Natural Antimicrobial Agents from Algae: Current Advances and Future Directions
Abstract
:1. Introduction
2. Results
2.1. Bibliometric Impact
2.2. Co-Occurrence Analysis
- Red Cluster: This cluster focuses on the interaction between bacteria and antibiotics, including terms like “non-human”, “bacteria”, “antibiotics”, “antibiotic resistance”, “bacterial strain”, and “microbiology”. Antibiotic resistance in non-human bacteria is a growing problem exacerbated by the irrational use of antibiotics in animals. Recent studies have highlighted the prevalence of ciprofloxacin resistance in bacteria isolated from farm animals, underscoring the need to monitor and control antibiotic use in non-human settings to prevent the spread of resistance [13]. Additionally, the development of resistance is driven by the positive selection of resistant clones, with multiple molecular mechanisms involved that reduce antibiotic effectiveness [14].
- Green Cluster: This cluster addresses the chemical components and extracts of algae, with terms such as “plant extract”, “antioxidant activity”, “algal extract”, “seaweed”, “brown algae”, and “red alga”. Algal extracts have demonstrated significant antioxidant and antimicrobial properties. Red and brown algae extracts contain bioactive compounds like polyphenols and flavonoids, which are responsible for these beneficial properties [15]. These findings highlight the potential of algal extracts in pharmaceutical and food applications, emphasizing the importance of identifying and characterizing these bioactive compounds.
- Yellow Cluster: This cluster centers on the biology of algae and the biosynthesis of bioactive compounds, with terms such as “algae”, “biosynthesis”, “microorganisms”, “metabolites”, and “cell viability”. The biosynthesis of secondary metabolites in algae offers potential applications in medicine and biotechnology. Advanced techniques like electron microscopy and infrared spectroscopy are crucial for the detailed characterization of algae structure and composition, enabling a deeper understanding of their biosynthetic processes [16]. Comparative studies between algae and other organisms like yeasts and plants provide a broad perspective on the biosynthetic capabilities of algae. Detailed analysis of cell viability and the metabolites produced can also open new avenues for innovative biotechnological applications.
- Blue Cluster: This cluster focuses on water treatment and the presence of antibiotics in aquatic environments, with key terms such as “water”, “wastewater”, “antibiotics”, “water management”, and “water pollutants, chemical”. Antibiotic contamination in wastewater and natural water bodies poses a significant risk to aquatic life, including fish and invertebrates. Antibiotics have been shown to affect the microbiome of these organisms, promoting bacterial resistance [17]. Furthermore, water management strategies, such as advanced wastewater treatment, can significantly reduce the concentration of antibiotics in water, mitigating their environmental impact.
- Purple Cluster: This cluster centers on the research of new pharmacological compounds derived from algae, with terms like “unclassified drug”, “drug structure”, “seaweed”, “bioactive compounds”, and “polyketide”. Marine algae are a rich source of bioactive compounds, including polyketides and other secondary metabolites, with significant pharmacological potential. Isolation and purification techniques, such as mass spectrometry, have identified new compounds with antibacterial and anticancer activities [18]. These findings emphasize the importance of algae as a source of new pharmacological compounds and highlight the crucial role of advanced techniques in their discovery and characterization.
2.3. Analysis of Temporal Trends
2.4. Bioactive Compounds Derived from Microalgae and Cyanobacteria
2.4.1. Compounds That Inhibit Protein Synthesis
2.4.2. Compounds That Disrupt the Cell Membrane
2.4.3. Compounds with Varied Mechanisms
Organism | Identified Antimicrobial | Mechanism of Action | Reference |
---|---|---|---|
Anabaena sp. | Anabaenopeptin | Inhibits protein synthesis | [42] |
Arthorspira sp. | C-Phycocyanin | Inhibits bacterial growth | [46] |
Chlorella sp. | α-Linolenic acid | Membrane permeabilization | [38] |
Cryptomonas sp. | Crocin | Inhibits bacterial growth | [43] |
Dunaliella salina | Beta-carotene | Antioxidant action | [43] |
Euglena viridis | Clofibric acid | Interferes with lipid metabolism | [46] |
Microcystis aeruginosa | Microcystin | Inhibits protein synthesis | [50] |
Nannochloropsis oculata | EPA (Eicosapentaenoic Acid) | Alters cell membrane | [38] |
Nostoc sp. | Nostopeptolide | Inhibits protein synthesis | [42] |
Oscillatoria sp. | Microcystin | Inhibits protein synthesis | [50] |
Phormidium autumnale | Gentisic acid, vanillic acid, p-coumaric acid | Inhibits bacterial growth | [47] |
Picochlorum sp. | Palmitic acid | Membrane permeabilization | [38] |
Pseudanabaena sp. | Pseudanabaenapeptin | Inhibits protein synthesis | [43] |
Synechococcus sp. | Antimicrobial peptides | Inhibits protein synthesis | [43] |
Tetraselmis suecica | Fucosaquosa | Interferes with cell adhesion | [38] |
2.5. Antimicrobial Efficacy of Compounds Derived from Microalgae and Cyanobacteria
2.6. Purification of Bioactive Compounds
- Solvent extraction is a widely used method that employs organic solvents to extract bioactive compounds from biomass. This method is highly effective in recovering compounds, including lipids, proteins, and pigments. However, it presents particular challenges, such as high costs and environmental concerns due to the waste generated during the process. According to El-Sapagh et al. [51], although solvent extraction is efficient, its sustainability is questionable due to the associated environmental impacts.
