Transcriptional Profiling Analysis Providing Insights into the Harsh Environments Tolerance Mechanisms of Krascheninnikovia arborescens
Abstract
:1. Introduction
2. Results
2.1. Morphological Changes of K. arborescens Under Drought, Salt, and Alkali Stresses
2.2. Transcriptome Sequencing and De Novo Assembly
2.3. Identification of Differential Expression Genes
2.4. Functional Enrichment Analysis of DEGs
2.5. DEGs Related to Hormone Biosynthetic and Signal Transduction Pathways and Their Expression Profiling Under Abiotic Stress
2.6. DEGs Related to Phenylpropanoid Metabolic Pathways and Their Expression Profiling Under Abiotic Stress
2.7. Transcription Factors Identifying and Their Expression Profiling Under Abiotic Stress
2.8. Mining of Abiotic Stress-Responsive Genes by WGCNA Analysis
3. Discussion
3.1. Stress Hormone Biosynthetic and Signal Transduction-Associated DEGs Contributed to the Response of K. arborescens in Harsh Environments
3.2. Phenylpropanoid Metabolism-Related DEGs Contributed to the Response of K. arborescens in Harsh Environments
3.3. Transcription Factor-Related DEGs Participated in the Response of K. arborescens in Harsh Environments
4. Materials and Methods
4.1. Plant Materials and Stress Treatments
4.2. Physiological and Biochemical Index Detection
4.3. RNA-Seq Analysis
4.4. Analysis of Differentially Expressed Genes
4.5. Quantitative Real-Time PCR Analysis
4.6. Co-Expression Gene Network Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, X.; Wei, L.; Wang, Z.; Wang, T. Physiological and Molecular Features of Puccinellia Tenuiflora Tolerating Salt and Alkaline-Salt Stress. J. Integr. Plant Biol. 2013, 55, 262–276. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Huang, W.; Chen, H.; Wu, G.; Yuan, H.; Song, X.; Kang, Q.; Zhao, D.; Jiang, W.; Liu, Y.; et al. Identification of Differentially Expressed Genes in Flax (Linum Usitatissimum L.) under Saline–Alkaline Stress by Digital Gene Expression. Gene 2014, 549, 113–122. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.-K. Abiotic Stress Signaling and Responses in Plants. Cell 2016, 167, 313–324. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Guo, Y. Elucidating the Molecular Mechanisms Mediating Plant Salt-stress Responses. New Phytol. 2018, 217, 523–539. [Google Scholar] [CrossRef]
- Van Zelm, E.; Zhang, Y.; Testerink, C. Salt Tolerance Mechanisms of Plants. Annu. Rev. Plant Biol. 2020, 71, 403–433. [Google Scholar] [CrossRef]
- Gupta, A.; Rico-Medina, A.; Caño-Delgado, A.I. The Physiology of Plant Responses to Drought. Science 2020, 368, 266–269. [Google Scholar] [CrossRef]
- Zhang, H.; Zhu, J.; Gong, Z.; Zhu, J.-K. Abiotic Stress Responses in Plants. Nat. Rev. Genet. 2022, 23, 104–119. [Google Scholar] [CrossRef]
- Golldack, D.; Li, C.; Mohan, H.; Probst, N. Tolerance to Drought and Salt Stress in Plants: Unraveling the Signaling Networks. Front. Plant Sci. 2014, 5, 151. [Google Scholar] [CrossRef]
- Yang, Y.; Guo, Y. Unraveling Salt Stress Signaling in Plants. J. Integr. Plant Biol. 2018, 60, 796–804. [Google Scholar] [CrossRef]
