In Vitro Gene Therapy Using Human iPS-Derived Mesoangioblast-Like Cells (HIDEMs) Combined with Microdystrophin (μDys) Expression as the New Strategy for Duchenne Muscular Dystrophy (DMD) Experimental Treatment
Abstract
:1. Introduction
2. Results
2.1. iPS Cells In Vitro Characteristics
2.2. Differentiation of HIDEMs
2.3. HIDEM Cells Characteristics
2.4. HIDEMs Lentiviral Transduction
2.5. Redox Potential of HIDEM Cell Homogenates
2.6. Animal Studies
3. Discussion
4. Materials and Methods
4.1. Materials
4.1.1. Patients
4.1.2. Animals
4.2. Methods
4.2.1. Isolation of Human Myoblasts
4.2.2. Total RNA Extraction from Cells
4.2.3. Reprogramming of Human Myoblast Cells
4.2.4. The iPSc Culture
4.2.5. Real-Time Polymerase Chain Reaction (Real-Time PCR; qPCR)
4.2.6. Differentiation from Pluripotent Cells to Human iPS Cell-Derived Mesoangioblast-like Cells (HIDEMs)
4.2.7. Immunofluorescence Staining
4.2.8. Lentiviral Packaging
4.2.9. Lentiviral Transduction/Genetic Modification
4.2.10. Flow Cytometry
4.2.11. Catalase Assay Kit
4.2.12. Superoxide Dismutase Assay Kit
4.2.13. Antioxidant Assay Kit
4.2.14. Animal Study
4.2.15. Treadmill Test
4.2.16. Statistical and Bioinformatical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mendell, J.R.; Shilling, C.; Leslie, N.D.; Flanigan, K.M.; Al-Dahhak, R.; Gastier-Foster, J.; Kneile, K.; Dunn, D.M.; Duval, B.; Aoyagi, A.; et al. Evidence-Based Path to Newborn Screening for Duchenne Muscular Dystrophy. Ann. Neurol. 2012, 71, 304–313. [Google Scholar] [CrossRef]
- Bushby, K.M.D.; Gardner-Medwin, D.; Nicholson, L.V.B.; Johnson, M.A.; Haggerty, I.D.; Cleghorn, N.J.; Harris, J.B.; Bhattacharyal, S.S. The Clinical, Genetic and Dystrophin Characteristics of Becker Muscular Dystrophy—II. Correlation of Phenotype with Genetic and Protein Abnormalities. J. Neurol. 1993, 240, 105–112. [Google Scholar] [CrossRef] [PubMed]
- Van Putten, M.; Hulsker, M.; Young, C.; Nadarajah, V.D.; Heemskerk, H.; Van Der Weerd, L.; ’T Hoen, P.A.C.; Van Ommen, G.J.B.; Aartsma-Rus, A.M. Low Dystrophin Levels Increase Survival and Improve Muscle Pathology and Function in Dystrophin/Utrophin Double-Knockout Mice. FASEB J. 2013, 27, 2484–2495. [Google Scholar] [CrossRef]
- McDonald, C.M.; Marbán, E.; Hendrix, S.; Hogan, N.; Ruckdeschel Smith, R.; Eagle, M.; Finkel, R.S.; Tian, C.; Janas, J.; Harmelink, M.M.; et al. Repeated Intravenous Cardiosphere-Derived Cell Therapy in Late-Stage Duchenne Muscular Dystrophy (HOPE-2): A Multicentre, Randomised, Double-Blind, Placebo-Controlled, Phase 2 Trial. Lancet 2022, 399, 1049–1058. [Google Scholar] [CrossRef]
- Komaki, H.; Nagata, T.; Saito, T.; Masuda, S.; Takeshita, E.; Sasaki, M.; Tachimori, H.; Nakamura, H.; Aoki, Y.; Takeda, S. Systemic Administration of the Antisense Oligonucleotide NS-065/NCNP-01 for Skipping of Exon 53 in Patients with Duchenne Muscular Dystrophy. Sci. Transl. Med. 2018, 10, eaan0713. [Google Scholar] [CrossRef] [PubMed]
- Maffioletti, S.M.; Gerli, M.F.M.; Ragazzi, M.; Dastidar, S.; Benedetti, S.; Loperfido, M.; Vandendriessche, T.; Chuah, M.K.; Tedesco, F.S. Efficient Derivation and Inducible Differentiation of Expandable Skeletal Myogenic Cells from Human ES and Patient-Specific iPS Cells. Nat. Protoc. 2015, 10, 941–958. [Google Scholar] [CrossRef] [PubMed]
- Fittipaldi, S.; Dimauro, I.; Mercatelli, N.; Caporossi, D. Role of Exercise-Induced Reactive Oxygen Species in the Modulation of Heat Shock Protein Response. Free Radic. Res. 2014, 48, 52–70. [Google Scholar] [CrossRef]