- Supercritical extraction uses carbon dioxide in a supercritical state to extract bioactive compounds. This method offers a cleaner and more efficient alternative than traditional solvent extraction. Supercritical carbon dioxide acts as a solvent that can penetrate the biomass and dissolve bioactive compounds without leaving toxic residues. Mendes et al. [52] demonstrated that supercritical extraction is highly efficient and environmentally friendly, although it requires specialized equipment and is more expensive for initial investment and operation.
- Separation techniques, such as chromatography, are essential for purifying the extracted bioactive compounds, ensuring the acquisition of high-purity products suitable for pharmaceutical applications. Chromatography allows the separation of compounds based on their chemical and physical properties, such as polarity and molecular weight. Plaza et al. [53] evidenced that chromatography efficiently obtains high-purity compounds. However, the costs associated with these techniques can be prohibitive on a large scale due to the need for advanced equipment and specialized consumables.
Bioactive Compound | Most Used Method | Advantages | Disadvantages | Reference |
---|---|---|---|---|
Alpha-linolenic Acid | Solvent Extraction | Efficient lipid recovery | Environmental issues | [51] |
Antimicrobial Peptides | Chromatography | High purity of the final product | Prohibitive costs at large scale | [53] |
C-phycocyanin | Chromatography | High-purity products | High costs | [53] |
Clofibric Acid | Solvent Extraction | High efficiency | Sustainability issues | [51] |
Crocin | Chromatography | High purity for pharmaceutical applications | Prohibitive costs | [53] |
EPA (Eicosapentaenoic Acid) | Supercritical Extraction | Efficient extraction without toxic residues | High initial investment | [52] |
Microcystins | Solvent Extraction | High extraction efficiency | Environmental and sustainability issues | [51] |
Nostopeptolide | Supercritical Extraction | Cleanliness and efficiency | High costs and need for specialized equipment | [52] |
Organic Acids | Supercritical Extraction | Sustainable and efficient methods | Requires advanced technology | [52] |
Palmitic acid | Solvent Extraction | Proven and established method | Environmental impact | [51] |
2.7. Technological and Economic Optimization in the Production of Algae-Derived Antimicrobial Agents
2.7.1. Reactor Type
2.7.2. Nutrients
2.7.3. Light (Intensity, Wavelength, and Photoperiod)
2.7.4. pH and Temperature
2.7.5. Economic and Energy Sustainability
3. Future Perspectives
4. Materials and Methods
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lusk, B.; Keeling, A.W.; Lewenson, S.B. Using Nursing History to Inform Decision-Making: Infectious Diseases at the Turn of the 20th Century. Nurs. Outlook 2016, 64, 170–178. [Google Scholar] [CrossRef] [PubMed]
- Sakai, T.; Morimoto, Y. The History of Infectious Diseases and Medicine. Pathogens 2022, 11, 1147. [Google Scholar] [CrossRef] [PubMed]
- Cunha, B.A. Historical Aspects of Infectious Diseases, Part I. Infect. Dis. Clin. N. Am. 2004, 18, xi–xv. [Google Scholar] [CrossRef] [PubMed]
- Theodosiou, A.A.; Jones, C.E.; Read, R.C.; Bogaert, D. Microbiotoxicity: Antibiotic Usage and Its Unintended Harm to the Microbiome. Curr. Opin. Infect. Dis. 2023, 36, 371–378. [Google Scholar] [CrossRef]
- Koontz, J.M.; Dancy, B.C.R.; Horton, C.L.; Stallings, J.D.; DiVito, V.T.; Lewis, J.A. The Role of the Human Microbiome in Chemical Toxicity. Int. J. Toxicol. 2019, 38, 251–264. [Google Scholar] [CrossRef]
- Bansal, V.; Gupta, M.; Bhaduri, T.; Shaikh, S.A.; Sayed, F.R.; Bansal, V.; Agrawal, A. Assessment of Antimicrobial Effectiveness of Neem and Clove Extract Against Streptococcus mutans and Candida albicans: An In Vitro Study. Niger. Med. J. 2019, 60, 285–289. [Google Scholar] [CrossRef]
- Ilangovan, M.; Guna, V.; Hu, C.; Nagananda, G.S.; Reddy, N. Curcuma longa L. Plant Residue as a Source for Natural Cellulose Fibers with Antimicrobial Activity. Ind. Crops Prod. 2018, 112, 556–560. [Google Scholar] [CrossRef]