- Weng, J.-K.; Lynch, J.H.; Matos, J.O.; Dudareva, N. Adaptive Mechanisms of Plant Specialized Metabolism Connecting Chemistry to Function. Nat. Chem. Biol. 2021, 17, 1037–1045. [Google Scholar] [CrossRef]
- Zhu, J.-K. Salt and Drought Stress Signal Transduction in Plants. Annu. Rev. Plant Biol. 2002, 53, 247–273. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.; Li, G.; Bressan, R.A.; Song, C.; Zhu, J.; Zhao, Y. Abscisic Acid Dynamics, Signaling, and Functions in Plants. J. Integr. Plant Biol. 2020, 62, 25–54. [Google Scholar] [CrossRef] [PubMed]
- Jiang, C.; Belfield, E.J.; Cao, Y.; Smith, J.A.C.; Harberd, N.P. An Arabidopsis Soil-Salinity–Tolerance Mutation Confers Ethylene-Mediated Enhancement of Sodium/Potassium Homeostasis. Plant Cell 2013, 25, 3535–3552. [Google Scholar] [CrossRef] [PubMed]
- Desikan, R.; Last, K.; Harrett-Williams, R.; Tagliavia, C.; Harter, K.; Hooley, R.; Hancock, J.T.; Neill, S.J. Ethylene-induced Stomatal Closure in Arabidopsis Occurs via AtrbohF-mediated Hydrogen Peroxide Synthesis. Plant J. 2006, 47, 907–916. [Google Scholar] [CrossRef]
- Achard, P.; Cheng, H.; De Grauwe, L.; Decat, J.; Schoutteten, H.; Moritz, T.; Van Der Straeten, D.; Peng, J.; Harberd, N.P. Integration of Plant Responses to Environmentally Activated Phytohormonal Signals. Science 2006, 311, 91–94. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, C.; Li, K.; Sun, F.; Hu, H.; Li, X.; Zhao, Y.; Han, C.; Zhang, W.; Duan, Y.; et al. Arabidopsis EIN2 Modulates Stress Response through Abscisic Acid Response Pathway. Plant Mol. Biol. 2007, 64, 633–644. [Google Scholar] [CrossRef]
- Xu, J.; Li, Y.; Wang, Y.; Liu, H.; Lei, L.; Yang, H.; Liu, G.; Ren, D. Activation of MAPK Kinase 9 Induces Ethylene and Camalexin Biosynthesis and Enhances Sensitivity to Salt Stress in Arabidopsis*. J. Biol. Chem. 2008, 283, 26996–27006. [Google Scholar] [CrossRef]
- Yoo, S.-D.; Cho, Y.-H.; Tena, G.; Xiong, Y.; Sheen, J. Dual Control of Nuclear EIN3 by Bifurcate MAPK Cascades in C2H4 Signalling. Nature 2008, 451, 789–795. [Google Scholar] [CrossRef]
- Kazan, K. Diverse Roles of Jasmonates and Ethylene in Abiotic Stress Tolerance. Trends Plant Sci. 2015, 20, 219–229. [Google Scholar] [CrossRef]
- Wani, A.B.; Chadar, H.; Wani, A.H.; Singh, S.; Upadhyay, N. Salicylic Acid to Decrease Plant Stress. Environ. Chem. Lett. 2017, 15, 101–123. [Google Scholar] [CrossRef]
- Dong, N.; Lin, H. Contribution of Phenylpropanoid Metabolism to Plant Development and Plant–Environment Interactions. J. Integr. Plant Biol. 2021, 63, 180–209. [Google Scholar] [CrossRef] [PubMed]
- Dong, N.-Q.; Sun, Y.; Guo, T.; Shi, C.-L.; Zhang, Y.-M.; Kan, Y.; Xiang, Y.-H.; Zhang, H.; Yang, Y.-B.; Li, Y.-C.; et al. UDP-Glucosyltransferase Regulates Grain Size and Abiotic Stress Tolerance Associated with Metabolic Flux Redirection in Rice. Nat. Commun. 2020, 11, 2629. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Liu, W.; Yu, L.; Guo, Z.; Chen, Z.; Jiang, S.; Xu, H.; Fang, H.; Wang, Y.; Zhang, Z.; et al. Heat Shock Factor A8a Modulates Flavonoid Synthesis and Drought Tolerance. Plant Physiol. 2020, 184, 1273–1290. [Google Scholar] [CrossRef] [PubMed]
