Structural Catalytic Core in Subtilisin-like Proteins and Its Comparison to Trypsin-like Serine Proteases and Alpha/Beta-Hydrolases
Abstract
:1. Introduction
2. Results and Discussion
2.1. Creating a Dataset of the Subtilisin-like Superfamily Proteins
2.2. SCC in Subtilisin Savinase (Representative Structure of the Subtilases Family; Subtilisin-like Superfamily)
2.2.1. Five Key Functional Amino Acids in Subtilisin Savinase
2.2.2. AcidBaseCHO Zone
2.2.3. NucOxyCHO Zone
2.2.4. SCC as a Structural Association of AcidBaseCHO and NucOxyCHO Zones
2.3. SCC of the Other Subtilases (Subtilisin-like Superfamily): Variations in the CHO Peptide
2.4. SCC in Serine-Carboxyl Proteinases (SCP Family; Subtilisin-like Superfamily)
2.5. Invariant Water Molecule of the AcidBaseCHO Zone in the Subtilisin-like Superfamily Proteases
2.6. Comparison of Subtilisin-like Enzymes and Alpha/Beta-Hydrolases: Catalytic Pentads
3. Materials and Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dodson, G.; Wlodawer, A. Catalytic triads and their relatives. Trends Biochem. Sci. 1998, 23, 347–352. [Google Scholar] [CrossRef] [PubMed]
- Polgár, L. The catalytic triad of serine peptidases. Cell Mol. Life Sci. 2005, 62, 2161–2172. [Google Scholar] [CrossRef] [PubMed]
- Rawlings, N.D.; Barrett, A.J. MEROPS: The peptidase database. Nucleic Acids Res. 2000, 28, 323–325. [Google Scholar] [CrossRef]
- Andreeva, A.; Kulesha, E.; Gough, J.; Murzin, A.G. The SCOP database in 2020: Expanded classification of representative family and superfamily domains of known protein structures. Nucleic Acids Res. 2020, 48, D376–D382. [Google Scholar] [CrossRef]
- Wallace, A.C.; Laskowski, R.A.; Thornton, J.M. Derivation of 3D coordinate templates for searching structural databases: Application to Ser-His-Asp catalytic triads in the serine proteinases and lipases. Protein Sci. 1996, 5, 1001–1013. [Google Scholar] [CrossRef]
- Krem, M.M.; Di Cera, E. Molecular markers of serine protease evolution. EMBO J. 2001, 20, 3036–3045. [Google Scholar] [CrossRef]
- Derewenda, Z.S. C-H Groups as Donors in Hydrogen Bonds: A Historical Overview and Occurrence in Proteins and Nucleic Acids. Int. J. Mol. Sci. 2023, 24, 13165. [Google Scholar] [CrossRef]
- Siezen, R.J.; Leunissen, J.A. Subtilases: The superfamily of subtilisin-like serine proteases. Protein Sci. 1997, 6, 501–523. [Google Scholar] [CrossRef]
- Oda, K.; Dunn, B.M.; Wlodawer, A. Serine-Carboxyl Peptidases, Sedolisins: From Discovery to Evolution. Biochemistry 2022, 61, 1643–1664. [Google Scholar] [CrossRef]
- Janssen, D.B. Evolving haloalkane dehalogenases. Curr. Opin. Chem. Biol. 2004, 8, 150–159. [Google Scholar] [CrossRef]
- Denesyuk, A.I.; Johnson, M.S.; Salo-Ahen, O.M.H.; Uversky, V.N.; Denessiouk, K. NBCZone: Universal three-dimensional construction of eleven amino acids near the catalytic nucleophile and base in the superfamily of (chymo)trypsin-like serine fold proteases. Int. J. Biol. Macromol. 2020, 153, 399–411. [Google Scholar] [CrossRef] [PubMed]