- Dudley, R.W.R.; Khairallah, M.; Mohammed, S.; Lands, L.; Des Rosiers, C.; Petrof, B.J. Dynamic Responses of the Glutathione System to Acute Oxidative Stress in Dystrophic Mouse (Mdx) Muscles. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2006, 291, R704–R710. [Google Scholar] [CrossRef]
- Kaczor, J.J.; Hall, J.E.; Payne, E.; Tarnopolsky, M.A. Low Intensity Training Decreases Markers of Oxidative Stress in Skeletal Muscle of Mdx Mice. Free Radic. Biol. Med. 2007, 43, 145–154. [Google Scholar] [CrossRef]
- Renjini, R.; Gayathri, N.; Nalini, A.; Bharath, M.M.S. Oxidative Damage in Muscular Dystrophy Correlates with the Severity of the Pathology: Role of Glutathione Metabolism. Neurochem. Res. 2012, 37, 885–898. [Google Scholar] [CrossRef]
- Tidball, J.G. Inflammatory Processes in Muscle Injury and Repair. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2005, 288, R345–R353. [Google Scholar] [CrossRef] [PubMed]
- Barbieri, E.; Sestili, P. Reactive Oxygen Species in Skeletal Muscle Signaling. J. Signal Transduct. 2012, 2012, 982794. [Google Scholar] [CrossRef] [PubMed]
- Lamon, S.; Wallace, M.A.; Russell, A.P. The STARS Signaling Pathway: A key Regulator of Skeletal Muscle Function. Pflug. Arch. Eur. J. Physiol. 2014, 466, 1659–1671. [Google Scholar] [CrossRef] [PubMed]
- Lamon, S.; Wallace, M.A.; Léger, B.; Russell, A.P. Regulation of STARS and Its Downstream Targets Suggest a Novel Pathway Involved in Human Skeletal Muscle Hypertrophy and Atrophy. J. Physiol. 2009, 587, 1795–1803. [Google Scholar] [CrossRef]
- Chai, J.; Tarnawski, A.S. Serum Response Factor: Discovery, Biochemistry, Biological Roles and Implications for Tissue Injury Healing. J. Physiol. Pharmacol. 2002, 53, 147–157. [Google Scholar]
- Hill, C.S.; Wynne, J.; Treisman, R. The Rho Family GTPases RhoA, Racl, and CDC42Hsregulate Transcriptional Activation by SRF. Cell 1995, 81, 1159–1170. [Google Scholar] [CrossRef]
- Sotiropoulos, A.; Gineitis, D.; Copeland, J.; Treisman, R. Signal-Regulated Activation of Serum Response Factor is Mediated by Changes in Actin Dynamics. Cell 1999, 98, 159–169. [Google Scholar] [CrossRef]
- Miralles, F.; Posern, G.; Zaromytidou, A.I.; Treisman, R. Actin Dynamics Control SRF Activity by Regulation of its Coactivator MAL. Cell 2003, 113, 329–342. [Google Scholar] [CrossRef]
- Sisson, T.H.; Ajayi, I.O.; Subbotina, N.; Dodi, A.E.; Rodansky, E.S.; Chibucos, L.N.; Kim, K.K.; Keshamouni, V.G.; White, E.S.; Zhou, Y.; et al. Inhibition of Myocardin-Related Transcription Factor/Serum Response Factor Signaling Decreases Lung Fibrosis and Promotes Mesenchymal Cell Apoptosis. Am. J. Pathol. 2015, 185, 969–986. [Google Scholar] [CrossRef]
- Sandbo, N.; Smolyaninova, L.V.; Orlov, S.N.; Dulin, N.O. Control of Myofibroblast Differentiation and Function by Cytoskeletal Signaling. Biochemistry 2016, 81, 1698–1708. [Google Scholar] [CrossRef]
- Gerli, M.F.; Maffioletti, S.M.; Millet, Q.; Tedesco, F.S. Transplantation of induced pluripotent stem cell-derived mesoangioblast-like myogenic progenitors in mouse models of muscle regeneration. J. Vis. Exp. 2014, 83, e50532. [Google Scholar]
- Potter, R.A.; Griffin, D.A.; Heller, K.N.; Peterson, E.L.; Clark, E.K.; Mendell, J.R.; Rodino-Klapac, L.R. Dose-Escalation Study of Systemically Delivered rAAVrh74.MHCK7.Micro-Dystrophin in the Mdx Mouse Model of Duchenne Muscular Dystrophy. Hum. Gene Ther. 2021, 32, 375–389. [Google Scholar] [CrossRef] [PubMed]