- Zheng, L.; Chen, Y.; Ding, D.; Zhou, Y.; Ding, L.; Wei, J.; Wang, H. Endoplasmic Reticulum-Localized UBC34 Interaction with Lignin Repressors MYB221 and MYB156 Regulates the Transactivity of the Transcription Factors in Populus Tomentosa. BMC Plant Biol. 2019, 19, 97. [Google Scholar] [CrossRef]
- Liu, W.; Jiang, Y.; Wang, C.; Zhao, L.; Jin, Y.; Xing, Q.; Li, M.; Lv, T.; Qi, H. Lignin Synthesized by CmCAD2 and CmCAD3 in Oriental Melon (Cucumis Melo L.) Seedlings Contributes to Drought Tolerance. Plant Mol. Biol. 2020, 103, 689–704. [Google Scholar] [CrossRef]
- Guo, R.; Zhao, L.; Zhang, K.; Lu, H.; Bhanbhro, N.; Yang, C. Comparative Genomics and Transcriptomics of the Extreme Halophyte Puccinellia Tenuiflora Provides Insights into Salinity Tolerance Differentiation Between Halophytes and Glycophytes. Front. Plant Sci. 2021, 12, 649001. [Google Scholar] [CrossRef]
- Yang, F.; Lv, G. Metabolomic Analysis of the Response of Haloxylon Ammodendron and Haloxylon Persicum to Drought. Int. J. Mol. Sci. 2023, 24, 9099. [Google Scholar] [CrossRef]
- Jiang, Y.; Zeng, B.; Zhao, H.; Zhang, M.; Xie, S.; Lai, J. Genome-Wide Transcription Factor Gene Prediction and Their Expressional Tissue-Specificities in Maize. J. Integr. Plant Biol. 2012, 54, 616–630. [Google Scholar] [CrossRef]
- Puranik, S.; Sahu, P.P.; Srivastava, P.S.; Prasad, M. NAC Proteins: Regulation and Role in Stress Tolerance. Trends Plant Sci. 2012, 17, 369–381. [Google Scholar] [CrossRef]
- Jiang, J.; Ma, S.; Ye, N.; Jiang, M.; Cao, J.; Zhang, J. WRKY Transcription Factors in Plant Responses to Stresses. J. Integr. Plant Biol. 2017, 59, 86–101. [Google Scholar] [CrossRef]
- Liu, T.; Chen, T.; Kan, J.; Yao, Y.; Guo, D.; Yang, Y.; Ling, X.; Wang, J.; Zhang, B. The GhMYB36 Transcription Factor Confers Resistance to Biotic and Abiotic Stress by Enhancing PR1 Gene Expression in Plants. Plant Biotechnol. J. 2022, 20, 722–735. [Google Scholar] [CrossRef] [PubMed]
- Trujillo, L.E.; Sotolongo, M.; Menéndez, C.; Ochogavía, M.E.; Coll, Y.; Hernández, I.; Borrás-Hidalgo, O.; Thomma, B.P.H.J.; Vera, P.; Hernández, L. SodERF3, a Novel Sugarcane Ethylene Responsive Factor (ERF), Enhances Salt and Drought Tolerance When Overexpressed in Tobacco Plants. Plant Cell Physiol. 2008, 49, 512–525. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Dubos, C.; Lepiniec, L. Transcriptional Control of Flavonoid Biosynthesis by MYB–bHLH–WDR Complexes. Trends Plant Sci. 2015, 20, 176–185. [Google Scholar] [CrossRef] [PubMed]
- Heyduk, K.; Grace, O.M.; McKain, M.R. Life Without Water. Am. J. Bot. 2021, 108, 181–183. [Google Scholar] [CrossRef]
- Mueller, K.E.; Kray, J.A.; Blumenthal, D.M. Coordination of Leaf, Root, and Seed Traits Shows the Importance of Whole Plant Economics in Two Semiarid Grasslands. New Phytol. 2024, 241, 2410–2422. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, J.-M.; Yang, H.; Li, G.-J.; Chen, C.; Li, J.-W. Groundwater and Root Trait Diversity Jointly Drive Plant Fine Root Biomass across Arid Inland River Basin. Plant Soil. 2021, 469, 369–385. [Google Scholar] [CrossRef]
- Zhang, H.; Song, K.; Hu, H.; Ma, S.; Ma, F. Variability in Precipitation Influences the Water Sourcing and Adaptive Strategies of Key Plant Species within the Desert Steppe Ecosystem. Ecol. Indic. 2024, 158, 111333. [Google Scholar] [CrossRef]
