↓ | ↑ | ↓ | ↑ | ↑ | ↓ | ↓ | ↓ | ↓ | ||
+hormetic doses | 0h | ↓ | ↓ | ↓ | ↓ | ↑ | ↓ | ↑ | ↓ | ↓ | ↑ | ↑ | ↑ | ↑ | ↓ | |
24 h | ↓ | ↓ | ↓ | ↓ | ↓ | ↓ | ↓ | ↑ | ↑ | ↑ | ↑ | ↑ | ↑ | ↑ | ||
48 h | ↑ | ↑ | ↓ | ↓ | ↓ | ↑ | ↑ | ↑ | ↑ | ↑ | ↑ | ↓ | ↓ | ↑ | ||
72 h | ↓ | ↑ | ↓ | ↓ | ↓ | ↓ | ↑ | ↓ | ↑ | ↑ | ↑ | ↓ | ↑ | ↑ | ||
+hormetic doses +aphids | 24 h | ↓ | ↓ | ↓ | ↓ | ↓ | ↓ | ↓ | ↑ | ↑ | ↓ | ↓ | ↑ | ↑ | ↑ | |
48 h | ↓ | ↑ | ↓ | ↓ | ↓ | ↓ | ↑ | ↑ | ↑ | ↑ | ↑ | ↑ | ↓ | ↑ | ||
72 h | ↓ | ↑ | ↓ | ↓ | ↓ | ↑ | ↑ | ↓ | ↑ | ↑ | ↓ | ↑ | ↑ | ↑ | ||
+sublethal doses | 0 h | ↑ | ↓ | ↑ | ↑ | ↑ | ↑ | ↑ | ↓ | ↑ | ↑ | ↑ | ↑ | ↑ | ↑ | |
24 h | ↑ | ↓ | ↑ | ↑ | ↑ | ↑ | ↑ | ↑ | ↑ | ↓ | ↑ | ↑ | ↑ | ↓ | ||
48 h | ↓ | ↓ | ↑ | ↑ | ↑ | ↑ | ↓ | ↑ | ↑ | ↑ | ↑ | ↑ | ↓ | ↓ | ||
72 h | ↓ | ↓ | ↑ | ↑ | ↑ | ↑ | ↑ | ↑ | ↑ | ↑ | ↓ | ↑ | ↑ | ↑ | ||
+sublethal doses +aphids | 24 h | ↑ | ↓ | ↑ | ↑ | ↑ | ↑ | ↑ | ↑ | ↑ | ↑ | ↑ | ↑ | ↓ | ↑ | |
48 h | ↓ | ↓ | ↑ | ↑ | ↑ | ↓ | ↑ | ↑ | ↑ | ↑ | ↑ | ↑ | ↑ | ↓ | ||
72 h | ↓ | ↓ | ↑ | ↑ | ↓ | ↑ | ↑ | ↓ | ↑ | ↑ | ↓ | ↑ | ↑ | ↑ | ||
The Leaves | ||||||||||||||||
Parameter | Time After Infestation | Semiquinone Radicals | Mn2+ Ions | IFS Genes | HMM Genes | ABA | SA | JA | IAA | Sucrose | Glucose | Total Soluble Sugars | Pisatin | Acid Invertase | Alkaline Invertase | |
Variant | ||||||||||||||||
+aphids | 24 h | ↑ | ↑ | ↑ | ↑ | ↓ | ↑ | ↑ | ↓ | ↓ | ↑ | ↓ | ↑ | ↓ | ↓ | |
48 h | ↓ | ↓ | ↑ | ↑ | ↓ | ↑ | ↑ | ↓ | ↓ | ↓ | ↑ | ↑ | ↑ | ↑ | ||
72 h | ↓ | ↓ | ↑ | ↑ | ↓ | ↑ | ↑ | ↑ | ↑ | ↑ | ↑ | ↓ | ↓ | ↓ | ||
+hormetic doses | 0h | ↑ | ↑ | ↓ | ↓ | ↓ | ↓ | ↑ | ↑ | ↑ | ↑ | ↑ | ↑ | ↑ | ↑ | |
24 h | ↑ | ↓ | ↑ | ↑ | ↓ | ↑ | ↑ | ↓ | ↑ | ↑ | ↓ | ↑ | ↑ | ↑ | ||
48 h | ↓ | ↓ | ↑ | ↑ | ↓ | ↑ | ↑ | ↑ | ↑ | ↓ | ↑ | ↑ | ↑ | ↑ | ||
72 h | ↓ | ↑ | ↑ | ↑ | ↑ | ↑ | ↑ | ↑ | ↑ | ↑ | ↑ | ↑ | ↑ | ↑ | ||
+hormetic doses +aphids | 24 h | ↓ | ↓ | ↑ | ↑ | ↑ | ↑ | ↑ | ↓ | ↓ | ↑ | ↓ | ↑ | ↑ | ↑ | |
48 h | ↑ | ↑ | ↑ | ↑ | ↓ | ↑ | ↑ | ↑ | ↓ | ↓ | ↑ | ↑ | ↑ | ↑ | ||
72 h | ↓ | ↓ | ↑ | ↑ | ↓ | ↑ | ↑ | ↑ | ↑ | ↑ | ↑ | ↓ | ↓ | ↓ | ||