- Denesyuk, A.; Dimitriou, P.S.; Johnson, M.S.; Nakayama, T.; Denessiouk, K. The acid-base-nucleophile catalytic triad in ABH-fold enzymes is coordinated by a set of structural elements. PLoS ONE 2020, 15, e0229376. [Google Scholar] [CrossRef] [PubMed]
- Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Weissig, H.; Shindyalov, I.N.; Bourne, P.E. The Protein Data Bank. Nucleic Acids Res. 2000, 28, 235–242. [Google Scholar] [CrossRef] [PubMed]
- Kuhn, P.; Knapp, M.; Soltis, S.M.; Ganshaw, G.; Thoene, M.; Bott, R. The 0.78 Å structure of a serine protease: Bacillus lentus subtilisin. Biochemistry 1998, 37, 13446–13452. [Google Scholar] [CrossRef] [PubMed]
- Graycar, T.P.; Bott, R.R.; Power, S.D.; Estell, D.A. Subtilisins. In Handbook of Proteolytic Enzymes, 3rd ed.; Elsevier: Amsterdam, The Netherlands, 2013; pp. 3148–3155. [Google Scholar] [CrossRef]
- Almog, O.; González, A.; Godin, N.; de Leeuw, M.; Mekel, M.J.; Klein, D.; Braun, S.; Shoham, G.; Walter, R.L. The crystal structures of the psychrophilic subtilisin S41 and the mesophilic subtilisin Sph reveal the same calcium-loaded state. Proteins 2009, 74, 489–496. [Google Scholar] [CrossRef]
- Petrilli, W.L.; Adam, G.C.; Erdmann, R.S.; Abeywickrema, P.; Agnani, V.; Ai, X.; Baysarowich, J.; Byrne, N.; Caldwell, J.P.; Chang, W.; et al. From Screening to Targeted Degradation: Strategies for the Discovery and Optimization of Small Molecule Ligands for PCSK9. Cell Chem. Biol. 2020, 27, 32–40.e3. [Google Scholar] [CrossRef]
- Wlodawer, A.; Li, M.; Dauter, Z.; Gustchina, A.; Uchida, K.; Oyama, H.; Dunn, B.M.; Oda, K. Carboxyl proteinase from Pseudomonas defines a novel family of subtilisin-like enzymes. Nat. Struct. Biol. 2001, 8, 442–446. [Google Scholar] [CrossRef]
- Comellas-Bigler, M.; Fuentes-Prior, P.; Maskos, K.; Huber, R.; Oyama, H.; Uchida, K.; Dunn, B.M.; Oda, K.; Bode, W. The 1.4 Å crystal structure of kumamolysin: A thermostable serine-carboxyl-type proteinase. Structure 2002, 10, 865–876. [Google Scholar] [CrossRef]
- Clementel, D.; Del Conte, A.; Monzon, A.M.; Camagni, G.F.; Minervini, G.; Piovesan, D.; Tosatto, S.C.E. RING 3.0: Fast generation of probabilistic residue interaction networks from structural ensembles. Nucleic Acids Res. 2022, 50, W651–W656. [Google Scholar] [CrossRef]
- Holm, L.; Laiho, A.; Törönen, P.; Salgado, M. DALI shines a light on remote homologs: One hundred discoveries. Protein Sci. 2023, 32, e4519. [Google Scholar] [CrossRef]
- Dimitriou, P.S.; Denesyuk, A.; Takahashi, S.; Yamashita, S.; Johnson, M.S.; Nakayama, T.; Denessiouk, K. Alpha/beta-hydrolases: A unique structural motif coordinates catalytic acid residue in 40 protein fold families. Proteins 2017, 85, 1845–1855. [Google Scholar] [CrossRef] [PubMed]
- Steczkiewicz, K.; Muszewska, A.; Knizewski, L.; Rychlewski, L.; Ginalski, K. Sequence, structure and functional diversity of PD-(D/E)XK phosphodiesterase superfamily. Nucleic Acids Res. 2012, 40, 7016–7045. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, D.; Sawicki, M.; Lala, P.; Erman, M.; Pangborn, W.; Eyzaguirre, J.; Gutierrez, R.; Jornvall, H.; Thiel, D.J. Multiple conformations of catalytic serine and histidine in acetylxylan esterase at 0.90 Å. J. Biol. Chem. 2001, 276, 11159–11166. [Google Scholar] [CrossRef] [PubMed]