- Driesen, E.; De Proft, M.; Saeys, W. Drought Stress Triggers Alterations of Adaxial and Abaxial Stomatal Development in Basil Leaves Increasing Water-Use Efficiency. Hortic. Res. 2023, 10, uhad075. [Google Scholar] [CrossRef]
- Feng, X.-L.; Liu, R.; Li, C.-J.; Wang, Y.-G.; Kong, L.; Wang, Z.-R. Stem photosynthesis and its main influencing factors of Haloxylon ammodendron and Tamarix ramosissima. Ying Yong Sheng Tai Xue Bao 2022, 33, 344–352. (In Chinese) [Google Scholar] [CrossRef]
- Xue, Y.; Wang, Y. Study on Characters of Ions Secretion from Reaumuria trigyna. J. Desert Res. 2008, 28, 437–442. (In Chinese) [Google Scholar]
- Dang, Z.; Zheng, L.; Wang, J.; Gao, Z.; Wu, S.; Qi, Z.; Wang, Y. Transcriptomic Profiling of the Salt-Stress Response in the Wild Recretohalophyte Reaumuria Trigyna. BMC Genom. 2013, 14, 29. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Feng, J.; Lu, J.; Yang, Y.; Zhang, X.; Wan, D.; Liu, J. Transcriptome Differences between Two Sister Desert Poplar Species under Salt Stress. BMC Genom. 2014, 15, 337. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Li, B.; Chen, Q.; Su, Y.; Wang, R.; Liu, Z.; Chen, G. Non-Targeted Metabolomic Analysis of the Variations in the Metabolites of Two Genotypes of Glycyrrhiza Uralensis Fisch. under Drought Stress. Ind. Crops Prod. 2022, 176, 114402. [Google Scholar] [CrossRef]
- Liu, J.; Zhou, Y.; Luo, C.; Xiang, Y.; An, L. De Novo Transcriptome Sequencing of Desert Herbaceous Achnatherum Splendens (Achnatherum) Seedlings and Identification of Salt Tolerance Genes. Genes 2016, 7, 12. [Google Scholar] [CrossRef]
- Zeng, N.; Yang, Z.; Zhang, Z.; Hu, L.; Chen, L. Comparative Transcriptome Combined with Proteome Analyses Revealed Key Factors Involved in Alfalfa (Medicago Sativa) Response to Waterlogging Stress. Int. J. Mol. Sci. 2019, 20, 1359. [Google Scholar] [CrossRef]
- Guo, R.; Zhao, L.; Zhang, K.; Gao, D.; Yang, C. Genome of Extreme Halophyte Puccinellia Tenuiflora. BMC Genom. 2020, 21, 311. [Google Scholar] [CrossRef]
- Fang, T.; Zhou, S.; Qian, C.; Yan, X.; Yin, X.; Fan, X.; Zhao, P.; Liao, Y.; Shi, L.; Chang, Y.; et al. Integrated Metabolomics and Transcriptomics Insights on Flavonoid Biosynthesis of a Medicinal Functional Forage, Agriophyllum Squarrosum (L.), Based on a Common Garden Trial Covering Six Ecotypes. Front. Plant Sci. 2022, 13, 985572. [Google Scholar] [CrossRef]
- Li, X.-Y.; Wang, Y.; Hou, X.-Y.; Chen, Y.; Li, C.-X.; Ma, X.-R. Flexible Response and Rapid Recovery Strategies of the Plateau Forage Poa Crymophila to Cold and Drought. Front. Plant Sci. 2022, 13, 970496. [Google Scholar] [CrossRef]
- Yang, Z.; Liu, Y.; Han, H.; Zhao, X.; Chen, S.; Li, G.; Shi, S.; Feng, J. Physiological and Transcriptome Analyses Reveal the Response of Ammopiptanthus Mongolicus to Extreme Seasonal Temperatures in a Cold Plateau Desert Ecosystem. Sci. Rep. 2022, 12, 10630. [Google Scholar] [CrossRef]
- Chen, J.; Tian, Q.; Pang, T.; Jiang, L.; Wu, R.; Xia, X.; Yin, W. Deep-Sequencing Transcriptome Analysis of Low Temperature Perception in a Desert Tree, Populus Euphratica. BMC Genom. 2014, 15, 326. [Google Scholar] [CrossRef]