- Parsaeimehr, A.; Lutzu, G.A. Algae as a Novel Source of Antimicrobial Compounds. In Antibiotic Resistance; Elsevier: Amsterdam, The Netherlands, 2016; pp. 377–396. [Google Scholar]
- Jena, J.; Subudhi, E. Microalgae: An Untapped Resource for Natural Antimicrobials. In The Role of Microalgae in Wastewater Treatment; Springer: Singapore, 2019; pp. 99–114. [Google Scholar]
- Singh, M.J.; Raadha, C.K. Studies on the Antimicrobial Potency of the Marine Algae-Gracilaria Corticata Var Cylindrica and Hydroclathrus Clathratus. Adv. Life Sci. Health 2015, 2, 50–55. [Google Scholar]
- Besednova, N.N.; Andryukov, B.G.; Zaporozhets, T.S.; Kryzhanovsky, S.P.; Kuznetsova, T.A.; Fedyanina, L.N.; Makarenkova, I.D.; Zvyagintseva, T.N. Algae Polyphenolic Compounds and Modern Antibacterial Strategies: Current Achievements and Immediate Prospects. Biomedicines 2020, 8, 342. [Google Scholar] [CrossRef]
- Silva, A.; Silva, S.A.; Carpena, M.; Garcia-Oliveira, P.; Gullón, P.; Barroso, M.F.; Prieto, M.A.; Simal-Gandara, J. Macroalgae as a Source of Valuable Antimicrobial Compounds: Extraction and Applications. Antibiotics 2020, 9, 642. [Google Scholar] [CrossRef]
- Franco, B.E.; Altagracia Martínez, M.; Sánchez Rodríguez, M.A.; Wertheimer, A.I. The Determinants of the Antibiotic Resistance Process. Infect. Drug Resist. 2009, 2, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Høiby, N.; Bjarnsholt, T.; Givskov, M.; Molin, S.; Ciofu, O. Antibiotic Resistance of Bacterial Biofilms. Int. J. Antimicrob. Agents 2010, 35, 322–332. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.-Y.; Kwon, Y.M.; Kim, I.-S.; Kim, J.-A.; Yu, D.-Y.; Adhikari, B.; Lee, S.-S.; Choi, I.-S.; Cho, K.-K. Effects of the Brown Seaweed Laminaria Japonica Supplementation on Serum Concentrations of IgG, Triglycerides, and Cholesterol, and Intestinal Microbiota Composition in Rats. Front. Nutr. 2018, 5, 23. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Kate, B.N.; Banerjee, U.C. Bioactive Compounds from Cyanobacteria and Microalgae: An Overview. Crit. Rev. Biotechnol. 2005, 25, 73–95. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Li, M.; Zhang, Z.; Li, P.; Zang, Y.; Liu, X. Antibiotics in Aquatic Environments of China: A Review and Meta-Analysis. Ecotoxicol. Environ. Saf. 2020, 199, 110668. [Google Scholar] [CrossRef]
- Barzkar, N.; Jahromi, S.T.; Poorsaheli, H.B.; Vianello, F. Metabolites from Marine Microorganisms, Micro, and Macroalgae: Immense Scope for Pharmacology. Mar. Drugs 2019, 17, 464. [Google Scholar] [CrossRef]
- Luz, C.F.; Van Niekerk, J.M.; Keizer, J.; Beerlage-De Jong, N.; Braakman-Jansen, L.A.; Stein, A.; Sinha, B.; Van Gemert-Pijnen, J.E.W.C.; Glasner, C. Mapping Twenty Years of Antimicrobial Resistance Research Trends. Artif. Intell. Med. 2022, 123, 102216. [Google Scholar] [CrossRef]
- Torres, R.T.; Carvalho, J.; Cunha, M.V.; Serrano, E.; Palmeira, J.D.; Fonseca, C. Temporal and Geographical Research Trends of Antimicrobial Resistance in Wildlife—A Bibliometric Analysis. One Health 2020, 11, 100198. [Google Scholar] [CrossRef]
- Hmani, I.; Ktari, L.; Ismail, A.; M’dallel, C.; El Bour, M. Assessment of the Antioxidant and Antibacterial Properties of Red Algae (Rhodophyta) from the North Coast of Tunisia. Euro-Mediterr. J. Environ. Integr. 2021, 6, 13. [Google Scholar] [CrossRef]
- Ismail, M.M.; El Zokm, G.M.; Miranda Lopez, J.M. Nutritional, Bioactive Compounds Content, and Antioxidant Activity of Brown Seaweeds from the Red Sea. Front. Nutr. 2023, 10, 1210934. [Google Scholar] [CrossRef]
- Zakharova, L.V.; Obluchinskaya, E.D. Polyphenol and Antioxidant Activity of Focus Algae Extracts from Faksafloi Bay (Irminger Sea) and Zavalishin Bay (Barents Sea). Trans. Kola Sci. Cent. 2021, 12, 68–75. [Google Scholar] [CrossRef]
- Vishwakarma, J.; Parmar, V.; Vavilala, S. Nitrate Stress-Induced Bioactive Sulfated Polysaccharides from Chlamydomonas Reinhardtii. Biomed. Res. J. 2019, 6, 7. [Google Scholar] [CrossRef]