- Dimitriou, P.S.; Denesyuk, A.I.; Nakayama, T.; Johnson, M.S.; Denessiouk, K. Distinctive structural motifs co-ordinate the catalytic nucleophile and the residues of the oxyanion hole in the alpha/beta-hydrolase fold enzymes. Protein Sci. 2019, 28, 344–364. [Google Scholar] [CrossRef] [PubMed]
- Sobolev, V.; Sorokine, A.; Prilusky, J.; Abola, E.E.; Edelman, M. Automated analysis of interatomic contacts in proteins. Bioinformatics 1999, 15, 327–332. [Google Scholar] [CrossRef]
- Kraulis, P.J. MOLSCRIPT: A program to produce both detailed and schematic plots of protein structures. J. Appl. Cryst. 1991, 24, 946–950. [Google Scholar] [CrossRef]
- Radisky, E.S.; Kwan, G.; Lu, C.-J.K.; Koshland, D.E. Binding, Proteolytic, and Crystallographic Analyses of Mutations at the Protease−Inhibitor Interface of the Subtilisin BPN‘/Chymotrypsin Inhibitor 2 Complex. Biochemistry 2004, 43, 13648–13656. [Google Scholar] [CrossRef]
- Horn, J.R.; Ramaswamy, S.; Murphy, K.P. Structure and Energetics of Protein-Protein Interactions: The Role of Conformational Heterogeneity in OMTKY3 Binding to Serine Proteases. J. Mol. Biol. 2003, 331, 497–508. [Google Scholar] [CrossRef]
- Jain, S.C.; Shinde, U.; Li, Y.; Inouye, M.; Berman, H.M. The crystal structure of an autoprocessed Ser221Cys-subtilisin E-propeptide complex at 2.0 å resolution. J. Mol. Biol. 1998, 284, 137–144. [Google Scholar] [CrossRef]
- Arnórsdóttir, J.; Kristjánsson, M.M.; Ficner, R. Crystal structure of a subtilisin-like serine proteinase from a psychrotrophic Vibrio species reveals structural aspects of cold adaptation. FEBS J. 2005, 272, 832–845. [Google Scholar] [CrossRef]
- Agarwal, V.; Pierce, E.; McIntosh, J.; Schmidt, E.W.; Nair, S.K. Structures of Cyanobactin Maturation Enzymes Define a Family of Transamidating Proteases. Chem. Biol. 2012, 19, 1411–1422. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.-L.; Tu, I.-F.; Lin, Y.-C.; Eswar Kumar, N.; Chen, M.-Y.; Ho, M.-C.; Wu, S.-H. The discovery of novel heat-stable keratinases from Meiothermus taiwanensis WR-220 and other extremophiles. Sci. Rep. 2017, 7, 4658. [Google Scholar] [CrossRef] [PubMed]
- Shenoy, R.T.; Thangamani, S.; Velazquez-Campoy, A.; Ho, B.; Ding, J.L.; Sivaraman, J. Structural Basis for Dual-Inhibition Mechanism of a Non-Classical Kazal-Type Serine Protease Inhibitor from Horseshoe Crab in Complex with Subtilisin. PLoS ONE 2011, 6, e18838. [Google Scholar] [CrossRef] [PubMed]
- Derache, C.; Epinette, C.; Roussel, A.; Gabant, G.; Cadene, M.; Korkmaz, B.; Gauthier, F.; Kellenberger, C. Crystal structure of greglin, a novel non-classical Kazal inhibitor, in complex with subtilisin. FEBS J. 2012, 279, 4466–4478. [Google Scholar] [CrossRef]
- Shirai, T.; Suzuki, A.; Yamane, T.; Ashida, T.; Kobayashi, T.; Hitomi, J.; Ito, S. High-resolution crystal structure of M-protease: Phylogeny aided analysis of the high-alkaline adaptation mechanism. Protein Eng. Des. Sel. 1997, 10, 627–634. [Google Scholar] [CrossRef]