- Huang, J.; Wang, L.; Tang, B.; Ren, R.; Shi, T.; Zhu, L.; Deng, J.; Liang, C.; Wang, Y.; Chen, Q. Integrated Transcriptomics and Widely Targeted Metabolomics Analyses Provide Insights into Flavonoid Biosynthesis in the Rhizomes of Golden Buckwheat (Fagopyrum Cymosum). Front. Plant Sci. 2022, 13, 803472. [Google Scholar] [CrossRef] [PubMed]
- Dang, Z.; Xu, Y.; Zhang, X.; Mi, W.; Chi, Y.; Tian, Y.; Liu, Y.; Ren, W. Chromosome-Level Genome Assembly Provides Insights into the Genome Evolution and Functional Importance of the Phenylpropanoid–Flavonoid Pathway in Thymus Mongolicus. BMC Genom. 2024, 25, 291. [Google Scholar] [CrossRef] [PubMed]
- Du, C.; Zhao, P.; Zhang, H.; Li, N.; Zheng, L.; Wang, Y. The Reaumuria Trigyna Transcription Factor RtWRKY1 Confers Tolerance to Salt Stress in Transgenic Arabidopsis. J. Plant Physiol. 2017, 215, 48–58. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Wang, X.; Ma, B.; Du, C.; Zheng, L.; Wang, Y. Expression of a Na+/H+ Antiporter RtNHX1 from a Recretohalophyte Reaumuria Trigyna Improved Salt Tolerance of Transgenic Arabidopsis Thaliana. J. Plant Physiol. 2017, 218, 109–120. [Google Scholar] [CrossRef]
- Ma, Q.; Hu, J.; Zhou, X.-R.; Yuan, H.-J.; Kumar, T.; Luan, S.; Wang, S.-M. ZxAKT1 Is Essential for K+ Uptake and K+/Na+ Homeostasis in the Succulent Xerophyte Zygophyllum Xanthoxylum. Plant J. 2017, 90, 48–60. [Google Scholar] [CrossRef]
- Gao, T.-G.; Ma, C.-M.; Yuan, H.-J.; Liu, H.-S.; Ma, Q.; Flowers, T.J.; Wang, S.-M. ZxNHX1 Indirectly Participates in Controlling K+ Homeostasis in the Xerophyte Zygophyllum Xanthoxylum. Funct. Plant Biol. 2021, 48, 402–410. [Google Scholar] [CrossRef]
- Wang, S.; Liu, Y.; Hao, X.; Wang, Z.; Chen, Y.; Qu, Y.; Yao, H.; Shen, Y. AnWRKY29 from the Desert Xerophytic Evergreen Ammopiptanthus Nanus Improves Drought Tolerance through Osmoregulation in Transgenic Plants. Plant Sci. 2023, 336, 111851. [Google Scholar] [CrossRef]
- Kang, P.; Bao, A.-K.; Kumar, T.; Pan, Y.-Q.; Bao, Z.; Wang, F.; Wang, S.-M. Assessment of Stress Tolerance, Productivity, and Forage Quality in T1 Transgenic Alfalfa Co-Overexpressing ZxNHX and ZxVP1-1 from Zygophyllum Xanthoxylum. Front. Plant Sci. 2016, 7, 1598. [Google Scholar] [CrossRef]
- Ma, B.; Zhang, J.; Guo, S.; Xie, X.; Yan, L.; Chen, H.; Zhang, H.; Bu, X.; Zheng, L.; Wang, Y. RtNAC055 Promotes Drought Tolerance via a Stomatal Closure Pathway Linked to Methyl Jasmonate/Hydrogen Peroxide Signaling in Reaumuria Trigyna. Hortic. Res. 2024, 11, uhae001. [Google Scholar] [CrossRef]
- Zhang, H.; Qi, C.; Li, C.; Huang, D.; Mao, H.; Lin, X. Overexpression of High Affinity K+ Transporter from Nitraria Sibirica Enhanced Salt Tolerance of Transgenic Plants. Plant Sci. 2024, 342, 112052. [Google Scholar] [CrossRef]
- Yi, F.; A, L.; Wang, H.; Zhan, C.; Liu, Y.; Yan, X. Research report on Ceratoides arborescens in Chahar. Grassl. Prataculture 2019, 31, 53–59. (In Chinese) [Google Scholar]
- Li, X.; Shuang, B.; Zhang, L. Research Progress on Ceratoides Arborescens (Losinsk.) Tsien et C. G. Ma Endemic Species in China. J. Grassl. Forage Sci. 2023, 4, 83–86. (In Chinese) [Google Scholar] [CrossRef]