- Grande, T.; Vornoli, A.; Lubrano, V.; Vizzarri, F.; Raffaelli, A.; Gabriele, M.; Novoa, J.; Sandoval, C.; Longo, V.; Echeverria, M.C.; et al. Chlamydomonas Agloeformis from the Ecuadorian Highlands: Nutrients and Bioactive Compounds Profiling and In Vitro Antioxidant Activity. Foods 2023, 12, 3147. [Google Scholar] [CrossRef] [PubMed]
- Martin, M.; Portetelle, D.; Michel, G.; Vandenbol, M. Microorganisms Living on Macroalgae: Diversity, Interactions, and Biotechnological Applications. Appl. Microbiol. Biotechnol. 2014, 98, 2917–2935. [Google Scholar] [CrossRef]
- Poon, S.; Goh, D.M.; Khoo, A.; Lin, Y.N.; Leo, Y.S.; Lee, T.H. Antimicrobial Resistance Research in Singapore-Mapping Current Trends and 1 Future Perspectives. medRxiv 2023. [Google Scholar] [CrossRef]
- Sun, G.; Zhang, Q.; Dong, Z.; Dong, D.; Fang, H.; Wang, C.; Dong, Y.; Wu, J.; Tan, X.; Zhu, P.; et al. Antibiotic Resistant Bacteria: A Bibliometric Review of Literature. Front. Public Health 2022, 10, 1002015. [Google Scholar] [CrossRef]
- Dashtegol, S.; Motalebi Moghanchoghi, A.; Razavilar, V.; Mortazavi, M.S. Isolation and Semi Purification of Steroid Compounds from Colpomenia Sinuosa (Derbès & Solier, 1851) Algae of the Persian Gulf and in Vitro Screening of Antimicrobial Effects. Iran. J. Fish. Sci. 2021, 20, 129–140. [Google Scholar] [CrossRef]
- Athulya, K.; Joe Rosario, J.C. Analysis of Antimicrobial Potential of Marine Red Algae; Centroceras clavulatum (C. agardh) Montagne against Selected Strains of Human Pathogens. Res. J. Pharm. Technol. 2023, 16, 4123–4126. [Google Scholar] [CrossRef]
- Surendhiran, D.; Li, C.; Cui, H.; Lin, L. Marine Algae as Efficacious Bioresources Housing Antimicrobial Compounds for Preserving Foods—A Review. Int. J. Food Microbiol. 2021, 358, 109416. [Google Scholar] [CrossRef]
- Mardirossian, M.; Sola, R.; Degasperi, M.; Scocchi, M. Search for Shorter Portions of the Proline-Rich Antimicrobial Peptide Fragment Bac5(1–25) That Retain Antimicrobial Activity by Blocking Protein Synthesis. ChemMedChem 2019, 14, 343–348. [Google Scholar] [CrossRef]
- Chianese, A.; Zannella, C.; Foglia, F.; Nastri, B.M.; Monti, A.; Doti, N.; Franci, G.; De Filippis, A.; Galdiero, M. Hylin-A1: A Host Defense Peptide with Antibacterial Potential against Staphylococcus Aureus Multi-Resistant Strains. Pharmaceuticals 2023, 16, 509. [Google Scholar] [CrossRef] [PubMed]
- Erdem Büyükkiraz, M.; Kesmen, Z. Antimicrobial Peptides (AMPs): A Promising Class of Antimicrobial Compounds. J. Appl. Microbiol. 2022, 132, 1573–1596. [Google Scholar] [CrossRef] [PubMed]
- Canè, C.; Casciaro, B.; Di Somma, A.; Loffredo, M.R.; Puglisi, E.; Battaglia, G.; Mellini, M.; Cappiello, F.; Rampioni, G.; Leoni, L.; et al. The Antimicrobial Peptide Esc(1-21)-1c Increases Susceptibility of Pseudomonas Aeruginosa to Conventional Antibiotics by Decreasing the Expression of the MexAB-OprM Efflux Pump. Front. Chem. 2023, 11, 1271153. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Fernández-Millán, P.; Boix, E. Synergism between Host Defence Peptides and Antibiotics Against Bacterial Infections. Curr. Top. Med. Chem. 2020, 20, 1238–1263. [Google Scholar] [CrossRef] [PubMed]
- Ciandrini, E.; Morroni, G.; Cirioni, O.; Kamysz, W.; Kamysz, E.; Brescini, L.; Baffone, W.; Campana, R. Synergistic Combinations of Antimicrobial Peptides against Biofilms of Methicillin-Resistant Staphylococcus Aureus (MRSA) on Polystyrene and Medical Devices. J. Glob. Antimicrob. Resist. 2020, 21, 203–210. [Google Scholar] [CrossRef]
- Hussein, H.A.; Syamsumir, D.F.; Radzi, S.A.M.; Siong, J.Y.F.; Zin, N.A.M.; Abdullah, M.A. Phytochemical Screening, Metabolite Profiling and Enhanced Antimicrobial Activities of Microalgal Crude Extracts in Co-Application with Silver Nanoparticle. Bioresour. Bioprocess. 2020, 7, 39. [Google Scholar] [CrossRef]
- Xu, L.; Zhou, Z.; Zhu, L.; Han, Y.; Lin, Z.; Feng, W.; Liu, Y.; Shuai, X.; Chen, H. Antibiotic Resistance Genes and Microcystins in a Drinking Water Treatment Plant. Environ. Pollut. 2020, 258, 113718. [Google Scholar] [CrossRef]