- Kennan, R.M.; Wong, W.; Dhungyel, O.P.; Han, X.; Wong, D.; Parker, D.; Rosado, C.J.; Law, R.H.P.; McGowan, S.; Reeve, S.B.; et al. The Subtilisin-Like Protease AprV2 Is Required for Virulence and Uses a Novel Disulphide-Tethered Exosite to Bind Substrates. PLoS Pathog. 2010, 6, e1001210. [Google Scholar] [CrossRef]
- Liang, L.; Meng, Z.; Ye, F.; Yang, J.; Liu, S.; Sun, Y.; Guo, Y.; Mi, Q.; Huang, X.; Zou, C.; et al. The crystal structures of two cuticle–degrading proteases from nematophagous fungi and their contribution to infection against nematodes. FASEB J. 2009, 24, 1391–1400. [Google Scholar] [CrossRef]
- Withers-Martinez, C.; Strath, M.; Hackett, F.; Haire, L.F.; Howell, S.A.; Walker, P.A.; Christodoulou, E.; Dodson, G.G.; Blackman, M.J. The malaria parasite egress protease SUB1 is a calcium-dependent redox switch subtilisin. Nat. Commun. 2014, 5, 3726. [Google Scholar] [CrossRef]
- Kim, J.-S.; Kluskens, L.D.; de Vos, W.M.; Huber, R.; van der Oost, J. Crystal Structure of Fervidolysin from Fervidobacterium pennivorans, a Keratinolytic Enzyme Related to Subtilisin. J. Mol. Biol. 2004, 335, 787–797. [Google Scholar] [CrossRef]
- Dauter, Z.; Betzel, C.; Genov, N.; Pipon, N.; Wilson, K.S. Complex between the subtilisin from a mesophilic bacterium and the Leech inhibitor eglin-C. Acta Crystallogr. Sect. B Struct. Sci. 1991, 47, 707–730. [Google Scholar] [CrossRef]
- Smith, C.A.; Toogood, H.S.; Baker, H.M.; Daniel, R.M.; Baker, E.N. Calcium-mediated thermostability in the subtilisin superfamily: The crystal structure of Bacillus Ak.1 protease at 1.8 å resolution. J. Mol. Biol. 1999, 294, 1027–1040. [Google Scholar] [CrossRef] [PubMed]
- Eschenburg, S.; Genov, N.; Peters, K.; Fittkau, S.; Stoeva, S.; Wilson, K.S.; Betzel, C. Crystal structure of subtilisin DY, a random mutant of subtilisin Carlsberg. Eur. J. Biochem. 1998, 257, 309–318. [Google Scholar] [CrossRef] [PubMed]
- Goddette, D.; Paech, C.; Yang, S.; Mielenz, J.; Bystroff, C.; Wilke, M.; Fletterick, R. The crystal structure of the Bacillus lentus alkaline protease, subtilisin BL, at 1.4 Å resolution. J. Mol. Biol. 1992, 228, 580–595. [Google Scholar] [CrossRef] [PubMed]
- Dohnalek, J.; McAuley, K.E.; Brzozowski, A.M.; Østergaard, P.R.; Svendsen, A.; Wilson, K.S. Stabilization of Enzymes by Metal Binding: Structures of Two Alkalophilic Bacillus Subtilases and Analysis of the Second Metal-Binding Site of the Subtilase Family. In Understanding Enzymes; Function, Design, Engineering and Analysis; Svendsen, A., Ed.; Pan Stanford: Stanford, CA, USA, 2016; pp. 203–266. ISBN 789814669320. [Google Scholar]
- Helland, R.; Larsen, A.N.; Smalås, A.O.; Willassen, N.P. The 1.8 Å crystal structure of a proteinase K-like enzyme from a psychrotroph Serratia species. FEBS J. 2005, 273, 61–71. [Google Scholar] [CrossRef] [PubMed]