- Jin, J.; A, L.; Song, X.; Xing, Q.; Liu, Y.; Chen, X. Study on improvement of degraded desert grassland by Ceratoides arborescens. Mod. Anim. Husb. 2022, 6, 9–12. (In Chinese) [Google Scholar] [CrossRef]
- Li, X.; Zhang, L.; Ren, H.; Wang, X.; Mi, F. Zinc Toxicity Response in Ceratoides Arborescens and Identification of CaMTP, a Novel Zinc Transporter. Front. Plant Sci. 2022, 13, 976311. [Google Scholar] [CrossRef]
- An, Y.-M.; Song, L.-L.; Liu, Y.-R.; Shu, Y.-J.; Guo, C.-H. De Novo Transcriptional Analysis of Alfalfa in Response to Saline-Alkaline Stress. Front. Plant Sci. 2016, 7, 931. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, Z.; Zhang, Z.; Li, Y.; Guo, J.; Liu, L.; Wang, C.; Fan, H.; Wang, B.; Han, G. Root Hair Development and Adaptation to Abiotic Stress. J. Agric. Food Chem. 2023, 71, 9573–9598. [Google Scholar] [CrossRef]
- Waadt, R.; Seller, C.A.; Hsu, P.-K.; Takahashi, Y.; Munemasa, S.; Schroeder, J.I. Plant Hormone Regulation of Abiotic Stress Responses. Nat. Rev. Mol. Cell Biol. 2022, 23, 680–694. [Google Scholar] [CrossRef]
- Verma, V.; Ravindran, P.; Kumar, P.P. Plant Hormone-Mediated Regulation of Stress Responses. BMC Plant Biol. 2016, 16, 86. [Google Scholar] [CrossRef]
- Yu, Z.; Duan, X.; Luo, L.; Dai, S.; Ding, Z.; Xia, G. How Plant Hormones Mediate Salt Stress Responses. Trends Plant Sci. 2020, 25, 1117–1130. [Google Scholar] [CrossRef]
- Umezawa, T.; Sugiyama, N.; Mizoguchi, M.; Hayashi, S.; Myouga, F.; Yamaguchi-Shinozaki, K.; Ishihama, Y.; Hirayama, T.; Shinozaki, K. Type 2C Protein Phosphatases Directly Regulate Abscisic Acid-Activated Protein Kinases in Arabidopsis. Proc. Natl. Acad. Sci. USA 2009, 106, 17588–17593. [Google Scholar] [CrossRef]
- Ahmad, H.; Maher, M.; Abdel-Salam, E.M.; Li, Y.; Yang, C.; ElSafty, N.; Ewas, M.; Nishawy, E.; Luo, J. Integrated de Novo Analysis of Transcriptional and Metabolic Variations in Salt-Treated Solenostemma Argel Desert Plants. Front. Plant Sci. 2021, 12, 744699. [Google Scholar] [CrossRef] [PubMed]
- Meng, H.-L.; Sun, P.-Y.; Wang, J.-R.; Sun, X.-Q.; Zheng, C.-Z.; Fan, T.; Chen, Q.-F.; Li, H.-Y. Comparative Physiological, Transcriptomic, and WGCNA Analyses Reveal the Key Genes and Regulatory Pathways Associated with Drought Tolerance in Tartary Buckwheat. Front. Plant Sci. 2022, 13, 985088. [Google Scholar] [CrossRef]
- Taylor, I.B.; Burbidge, A.; Thompson, A.J. Control of Abscisic Acid Synthesis. J. Exp. Bot. 2000, 51, 1563–1574. [Google Scholar] [CrossRef] [PubMed]
- Estrada-Melo, A.C.; Ma, C.; Reid, M.S.; Jiang, C.-Z. Overexpression of an ABA Biosynthesis Gene Using a Stress-Inducible Promoter Enhances Drought Resistance in Petunia. Hortic. Res. 2015, 2, 15013. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Guo, Y.; Liu, Y.; Zhang, F.; Wang, Z.; Wang, H.; Wang, F.; Li, D.; Mao, D.; Luan, S.; et al. 9-Cis-Epoxycarotenoid Dioxygenase 3 Regulates Plant Growth and Enhances Multi-Abiotic Stress Tolerance in Rice. Front. Plant Sci. 2018, 9, 162. [Google Scholar] [CrossRef]
- Lee, S.-U.; Mun, B.-G.; Bae, E.-K.; Kim, J.-Y.; Kim, H.-H.; Shahid, M.; Choi, Y.-I.; Hussain, A.; Yun, B.-W. Drought Stress-Mediated Transcriptome Profile Reveals NCED as a Key Player Modulating Drought Tolerance in Populus Davidiana. Front. Plant Sci. 2021, 12, 755539. [Google Scholar] [CrossRef]