- Benegas, G.R.S.; Bernal, S.P.F.; de Oliveira, V.M.; Passarini, M.R.Z. Antimicrobial Activity against Microcystis Aeruginosa and Degradation of Microcystin-LR by Bacteria Isolated from Antarctica. Environ. Sci. Pollut. Res. 2021, 28, 52381–52391. [Google Scholar] [CrossRef]
- Prakash, B.; Kujur, A.; Yadav, A.; Kumar, A.; Singh, P.P.; Dubey, N.K. Nanoencapsulation: An Efficient Technology to Boost the Antimicrobial Potential of Plant Essential Oils in Food System. Food Control 2018, 89, 1–11. [Google Scholar] [CrossRef]
- Nowruzi, B. A Gene Expression Study on Strains of Nostoc (Cyanobacteria) Revealing Antimicrobial Activity under Mixotrophic Conditions. Afr. J. Biotechnol. 2012, 11, 11296–11308. [Google Scholar] [CrossRef]
- Borowitzka, M.A. Microalgae as Sources of Pharmaceuticals and Other Biologically Active Compounds. J. Appl. Phycol. 1995, 7, 3–15. [Google Scholar] [CrossRef]
- Liu, J.; Yang, C.; Chi, Y.; Wu, D.; Dai, X.; Zhang, X.; Igarashi, Y.; Luo, F. Algicidal Characterization and Mechanism of Bacillus licheniformis Sp34 against Microcystis aeruginosa in Dianchi Lake. J. Basic. Microbiol. 2019, 59, 1112–1124. [Google Scholar] [CrossRef] [PubMed]
- Mikula, P.; Mlnaříková, M.; Nadres, E.T.; Takahashi, H.; Babica, P.; Kuroda, K.; Bláha, L.; Sovadinová, I. Synthetic Biomimetic Polymethacrylates: Promising Platform for the Design of Anti-Cyanobacterial and Anti-Algal Agents. Polymers 2021, 13, 1025. [Google Scholar] [CrossRef] [PubMed]
- Jyotirmayee, P.; Sachidananda, D.; Basanta, K. Das Antibacterial Activity of Freshwater Microalgae: A Review. Afr. J. Pharm. Pharmacol. 2014, 8, 809–818. [Google Scholar] [CrossRef]
- Yalcin, D.; Türk Katircioğlu, H.; Özer, T.; Pourhassan Shamchi, M.; Acikgoz Erkaya, İ. Evaluation of Phytotherapeutic Activities and Phytochemical Content of Phormidium Autumnale Gomont from Natural Freshwater Sources. Environ. Monit. Assess. 2020, 192, 244. [Google Scholar] [CrossRef] [PubMed]
- Usmani, Y.; Ahmed, A.; Faizi, S.; Versiani, M.A.; Shamshad, S.; Khan, S.; Simjee, S.U. Antimicrobial and Biofilm Inhibiting Potential of an Amide Derivative [N-(2′, 4′-Dinitrophenyl)-3β-Hydroxyurs-12-En-28-Carbonamide] of Ursolic Acid by Modulating Membrane Potential and Quorum Sensing against Colistin Resistant Acinetobacter Baumannii. Microb. Pathog. 2021, 157, 104997. [Google Scholar] [CrossRef] [PubMed]
- Ayrapetyan, O.N.; Obluchinskaya, E.D.; Zhurishkina, E.V.; Skorik, Y.A.; Lebedev, D.V.; Kulminskaya, A.A.; Lapina, I.M. Antibacterial Properties of Fucoidans from the Brown Algae Fucus vesiculosus L. of the Barents Sea. Biology 2021, 10, 67. [Google Scholar] [CrossRef]
- Bhuyar, P.; Rahim, M.H.A.; Maniam, G.P.; Ramaraj, R.; Govindan, N. Exploration of Bioactive Compounds and Antibacterial Activity of Marine Blue-Green Microalgae (Oscillatoria sp.) Isolated from Coastal Region of West Malaysia. SN Appl. Sci. 2020, 2, 1906. [Google Scholar] [CrossRef]
- El-Sapagh, S.; El-Shenody, R.; Pereira, L.; Elshobary, M. Unveiling the Potential of Algal Extracts as Promising Antibacterial and Antibiofilm Agents Against Multidrug-Resistant Pseudomonas Aeruginosa: In Vitro and In Silico Studies Including Molecular Docking. Plants 2023, 12, 3324. [Google Scholar] [CrossRef]
- Mendes, R.L.; Reis, A.D.; Palavra, A.F. Supercritical CO2 Extraction of γ-Linolenic Acid and Other Lipids from Arthrospira (Spirulina)maxima: Comparison with Organic Solvent Extraction. Food Chem. 2006, 99, 57–63. [Google Scholar] [CrossRef]
- Plaza, M.; Cifuentes, A.; Ibanez, E. In the Search of New Functional Food Ingredients from Algae. Trends Food Sci. Technol. 2008, 19, 31–39. [Google Scholar] [CrossRef]
- Metsoviti, M.N.; Papapolymerou, G.; Karapanagiotidis, I.T.; Katsoulas, N. Comparison of Growth Rate and Nutrient Content of Five Microalgae Species Cultivated in Greenhouses. Plants 2019, 8, 279. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Jeong, D.; Im, S.; Jang, A. Optimization of Alginate Bead Size Immobilized with Chlorella Vulgaris and Chlamydomonas Reinhardtii for Nutrient Removal. Bioresour. Technol. 2020, 302, 122891. [Google Scholar] [CrossRef] [PubMed]