- Wong, W.; Wijeyewickrema, L.C.; Kennan, R.M.; Reeve, S.B.; Steer, D.L.; Reboul, C.; Smith, A.I.; Pike, R.N.; Rood, J.I.; Whisstock, J.C.; et al. S1 Pocket of a Bacterially Derived Subtilisin-like Protease Underpins Effective Tissue Destruction. J. Biol. Chem. 2011, 286, 42180–42187. [Google Scholar] [CrossRef]
- Park, H.J.; Lee, C.W.; Kim, D.; Do, H.; Han, S.J.; Kim, J.E.; Koo, B.-H.; Lee, J.H.; Yim, J.H. Crystal structure of a cold-active protease (Pro21717) from the psychrophilic bacterium, Pseudoalteromonas arctica PAMC 21717, at 1.4 Å resolution: Structural adaptations to cold and functional analysis of a laundry detergent enzyme. PLoS ONE 2018, 13, e0191740. [Google Scholar] [CrossRef]
- Barnett, B.L.; Green, P.R.; Strickland, L.C.; Oliver, J.D.; Rydel, T.; Sullivan, J.F. Aqualysin I: The Crystal Structure of a Serine Protease from an Extreme Thermophile, Thermus aquaticus YT-1; Protein Data Bank: Piscataway, NJ, USA, 2012. [Google Scholar] [CrossRef]
- Koszelak, S.; Ng, J.D.; Day, J.; Ko, T.P.; Greenwood, A.; McPherson, A. The Crystallographic Structure of the Subtilisin Protease from Penicillium cyclopium. Biochemistry 1997, 36, 6597–6604. [Google Scholar] [CrossRef]
- Wagner, J.M.; Evans, T.J.; Chen, J.; Zhu, H.; Houben, E.N.; Bitter, W.; Korotkov, K.V. Understanding specificity of the mycosin proteases in ESX/type VII secretion by structural and functional analysis. J. Struct. Biol. 2013, 184, 115–128. [Google Scholar] [CrossRef]
- Kobayashi, H.; Utsunomiya, H.; Yamanaka, H.; Sei, Y.; Katunuma, N.; Okamoto, K.; Tsuge, H. Structural Basis for the Kexin-like Serine Protease from Aeromonas sobria as Sepsis-causing Factor. J. Biol. Chem. 2009, 284, 27655–27663. [Google Scholar] [CrossRef]
- Xu, Y.; Li, X.; Li, R.; Li, S.; Ni, H.; Wang, H.; Xu, H.; Zhou, W.; Saris, P.E.J.; Yang, W.; et al. Structure of the nisin leader peptidase NisP revealing a C-terminal autocleavage activity. Acta Crystallogr. Sect. D Struct. Biol. 2014, 70, 1499–1505. [Google Scholar] [CrossRef]
- Adams, C.M.; Eckenroth, B.E.; Putnam, E.E.; Doublié, S.; Shen, A. Structural and Functional Analysis of the CspB Protease Required for Clostridium Spore Germination. PLoS Pathog. 2013, 9, e1003165. [Google Scholar] [CrossRef] [PubMed]
- Foophow, T.; Tanaka, S.-I.; Angkawidjaja, C.; Koga, Y.; Takano, K.; Kanaya, S. Crystal Structure of a Subtilisin Homologue, Tk-SP, from Thermococcus kodakaraensis: Requirement of a C-terminal β-Jelly Roll Domain for Hyperstability. J. Mol. Biol. 2010, 400, 865–877. [Google Scholar] [CrossRef] [PubMed]
- Kagawa, T.F.; O’Connell, M.R.; Mouat, P.; Paoli, M.; O’Toole, P.W.; Cooney, J.C. Model for Substrate Interactions in C5a Peptidase from Streptococcus pyogenes: A 1.9 Å Crystal Structure of the Active Form of ScpA. J. Mol. Biol. 2009, 386, 754–772. [Google Scholar] [CrossRef]
- Jain, R.; Singh, N.; Perbandt, M.; Betzel, C.; Sharma, S.; Kaur, P.; Srinivasan, A.; Singh, T.P. Crystal structure of the complex of Proteinase K with Alanine Boronic Acid at 0.83A Resolution. Nat. Struct. Biol. 2003. [Google Scholar] [CrossRef]