+sublethal doses | 0 h | ↑ | ↓ | ↑ | ↑ | ↑ | ↑ | ↑ | ↑ | ↑ | ↑ | ↑ | ↑ | ↑ | ↑ | |
24 h | ↓ | ↓ | ↑ | ↑ | ↑ | ↑ | ↑ | ↑ | ↑ | ↑ | ↑ | ↑ | ↑ | ↑ | ||
48 h | ↓ | ↓ | ↑ | ↑ | ↑ | ↑ | ↑ | ↑ | ↑ | ↑ | ↑ | ↑ | ↑ | ↓ | ||
72 h | ↓ | ↓ | ↑ | ↑ | ↓ | ↑ | ↑ | ↑ | ↑ | ↑ | ↑ | ↑ | ↓ | ↑ | ||
+sublethal doses +aphids | 24 h | ↓ | ↑ | ↑ | ↑ | ↓ | ↑ | ↑ | ↑ | ↑ | ↑ | ↑ | ↑ | ↑ | ↑ | |
48 h | ↓ | ↑ | ↑ | ↑ | ↓ | ↑ | ↑ | ↑ | ↑ | ↑ | ↑ | ↑ | ↑ | ↑ | ||
72 h | ↓ | ↓ | ↑ | ↑ | ↓ | ↑ | ↑ | ↑ | ↑ | ↑ | ↑ | ↑ | ↑ | ↑ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morkunas, I.; Woźniak, A.; Bednarski, W.; Ostrowski, A.; Kęsy, J.; Glazińska, P.; Wojciechowska, J.; Bocianowski, J.; Rucińska-Sobkowiak, R.; Mai, V.C.; et al. The Effects of Lead and Cross-Talk Between Lead and Pea Aphids on Defence Responses of Pea Seedlings. Int. J. Mol. Sci. 2024, 25, 11804. https://doi.org/10.3390/ijms252111804
Morkunas I, Woźniak A, Bednarski W, Ostrowski A, Kęsy J, Glazińska P, Wojciechowska J, Bocianowski J, Rucińska-Sobkowiak R, Mai VC, et al. The Effects of Lead and Cross-Talk Between Lead and Pea Aphids on Defence Responses of Pea Seedlings. International Journal of Molecular Sciences. 2024; 25(21):11804. https://doi.org/10.3390/ijms252111804
Chicago/Turabian StyleMorkunas, Iwona, Agnieszka Woźniak, Waldemar Bednarski, Adam Ostrowski, Jacek Kęsy, Paulina Glazińska, Julia Wojciechowska, Jan Bocianowski, Renata Rucińska-Sobkowiak, Van Chung Mai, and et al. 2024. "The Effects of Lead and Cross-Talk Between Lead and Pea Aphids on Defence Responses of Pea Seedlings" International Journal of Molecular Sciences 25, no. 21: 11804. https://doi.org/10.3390/ijms252111804
APA StyleMorkunas, I., Woźniak, A., Bednarski, W., Ostrowski, A., Kęsy, J., Glazińska, P., Wojciechowska, J., Bocianowski, J., Rucińska-Sobkowiak, R., Mai, V. C., Karolewski, Z., Labudda, M., Batista, A., & Jeandet, P. (2024). The Effects of Lead and Cross-Talk Between Lead and Pea Aphids on Defence Responses of Pea Seedlings. International Journal of Molecular Sciences, 25(21), 11804. https://doi.org/10.3390/ijms252111804