- Fields, F.J.; Ostrand, J.T.; Mayfield, S.P. Fed-Batch Mixotrophic Cultivation of Chlamydomonas Reinhardtii for High-Density Cultures. Algal Res. 2018, 33, 109–117. [Google Scholar] [CrossRef]
- Ivanov, I.N.; Zachleder, V.; Vítová, M.; Barbosa, M.J.; Bišová, K. Starch Production in Chlamydomonas Reinhardtii through Supraoptimal Temperature in a Pilot-Scale Photobioreactor. Cells 2021, 10, 1084. [Google Scholar] [CrossRef]
- Kanaga, K.; Pandey, A.; Kumar, S. Geetanjali Multi-Objective Optimization of Media Nutrients for Enhanced Production of Algae Biomass and Fatty Acid Biosynthesis from Chlorella Pyrenoidosa NCIM 2738. Bioresour. Technol. 2016, 200, 940–950. [Google Scholar] [CrossRef]
- Fakhimi, N.; Dubini, A.; Tavakoli, O.; González-Ballester, D. Acetic Acid Is Key for Synergetic Hydrogen Production in Chlamydomonas-Bacteria Co-Cultures. Bioresour. Technol. 2019, 289, 121648. [Google Scholar] [CrossRef]
- Lin, J.-Y.; Xue, C.; Tan, S.-I.; Ng, I.-S. Pyridoxal Kinase PdxY Mediated Carbon Dioxide Assimilation to Enhance the Biomass in Chlamydomonas Reinhardtii CC-400. Bioresour. Technol. 2021, 322, 124530. [Google Scholar] [CrossRef]
- Vargas, S.R.; Zaiat, M.; Calijuri, M.d.C. Influence of Sulfur and Light Intensity in Nutrient Removal, and Hydrogen and Ethanol Production by Improved Biomass of Chlamydomonas Reinhardtii in Batch Anaerobic Photobioreactors. Bioenergy Res. 2022, 15, 218–229. [Google Scholar] [CrossRef]
- Lee, C.W.; Bae, G.Y.; Bae, S.H.; Suh, H.J.; Jo, K. Increased Thermal Stability of Phycocyanin Extracted from Spirulina Platensis by Cysteine Addition during Enzyme Extraction. Food Sci. Technol. 2022, 42, e15021. [Google Scholar] [CrossRef]
- Metsoviti, M.N.; Papapolymerou, G.; Karapanagiotidis, I.T.; Katsoulas, N. Effect of Light Intensity and Quality on Growth Rate and Composition of Chlorella Vulgaris. Plants 2019, 9, 31. [Google Scholar] [CrossRef] [PubMed]
- Duman, E.T.; Kose, A.; Celik, Y.; Oncel, S.S. Design of a Horizontal-Dual Bladed Bioreactor for Low Shear Stress to Improve Hydrodynamic Responses in Cell Cultures: A Pilot Study in Chlamydomonas Reinhardtii. Biochem. Eng. J. 2021, 169, 107970. [Google Scholar] [CrossRef]
- González-González, L.M.; de-Bashan, L.E. Toward the Enhancement of Microalgal Metabolite Production through Microalgae–Bacteria Consortia. Biology 2021, 10, 282. [Google Scholar] [CrossRef] [PubMed]
- Randhir, A.; Laird, D.W.; Maker, G.; Trengove, R.; Moheimani, N.R. Microalgae: A Potential Sustainable Commercial Source of Sterols. Algal Res. 2020, 46, 101772. [Google Scholar] [CrossRef]
- Krishnamoorthy, N.; Unpaprom, Y.; Ramaraj, R.; Maniam, G.P.; Govindan, N.; Arunachalam, T.; Paramasivan, B. Recent Advances and Future Prospects of Electrochemical Processes for Microalgae Harvesting. J. Environ. Chem. Eng. 2021, 9, 105875. [Google Scholar] [CrossRef]
- Suparmaniam, U.; Lam, M.K.; Uemura, Y.; Lim, J.W.; Lee, K.T.; Shuit, S.H. Insights into the Microalgae Cultivation Technology and Harvesting Process for Biofuel Production: A Review. Renew. Sustain. Energy Rev. 2019, 115, 109361. [Google Scholar] [CrossRef]
- Chia, S.R.; Chew, K.W.; Show, P.L.; Yap, Y.J.; Ong, H.C.; Ling, T.C.; Chang, J.-S. Analysis of Economic and Environmental Aspects of Microalgae Biorefinery for Biofuels Production: A Review. Biotechnol. J. 2018, 13, 1700618. [Google Scholar] [CrossRef]
- Merlo, S.; Gabarrell Durany, X.; Pedroso Tonon, A.; Rossi, S. Marine Microalgae Contribution to Sustainable Development. Water 2021, 13, 1373. [Google Scholar] [CrossRef]
- Dineshbabu, G.; Goswami, G.; Kumar, R.; Sinha, A.; Das, D. Microalgae–Nutritious, Sustainable Aqua- and Animal Feed Source. J. Funct. Foods 2019, 62, 103545. [Google Scholar] [CrossRef]