- Tanaka, S.-I.; Matsumura, H.; Koga, Y.; Takano, K.; Kanaya, S. Four New Crystal Structures of Tk-subtilisin in Unautoprocessed, Autoprocessed and Mature Forms: Insight into Structural Changes during Maturation. J. Mol. Biol. 2007, 372, 1055–1069. [Google Scholar] [CrossRef]
- Vévodová, J.; Gamble, M.; Künze, G.; Ariza, A.; Dodson, E.; Jones, D.D.; Wilson, K.S. Crystal Structure of an Intracellular Subtilisin Reveals Novel Structural Features Unique to this Subtilisin Family. Structure 2010, 18, 744–755. [Google Scholar] [CrossRef]
- Henrich, S.; Cameron, A.; Bourenkov, G.P.; Kiefersauer, R.; Huber, R.; Lindberg, I.; Bode, W.E.; Than, M. The crystal structure of the proprotein processing proteinase furin explains its stringent specificity. Nat. Struct. Mol. Biol. 2003, 10, 520–526. [Google Scholar] [CrossRef]
- Wheatley, J.L.; Holyoak, T. Differential P1 arginine and lysine recognition in the prototypical proprotein convertase Kex2. Proc. Natl. Acad. Sci. USA 2007, 104, 6626–6631. [Google Scholar] [CrossRef]
- Dong, D.; Ihara, T.; Motoshima, H.; Watanabe, K. Crystal Structure of Psychrophilic Subtilisin-like Protease Apa1 from Antarctic Psychrotroph Pseudoalteromonas sp. AS-11. Nat. Struct. Biol. 2004. [Google Scholar] [CrossRef]
- Teplyakov, A.V.; Kuranova, I.P.; Harutyunyan, E.H.; Vainshtein, B.K.; Frömmel, C.; Höhne, W.E.; Wilson, K.S. Crystal structure of thermitase at 1.4 A° resolution. J. Mol. Biol. 1990, 214, 261–279. [Google Scholar] [CrossRef]
- Hussin, N.; Jamaluddin, H.; Jonet, M.A. Intracellular Subtilisin from Bacillus sp. Nat. Struct. Biol. 2022. [Google Scholar] [CrossRef]
- Nonaka, T.; Fujihashi, M.; Kita, A.; Saeki, K.; Ito, S.; Horikoshi, K.; Miki, K. The Crystal Structure of an Oxidatively Stable Subtilisin-like Alkaline Serine Protease, KP-43, with a C-terminal β-Barrel Domain. J. Biol. Chem. 2004, 279, 47344–47351. [Google Scholar] [CrossRef] [PubMed]
- Bjerga, G.E.K.; Larsen, Ø.; Arsın, H.; Williamson, A.; García-Moyano, A.; Leiros, I.; Puntervoll, P. Mutational analysis of the pro-peptide of a marine intracellular subtilisin protease supports its role in inhibition. Proteins Struct. Funct. Bioinform. 2018, 86, 965–977. [Google Scholar] [CrossRef] [PubMed]
- Sotokawauchi, A.; Kato-Murayama, M.; Murayama, K.; Hosaka, T.; Maeda, I.; Onjo, M.; Ohsawa, N.; Kato, D.-I.; Arima, K.; Shirouzu, M. Structural basis of cucumisin protease activity regulation by its propeptide. J. Biochem. 2016, 161, 45–53. [Google Scholar] [CrossRef] [PubMed]
- Wlodawer, A.; Li, M.; Gustchina, A.; Tsuruoka, N.; Ashida, M.; Minakata, H.; Oyama, H.; Oda, K.; Nishino, T.; Nakayama, T. Crystallographic and Biochemical Investigations of Kumamolisin-As, a Serine-Carboxyl Peptidase with Collagenase Activity. J. Biol. Chem. 2004, 279, 21500–21510. [Google Scholar] [CrossRef]
- Guhaniyogi, J.; Sohar, I.; Das, K.; Stock, A.M.; Lobel, P. Crystal structure and autoactivation pathway of the precursor form of human tripeptidyl-peptidase 1, the enzyme deficient in late infantile ceroid lipofuscinosis. J. Biol. Chem. 2009, 284, 3985–3997. [Google Scholar] [CrossRef]