- Mendell, J.R.; Sahenk, Z.; Lehman, K.; Nease, C.; Lowes, L.P.; Miller, N.F.; Iammarino, M.A.; Alfano, L.N.; Nicholl, A.; Al-Zaidy, S.; et al. Assessment of Systemic Delivery of rAAVrh74.MHCK7.Micro-Dystrophin in Children with Duchenne Muscular Dystrophy: A Nonrandomized Controlled Trial. JAMA Neurol. 2020, 77, 1122–1131. [Google Scholar] [CrossRef] [PubMed]
- Périé, S.; Trollet, C.; Mouly, V.; Vanneaux, V.; Mamchaoui, K.; Bouazza, B.; Marolleau, J.P.; Laforêt, P.; Chapon, F.; Eymard, B.; et al. Autologous Myoblast Transplantation for Oculopharyngeal Muscular Dystrophy: A Phase I/IIa Clinical Study. Mol. Ther. 2014, 22, 219–225. [Google Scholar] [CrossRef] [PubMed]
- Cossu, G.; Previtali, S.C.; Napolitano, S.; Cicalese, M.P.; Tedesco, F.S.; Nicastro, F.; Noviello, M.; Roostalu, U.; Natali Sora, M.G.; Scarlato, M.; et al. Intra-arterial Transplantation of HLA -matched Donor Mesoangioblasts in Duchenne Muscular Dystrophy. EMBO Mol. Med. 2015, 7, 1513–1528. [Google Scholar] [CrossRef]
- Austin, L.; de Niese, M.; McGregor, A.; Arthur, H.; Gurusinghe, A.; Gould, M.K. Potential Oxyradical Damage and Energy Status in Individual Muscle Fibres from Degenerating Muscle Diseases. Neuromuscul. Disord. 1992, 2, 27–33. [Google Scholar] [CrossRef]
- Hauser, E.; Hoger, H.; Bittner, R.; Widhalm, K.; Herkner, K.; Lubec, G. Oxyradical Damage and Mitochondrial Enzyme Activities in the Mdx Mouse. Neuropediatrics 1995, 26, 260–262. [Google Scholar] [CrossRef]
- Aaron Hobbs, G.; Zhou, B.; Cox, A.D.; Campbell, S.L. Rho GTPases, Oxidation, and Cell Redox Control. Small GTPases 2014, 5, e2857. [Google Scholar] [CrossRef]
- Kim, J.G.; Choi, K.C.; Hong, C.W.; Park, H.S.; Choi, E.K.; Kim, Y.S.; Park, J.B. Tyr42 Phosphorylation of RhoA GTPase Promotes Tumorigenesis Through Nuclear Factor (NF)-κB. Free Radic. Biol. Med. 2017, 112, 69–83. [Google Scholar] [CrossRef]
- Kim, J.G.; Kim, M.J.; Choi, W.J.; Moon, M.Y.; Kim, H.J.; Lee, J.Y.; Kim, J.; Kim, S.C.; Kang, S.G.; Seo, G.Y.; et al. Wnt3A Induces GSK-3β Phosphorylation and β-Catenin Accumulation Through RhoA/ROCK. J. Cell. Physiol. 2017, 232, 1104–1113. [Google Scholar] [CrossRef]
- Li, Y.P. TNF-α is a Mitogen in Skeletal Muscle. Am. J. Physiol. Cell Physiol. 2003, 285, C370–C376. [Google Scholar] [CrossRef] [PubMed]
- Sadler, K.J.; Gatta, P.A.D.; Naim, T.; Wallace, M.A.; Lee, A.; Zaw, T.; Lindsay, A.; Chung, R.S.; Bello, L.; Pegoraro, E.; et al. Striated Muscle Activator of Rho Signalling (STARS) Overexpression in the Mdx Mouse Enhances Muscle Functional Capacity and Regulates the Actin Cytoskeleton and Oxidative Phosphorylation Pathways. Exp. Physiol. 2021, 106, 1597–1611. [Google Scholar] [CrossRef] [PubMed]
- Mendell, J.R.; Al-Zaidy, S.; Shell, R.; Arnold, W.D.; Rodino-Klapac, L.R.; Prior, T.W.; Lowes, L.; Alfano, L.; Berry, K.; Church, K.; et al. Single-Dose Gene-Replacement Therapy for Spinal Muscular Atrophy. N. Engl. J. Med. 2017, 377, 1713–1722. [Google Scholar] [CrossRef] [PubMed]
- Lowes, L.P.; Alfano, L.N.; Arnold, W.D.; Shell, R.; Prior, T.W.; McColly, M.; Lehman, K.J.; Church, K.; Sproule, D.M.; Nagendran, S.; et al. Impact of Age and Motor Function in a Phase 1/2A Study of Infants With SMA Type 1 Receiving Single-Dose Gene Replacement Therapy. Pediatr. Neurol. 2019, 98, 39–45. [Google Scholar] [CrossRef]