- Park, S.-Y.; Fung, P.; Nishimura, N.; Jensen, D.R.; Fujii, H.; Zhao, Y.; Lumba, S.; Santiago, J.; Rodrigues, A.; Chow, T.-F.F.; et al. Abscisic Acid Inhibits Type 2C Protein Phosphatases via the PYR/PYL Family of START Proteins. Science 2009, 324, 1068–1071. [Google Scholar] [CrossRef]
- Pizzio, G.A.; Rodriguez, L.; Antoni, R.; Gonzalez-Guzman, M.; Yunta, C.; Merilo, E.; Kollist, H.; Albert, A.; Rodriguez, P.L. The PYL4 A194T Mutant Uncovers a Key Role of PYR1-LIKE4/PROTEIN PHOSPHATASE 2CA Interaction for Abscisic Acid Signaling and Plant Drought Resistance. Plant Physiol. 2013, 163, 441–455. [Google Scholar] [CrossRef]
- Liu, Z.; Zhang, M.; Wang, L.; Sun, W.; Li, M.; Feng, C.; Yang, X. Genome-Wide Identification and Expression Analysis of PYL Family Genes and Functional Characterization of GhPYL8D2 under Drought Stress in Gossypium Hirsutum. Plant Physiol. Biochem. 2023, 203, 108072. [Google Scholar] [CrossRef]
- Geiger, D.; Scherzer, S.; Mumm, P.; Stange, A.; Marten, I.; Bauer, H.; Ache, P.; Matschi, S.; Liese, A.; Al-Rasheid, K.A.S.; et al. Activity of Guard Cell Anion Channel SLAC1 Is Controlled by Drought-Stress Signaling Kinase-Phosphatase Pair. Proc. Natl. Acad. Sci. USA 2009, 106, 21425–21430. [Google Scholar] [CrossRef]
- Sun, S.-J.; Qi, G.-N.; Gao, Q.-F.; Wang, H.-Q.; Yao, F.-Y.; Hussain, J.; Wang, Y.-F. Protein Kinase OsSAPK8 Functions as an Essential Activator of S-Type Anion Channel OsSLAC1, Which Is Nitrate-Selective in Rice. Planta 2016, 243, 489–500. [Google Scholar] [CrossRef] [PubMed]
- Min, M.K.; Choi, E.-H.; Kim, J.-A.; Yoon, I.S.; Han, S.; Lee, Y.; Lee, S.; Kim, B.-G. Two Clade A Phosphatase 2Cs Expressed in Guard Cells Physically Interact with Abscisic Acid Signaling Components to Induce Stomatal Closure in Rice. Rice 2019, 12, 37. [Google Scholar] [CrossRef]
- Wu, Q.; Wang, M.; Shen, J.; Chen, D.; Zheng, Y.; Zhang, W. ZmOST1 Mediates Abscisic Acid Regulation of Guard Cell Ion Channels and Drought Stress Responses. J. Integr. Plant Biol. 2019, 61, 478–491. [Google Scholar] [CrossRef]
- Kerk, D.; Bulgrien, J.; Smith, D.W.; Barsam, B.; Veretnik, S.; Gribskov, M. The Complement of Protein Phosphatase Catalytic Subunits Encoded in the Genome of Arabidopsis. Plant Physiol. 2002, 129, 908–925. [Google Scholar] [CrossRef]
- Guo, L.; Lu, S.; Liu, T.; Nai, G.; Ren, J.; Gou, H.; Chen, B.; Mao, J. Genome-Wide Identification and Abiotic Stress Response Analysis of PP2C Gene Family in Woodland and Pineapple Strawberries. Int. J. Mol. Sci. 2023, 24, 4049. [Google Scholar] [CrossRef]
- Wu, Z.; Luo, L.; Wan, Y.; Liu, F. Genome-Wide Characterization of the PP2C Gene Family in Peanut (Arachis Hypogaea L.) and the Identification of Candidate Genes Involved in Salinity-Stress Response. Front. Plant Sci. 2023, 14, 1093913. [Google Scholar] [CrossRef]
- Yoshida, T.; Fujita, Y.; Sayama, H.; Kidokoro, S.; Maruyama, K.; Mizoi, J.; Shinozaki, K.; Yamaguchi-Shinozaki, K. AREB1, AREB2, and ABF3 Are Master Transcription Factors That Cooperatively Regulate ABRE-Dependent ABA Signaling Involved in Drought Stress Tolerance and Require ABA for Full Activation. Plant J. 2010, 61, 672–685. [Google Scholar] [CrossRef]