- Dasan, Y.K.; Lam, M.K.; Yusup, S.; Lim, J.W.; Lee, K.T. Life Cycle Evaluation of Microalgae Biofuels Production: Effect of Cultivation System on Energy, Carbon Emission and Cost Balance Analysis. Sci. Total Environ. 2019, 688, 112–128. [Google Scholar] [CrossRef]
- Al-Obaidy, S.S.M.; Greenway, G.M.; Paunov, V.N. Dual-Functionalised Shellac Nanocarriers Give a Super-Boost of the Antimicrobial Action of Berberine. Nanoscale Adv. 2019, 1, 858–872. [Google Scholar] [CrossRef] [PubMed]
- Delshadi, R.; Bahrami, A.; Assadpour, E.; Williams, L.; Jafari, S.M. Nano/Microencapsulated Natural Antimicrobials to Control the Spoilage Microorganisms and Pathogens in Different Food Products. Food Control 2021, 128, 108180. [Google Scholar] [CrossRef]
- Bahrami, A.; Delshadi, R.; Jafari, S.M.; Williams, L. Nanoencapsulated Nisin: An Engineered Natural Antimicrobial System for the Food Industry. Trends Food Sci. Technol. 2019, 94, 20–31. [Google Scholar] [CrossRef]
- Jimenez-Lopez, C.; Pereira, A.G.; Lourenço-Lopes, C.; Garcia-Oliveira, P.; Cassani, L.; Fraga-Corral, M.; Prieto, M.A.; Simal-Gandara, J. Main Bioactive Phenolic Compounds in Marine Algae and Their Mechanisms of Action Supporting Potential Health Benefits. Food Chem. 2021, 341, 128262. [Google Scholar] [CrossRef]
- O’Connor, J.; Garcia-Vaquero, M.; Meaney, S.; Tiwari, B.K. Bioactive Peptides from Algae: Traditional and Novel Generation Strategies, Structure-Function Relationships, and Bioinformatics as Predictive Tools for Bioactivity. Mar. Drugs 2022, 20, 317. [Google Scholar] [CrossRef]
- Zhang, Y.-T.; Jiang, J.-Y.; Shi, T.-Q.; Sun, X.-M.; Zhao, Q.-Y.; Huang, H.; Ren, L.-J. Application of the CRISPR/Cas System for Genome Editing in Microalgae. Appl. Microbiol. Biotechnol. 2019, 103, 3239–3248. [Google Scholar] [CrossRef]
- Kim, J.; Lee, S.; Baek, K.; Jin, E. Site-Specific Gene Knock-Out and On-Site Heterologous Gene Overexpression in Chlamydomonas Reinhardtii via a CRISPR-Cas9-Mediated Knock-in Method. Front. Plant Sci. 2020, 11, 306. [Google Scholar] [CrossRef]
- Niu, T.-C.; Lin, G.-M.; Xie, L.-R.; Wang, Z.-Q.; Xing, W.-Y.; Zhang, J.-Y.; Zhang, C.-C. Expanding the Potential of CRISPR-Cpf1-Based Genome Editing Technology in the Cyanobacterium Anabaena PCC 7120. ACS Synth. Biol. 2019, 8, 170–180. [Google Scholar] [CrossRef]
- Valdes-Pena, M.A.; Massaro, N.P.; Lin, Y.-C.; Pierce, J.G. Leveraging Marine Natural Products as a Platform to Tackle Bacterial Resistance and Persistence. Acc. Chem. Res. 2021, 54, 1866–1877. [Google Scholar] [CrossRef]
- Ansari, F.A.; Nasr, M.; Rawat, I.; Bux, F. Meeting Sustainable Development Goals (SDGs) through Progression of Pilot-Scale Algal System to Commercial Raceway Pond (300,000 L). Biomass Convers. Biorefinery 2023, 13, 7663–7676. [Google Scholar] [CrossRef]
- O’Neill, E. Mining Natural Product Biosynthesis in Eukaryotic Algae. Mar. Drugs 2020, 18, 90. [Google Scholar] [CrossRef] [PubMed]
- Bharadvaja, N.; Kumar, L. Algal Biorefinery for the Extraction of Bioactive Compounds. Curr. Bioact. Compd. 2021, 17, 280–288. [Google Scholar] [CrossRef]
- Cabral, E.M.; Oliveira, M.; Mondala, J.R.M.; Curtin, J.; Tiwari, B.K.; Garcia-Vaquero, M. Antimicrobials from Seaweeds for Food Applications. Mar. Drugs 2021, 19, 211. [Google Scholar] [CrossRef] [PubMed]
- Hsiao, S.-H.; Lu, Y.-J.; Yang, C.-C.; Tuo, W.-C.; Li, Y.-Q.; Huang, Y.-H.; Hsieh, C.-H.; Hung, T.-H.; Wu, C.-P. Hernandezine, a Bisbenzylisoquinoline Alkaloid with Selective Inhibitory Activity against Multidrug-Resistance-Linked ATP-Binding Cassette Drug Transporter ABCB1. J. Nat. Prod. 2016, 79, 2135–2142. [Google Scholar] [CrossRef] [PubMed]
- Remya, R.R.; Samrot, A.V.; Kumar, S.S.; Mohanavel, V.; Karthick, A.; Chinnaiyan, V.K.; Umapathy, D.; Muhibbullah, M. Bioactive Potential of Brown Algae. Adsorpt. Sci. Technol. 2022, 2022, 9104835. [Google Scholar] [CrossRef]
- Laborda, P.; Sanz-García, F.; Ochoa-Sánchez, L.E.; Gil-Gil, T.; Hernando-Amado, S.; Martínez, J.L. Wildlife and Antibiotic Resistance. Front. Cell Infect. Microbiol. 2022, 12, 873989. [Google Scholar] [CrossRef]