N | Protein | PDB ID | Acid | Base | CHO | Oxy | Nuc | HOH b | Ref. |
Family: subtilases | |||||||||
Asn group | |||||||||
1 | Subtilisin savinase | 1GCI_A | 31LDTG34 | 64HG65 | 123NLS125 | 152ASGN155 | 220TS221 | 1059 | [14] |
Ser/Thr group | |||||||||
2 | Putative 36kDa protease | 2IXT_A | 33LDTG36 | 71HG72 | 137SMS139 | 166AAGN169 | 249TS250 | 2271 2078 | [16] |
Xaa group | |||||||||
3 | Proprotein convertase subtilisin/kexin type 9 | 6U26_B | 185LDTS188 | 226HG227 | 286LLP288 | 314AAGN317 | 385TS386 | N/A c | [17] |
N | Protein | PDB ID | Dipeptide | BaseAcid | CHO | Oxy | Nuc | HOH | Ref. |
Family: serine-carboxyl proteinase, SCP d | |||||||||
Asn group | |||||||||
4 | Serine-carboxyl proteinase | 1GA6_A | 33IT--34 | 80EWDLD84 | 131NVS133 | 167SSGD170 | 286TS287 | 403 | [18] |
Ser/Thr group | |||||||||
5 | Kumamolysin | 1GT9_2 | 31IE--32 | 78EVELD82 | 126SIS128 | 161AAGD164 | 277TS278 | 2120 2036 | [19] |
N | Protein | PDB ID | AcidBaseCHO Zone | Acid2-Base1 | CHO1-CHO3 CHO1-HOHI-CHO3 a | ||
Acid1-CHO1 | Acid4-Base2 | Base1-CHO3 | |||||
Family: subtilases | |||||||
Asn group | |||||||
1 | Subtilisin savinase | 1GCI_A | N/L31-O/N123 2.9 | O/G34-CA/G65 3.2 (2.4) 139O | CE1/H64-O/S125 3.2 (2.3) 140O | OD2/D32-ND1/H64 2.6 | ND2/N123-OG/S125 3.0 |
Ser/Thr group | |||||||
2 | Putative 36kDa protease | 2IXT_A | N/L33-O/S137 3.1 | O/G36-CA/G72 3.2 (2.3) 136O | CE1/H71-O/S139 3.2 (2.3) 146O | OD1/D34-ND1/H71 2.6 | OG/S137-HOH2271 2.6 HOH2271-OG/S139 2.8 |
Xaa group | |||||||
3 | Proprotein convertase subtilisin/kexin type 9 | 6U26_B | N/L185-O/L286 3.2 | O/S188-CA/G227 4.2 (3.4) 137O | CE1/H226-O/P288 3.6 (2.7) 149O | OD2/D186-ND1/H226 2.6 | CG/L286-CD/P288 4.1 CG/L286-CG/P288 4.2 |
N | Protein | PDB ID | AcidBaseCHO Zone | BaseAcid5-BaseAcid1 | CHO1-CHO3 CHO1-HOHI-CHO3 | ||
Dipeptide1-CHO1 | Dipeptide2-BaseAcid5 | BaseAsid1-CHO3 | |||||
Family: serine-carboxyl proteinase, SCP | |||||||
Asn group | |||||||
4 | Serine-carboxyl proteinase | 1GA6_A | N/I33-O/N131 3.0 | CA/T34-π/W81 3.8 b CE3/W81-OD1/D84 3.8 (2.8) 151O | OE1/E80-O/S133 3.5 | OD2/D84-OE2/E80 2.6 | ND2/N131-OG/S133 2.9 |
Ser/Thr group | |||||||
5 | Kumamolysin | 1GT9_2 | N/I31-O/S126 3.2 | OE2/E32-OD1/D82 2.7 | OE1/E78-O/S128 3.3 | OD2/D82-OE2/E78 2.6 | OG/S126-HOH2120 2.7 HOH2120-OG/S128 2.8 |
N | Protein | PDB ID | NucOxyCHO Zone | Nuc1-Oxy3 | Nuc2-Base1 | |||
---|---|---|---|---|---|---|---|---|
CHO2-Oxy1 | CHO3-Nuc2 | NucOxy Sub-Zone | ||||||
Nuc1-Oxy1 | Nuc1-Oxy4 | |||||||
Family: subtilases | ||||||||
Asn group | ||||||||
1 | Subtilisin savinase | 1GCI_A | O/L124-N/A152 3.1 | OG/S125-O/S221 2.8 | OG1/T220-CB/A152 3.5 (2.5) 172O | N/T220-OD1/N155 2.9 OG1/T220-OD1/N155 2.9 | OG1/T220-N/G154 3.0 | OG/S221-NE2/H64 3.1 |
Ser/Thr group | ||||||||
2 | Putative 36kDa protease | 2IXT_A | O/M138-N/A166 3.0 | OG/S139-O/S250 2.7 | OG1/T249-CB/A166 3.5 (2.4) 173O | N/T249-OD1/N169 2.9 OG1/T249-OD1/N169 2.8 | OG1/T249-N/G168 3.1 | OG/S250-NE2/H71 2.9 |
Xaa group | ||||||||