- Fiedorowicz, K.; Rozwadowska, N.; Zimna, A.; Malcher, A.; Tutak, K.; Szczerbal, I.; Nowicka-Bauer, K.; Nowaczyk, M.; Kolanowski, T.J.; Łabędź, W.; et al. Tissue-specific Promoter-based Reporter System for Monitoring Cell Differentiation from iPSCs to Cardiomyocytes. Sci. Rep. 2020, 10, 1895. [Google Scholar] [CrossRef]
- Rodgers, B.D.; Bishaw, Y.; Kagel, D.; Ramos, J.N.; Maricelli, J.W. Micro-dystrophin Gene Therapy Partially Enhances Exercise Capacity in Older Adult Mdx Mice. Mol. Ther. Methods Clin. Dev. 2020, 17, 122–132. [Google Scholar] [CrossRef]
Mice WT (n = 4) | Mice mdx Control (n = 4) | Mice mdx SHAM (n = 4) | Mice mdx After HIDEMs + μDys Administration (n = 4) | Mice mdx After HIDEMs Administration (n = 4) | |
---|---|---|---|---|---|
Minimum | 58 | 2 | 3 | 2 | 2 |
Maximum | 60 | 60 | 60 | 60 | 60 |
Median | 60 | 60 | 60 | 60 | 60 |
Mean | 59.92 | 49.25 | 49.34 | 47.94 | 44.16 |
Standard Deviation +/− | 0.37 +/− | 21.32 +/− | 19.45 +/− | 21.85 +/− | 23.61 +/− |
Mice WT (n = 4) | Mice mdx Control (n = 4) | Mice mdx SHAM (n = 4) | Mice mdx After HIDEMs + μDys Administration (n = 4) | Mice mdx After HIDEMs Administration (n = 4) | |
---|---|---|---|---|---|
Minimum | 0 | 0 | 0 | 0 | 1 |
Maximum | 12 | 100 | 88 | 40 | 96 |
Median | 1 | 1 | 3 | 2 | 35 |
Mean | 1.53 | 10.94 | 13.72 | 5.53 | 40.56 |
Standard Deviation | 2.38 | 24.80 | 21.03 | 9.21 | 32.87 |
Patient 34 | Patient 38 | Patient 39 | Patient 40 | Healthy Control | |
---|---|---|---|---|---|
Age | 11 | 12 | 15 | 8 | 18 |
Dystrophin gene mutation | Deletion of exons 8–22 (out of frame) | Deletion of exons 51–57 (in frame) | Duplication of exons 53–57 | Deletion of exons 2–17 (out of frame) Deletion of exons 30–44 (in frame) | -- |
Disorder | De novo | Inherited | Inherited | Inherited | -- |
Functional status | Wheelchair from age 9 | Still ambulant, needs support when walking | Tetraplegic | Tetraplegic | -- |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Budzińska, M.; Malcher, A.; Zimna, A.; Kurpisz, M. In Vitro Gene Therapy Using Human iPS-Derived Mesoangioblast-Like Cells (HIDEMs) Combined with Microdystrophin (μDys) Expression as the New Strategy for Duchenne Muscular Dystrophy (DMD) Experimental Treatment. Int. J. Mol. Sci. 2024, 25, 11869. https://doi.org/10.3390/ijms252211869
Budzińska M, Malcher A, Zimna A, Kurpisz M. In Vitro Gene Therapy Using Human iPS-Derived Mesoangioblast-Like Cells (HIDEMs) Combined with Microdystrophin (μDys) Expression as the New Strategy for Duchenne Muscular Dystrophy (DMD) Experimental Treatment. International Journal of Molecular Sciences. 2024; 25(22):11869. https://doi.org/10.3390/ijms252211869
Chicago/Turabian StyleBudzińska, Marta, Agnieszka Malcher, Agnieszka Zimna, and Maciej Kurpisz. 2024. "In Vitro Gene Therapy Using Human iPS-Derived Mesoangioblast-Like Cells (HIDEMs) Combined with Microdystrophin (μDys) Expression as the New Strategy for Duchenne Muscular Dystrophy (DMD) Experimental Treatment" International Journal of Molecular Sciences 25, no. 22: 11869. https://doi.org/10.3390/ijms252211869
APA StyleBudzińska, M., Malcher, A., Zimna, A., & Kurpisz, M. (2024). In Vitro Gene Therapy Using Human iPS-Derived Mesoangioblast-Like Cells (HIDEMs) Combined with Microdystrophin (μDys) Expression as the New Strategy for Duchenne Muscular Dystrophy (DMD) Experimental Treatment. International Journal of Molecular Sciences, 25(22), 11869. https://doi.org/10.3390/ijms252211869