- Menaa, F.; Wijesinghe, U.; Thiripuranathar, G.; Althobaiti, N.A.; Albalawi, A.E.; Khan, B.A.; Menaa, B. Marine Algae-Derived Bioactive Compounds: A New Wave of Nanodrugs? Mar. Drugs 2021, 19, 484. [Google Scholar] [CrossRef]
- Dobrinčić, A.; Balbino, S.; Zorić, Z.; Pedisić, S.; Bursać Kovačević, D.; Elez Garofulić, I.; Dragović-Uzelac, V. Advanced Technologies for the Extraction of Marine Brown Algal Polysaccharides. Mar. Drugs 2020, 18, 168. [Google Scholar] [CrossRef]
- Bamunuarachchi, N.I.; Khan, F.; Kim, Y.-M. Combination Therapy for Bacterial Pathogens: Naturally Derived Antimicrobial Drugs Combined with Ulva Lactuca Extract. Infect. Disord. Drug Targets 2022, 22, 107–117. [Google Scholar] [CrossRef]
- Hentati, F.; Tounsi, L.; Djomdi, D.; Pierre, G.; Delattre, C.; Ursu, A.V.; Fendri, I.; Abdelkafi, S.; Michaud, P. Bioactive Polysaccharides from Seaweeds. Molecules 2020, 25, 3152. [Google Scholar] [CrossRef]
- Kumar, B.R.; Mathimani, T.; Sudhakar, M.P.; Rajendran, K.; Nizami, A.-S.; Brindhadevi, K.; Pugazhendhi, A. A State of the Art Review on the Cultivation of Algae for Energy and Other Valuable Products: Application, Challenges, and Opportunities. Renew. Sustain. Energy Rev. 2021, 138, 110649. [Google Scholar] [CrossRef]
- Barbosa, F.; Pinto, E.; Kijjoa, A.; Pinto, M.; Sousa, E. Targeting Antimicrobial Drug Resistance with Marine Natural Products. Int. J. Antimicrob. Agents 2020, 56, 106005. [Google Scholar] [CrossRef] [PubMed]
Organism | Compound | Advantages | Disadvantages | Efficacy | Reference |
---|---|---|---|---|---|
M. aeruginosa | Microcystins | High specificity and potency | Potential toxicity to human cells | S. aureus | [50] |
Fast action | high production cost | P. aeruginosa | |||
Nostoc sp. | Nostopeptolide | High effectiveness at low concentrations | Needs more studies on pharmacokinetics and metabolism | E. coli | [42] |
specific action | S. aureus | ||||
Synechococcus sp. | Antimicrobial peptides | A broad spectrum of action | Possible development of resistance | Gram-positive and Gram-negative bacteria | [43] |
high affinity for ribosomes | specific storage requirements | ||||
Chlorella sp. | α-Linolenic acid | Destroys bacteria | Variability in efficacy | Gram-negative bacteria | [38] |
prevents biofilms | |||||
A broad spectrum of action | stability issues | ||||
N. oculata | EPA (Eicosapentaenoic Acid) | Effective against Gram-negative bacteria | Potential for oxidation and degradation | E. coli | [38] |
prevents biofilms | specific storage requirements | S. aureus | |||
Picochlorum sp. | Palmitic acid | Effective against Gram-negative bacteria | Limited to Gram-negative bacteria | Gram-negative bacteria | |
Destabilizes membranes | requires specific formulation |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zuorro, A.; Lavecchia, R.; Contreras-Ropero, J.E.; Martínez, J.B.G.; Barajas-Ferreira, C.; Barajas-Solano, A.F. Natural Antimicrobial Agents from Algae: Current Advances and Future Directions. Int. J. Mol. Sci. 2024, 25, 11826. https://doi.org/10.3390/ijms252111826
Zuorro A, Lavecchia R, Contreras-Ropero JE, Martínez JBG, Barajas-Ferreira C, Barajas-Solano AF. Natural Antimicrobial Agents from Algae: Current Advances and Future Directions. International Journal of Molecular Sciences. 2024; 25(21):11826. https://doi.org/10.3390/ijms252111826
Chicago/Turabian StyleZuorro, Antonio, Roberto Lavecchia, Jefferson E. Contreras-Ropero, Janet B. García Martínez, Crisóstomo Barajas-Ferreira, and Andrés F. Barajas-Solano. 2024. "Natural Antimicrobial Agents from Algae: Current Advances and Future Directions" International Journal of Molecular Sciences 25, no. 21: 11826. https://doi.org/10.3390/ijms252111826
APA StyleZuorro, A., Lavecchia, R., Contreras-Ropero, J. E., Martínez, J. B. G., Barajas-Ferreira, C., & Barajas-Solano, A. F. (2024). Natural Antimicrobial Agents from Algae: Current Advances and Future Directions. International Journal of Molecular Sciences, 25(21), 11826. https://doi.org/10.3390/ijms252111826