3 | Proprotein convertase subtilisin/kexin type 9 | 6U26_B | O/L287-N/A314 3.2 | CB/P287-O/S386 4.4 (3.5) 140O | OG1/T385-CB/A314 3.4 (2.3) 174O | N/T385-OD1/N317 2.9 OG1/T385-OD1/N317 2.7 | OG1/T385-N/G316 3.1 | OG/S386-NE2/H226 3.1 |
Family: serine-carboxyl proteinase, SCP | Nuc2-BaseAcid1 | |||||||
Asn group | ||||||||
4 | Serine-carboxyl proteinase | 1GA6_A | O/V132-N/S167 3.1 | OG/S133-O/S287 2.9 | OG1/T286-CB/S167 3.4 (2.3) 164O | N/T286-OD2/D170 2.9 OG1/T286-OD2/D170 2.9 | OG1/T286-N/G169 3.0 | OG/S287-OE1/E80 2.7 |
Ser/Thr group | ||||||||
5 | Kumamolysin | 1GT9_2 | O/I127-N/A161 3.0 | OG/S128-O/S278 2.8 | OG1/T277-CB/A161 3.4 (2.3) 169O | N/T277-OD2/D164 2.8 OG1/T277-OD2/D164 2.9 | OG1/T277-N/G163 3.0 | OG/S278-OE1/E78 2.6 |
N | Protein | PDB ID | Acid1-HOHII | Acid2-HOHII | CHO1-HOHII | CHO3-HOHII | CHO1/HOHI-HOHII a |
Family: subtilases | |||||||
Asn group | |||||||
1 | Subtilisin savinase | 1GCI_A | O/L31-HOH1059 2.8 | OD1/D32-HOH1059 2.7 | O/N123-HOH1059 3.0 | N/S125-HOH1059 2.8 | ND2/N123-HOH1059 2.9 |
Ser/Thr group | |||||||
2 | Putative 36kDa protease | 2IXT_A | O/L33-HOH2078 2.8 | OD2/D34-HOH2078 2.7 | O/S137-HOH2078 3.1 | N/S139-HOH2078 2.8 | HOH2271-HOH2078 2.8 |
Xaa group | |||||||
3 | Proprotein convertase subtilisin/kexin type 9 | 6U26_B | O/L185-CD/P288 3.1 (2.2) 138O | OD1/D186-CG/P288 3.0 (1.9) 170O | O/L286-CD/P288 3.3 (2.3) 147O | N/A b | N/A |
N | Protein | PDB ID | Dipeptide1-HOHII | BaseAcid5-HOHII | CHO1-HOHII | CHO3-HOHII | CHO1/HOHI-HOHII |
Family: serine-carboxyl proteinase, SCP | |||||||
Asn group | |||||||
4 | Serine-carboxyl proteinase | 1GA6_A | O/I33-HOH403 2.8 | OD1/D84-HOH403 2.8 | O/N131-HOH403 3.4 | N/S133-HOH403 2.9 | ND2/N131-HOH403 3.1 |
Ser/Thr group | |||||||
5 | Kumamolysin | 1GT9_2 | O/I31-HOH2036 2.7 | OD1/D82-HOH2036 3.0 | O/S126-HOH2036 3.7 | N/S128-HOH2036 2.9 | HOH2120-HOH2036 2.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Denesyuk, A.I.; Denessiouk, K.; Johnson, M.S.; Uversky, V.N. Structural Catalytic Core in Subtilisin-like Proteins and Its Comparison to Trypsin-like Serine Proteases and Alpha/Beta-Hydrolases. Int. J. Mol. Sci. 2024, 25, 11858. https://doi.org/10.3390/ijms252211858
Denesyuk AI, Denessiouk K, Johnson MS, Uversky VN. Structural Catalytic Core in Subtilisin-like Proteins and Its Comparison to Trypsin-like Serine Proteases and Alpha/Beta-Hydrolases. International Journal of Molecular Sciences. 2024; 25(22):11858. https://doi.org/10.3390/ijms252211858
Chicago/Turabian StyleDenesyuk, Alexander I., Konstantin Denessiouk, Mark S. Johnson, and Vladimir N. Uversky. 2024. "Structural Catalytic Core in Subtilisin-like Proteins and Its Comparison to Trypsin-like Serine Proteases and Alpha/Beta-Hydrolases" International Journal of Molecular Sciences 25, no. 22: 11858. https://doi.org/10.3390/ijms252211858
APA StyleDenesyuk, A. I., Denessiouk, K., Johnson, M. S., & Uversky, V. N. (2024). Structural Catalytic Core in Subtilisin-like Proteins and Its Comparison to Trypsin-like Serine Proteases and Alpha/Beta-Hydrolases. International Journal of Molecular Sciences, 25(22), 11858. https://doi.org/10.3390/ijms252211858