- Nakashima, K.; Yamaguchi-Shinozaki, K. ABA Signaling in Stress-Response and Seed Development. Plant Cell Rep. 2013, 32, 959–970. [Google Scholar] [CrossRef]
- Cao, W.-H.; Liu, J.; Zhou, Q.-Y.; Cao, Y.-R.; Zheng, S.-F.; Du, B.-X.; Zhang, J.-S.; Chen, S.-Y. Expression of Tobacco Ethylene Receptor NTHK1 Alters Plant Responses to Salt Stress. Plant Cell Environ. 2006, 29, 1210–1219. [Google Scholar] [CrossRef]
- Li, G.; Meng, X.; Wang, R.; Mao, G.; Han, L.; Liu, Y.; Zhang, S. Dual-Level Regulation of ACC Synthase Activity by MPK3/MPK6 Cascade and Its Downstream WRKY Transcription Factor during Ethylene Induction in Arabidopsis. PLoS Genet. 2012, 8, e1002767. [Google Scholar] [CrossRef]
- Zhang, M.; Smith, J.A.C.; Harberd, N.P.; Jiang, C. The Regulatory Roles of Ethylene and Reactive Oxygen Species (ROS) in Plant Salt Stress Responses. Plant Mol. Biol. 2016, 91, 651–659. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Niu, L.; Yu, J.; Liao, W.; Xie, J.; Lv, J.; Feng, Z.; Hu, L.; Dawuda, M.M. The Involvement of Ethylene in Calcium-Induced Adventitious Root Formation in Cucumber under Salt Stress. Int. J. Mol. Sci. 2019, 20, 1047. [Google Scholar] [CrossRef] [PubMed]
- Yates, S.A.; Chernukhin, I.; Alvarez-Fernandez, R.; Bechtold, U.; Baeshen, M.; Baeshen, N.; Mutwakil, M.Z.; Sabir, J.; Lawson, T.; Mullineaux, P.M. The Temporal Foliar Transcriptome of the Perennial C3 Desert Plant Rhazya Stricta in Its Natural Environment. BMC Plant Biol. 2014, 14, 2. [Google Scholar] [CrossRef]
- Müller, M. Foes or Friends: ABA and Ethylene Interaction under Abiotic Stress. Plants 2021, 10, 448. [Google Scholar] [CrossRef]
- He, M.-W.; Wang, Y.; Wu, J.-Q.; Shu, S.; Sun, J.; Guo, S.-R. Isolation and Characterization of S-Adenosylmethionine Synthase Gene from Cucumber and Responsive to Abiotic Stress. Plant Physiol. Biochem. 2019, 141, 431–445. [Google Scholar] [CrossRef]
- Kilwake, J.W.; Umer, M.J.; Wei, Y.; Mehari, T.G.; Magwanga, R.O.; Xu, Y.; Hou, Y.; Wang, Y.; Shiraku, M.L.; Kirungu, J.N.; et al. Genome-Wide Characterization of the SAMS Gene Family in Cotton Unveils the Putative Role of GhSAMS2 in Enhancing Abiotic Stress Tolerance. Agronomy 2023, 13, 612. [Google Scholar] [CrossRef]
- Xu, L.; Xiang, G.; Sun, Q.; Ni, Y.; Jin, Z.; Gao, S.; Yao, Y. Melatonin Enhances Salt Tolerance by Promoting MYB108A-Mediated Ethylene Biosynthesis in Grapevines. Hortic. Res. 2019, 6, 114. [Google Scholar] [CrossRef]
- Nakano, T.; Suzuki, K.; Fujimura, T.; Shinshi, H. Genome-Wide Analysis of the ERF Gene Family in Arabidopsis and Rice. Plant Physiol. 2006, 140, 411–432. [Google Scholar] [CrossRef]
- Binder, B.M. Ethylene Signaling in Plants. J. Biol. Chem. 2020, 295, 7710–7725. [Google Scholar] [CrossRef]
- Zhang, L.; Li, Z.; Quan, R.; Li, G.; Wang, R.; Huang, R. An AP2 Domain-Containing Gene, ESE1, Targeted by the Ethylene Signaling Component EIN3 Is Important for the Salt Response in Arabidopsis. Plant Physiol. 2011, 157, 854–865. [Google Scholar] [CrossRef]
- Liu, Y.; Jin, C.; Li, Y.; Wang, L.; Li, F.; Wang, B.; Jiang, J.; Zheng, Z.; Li, H. Identification and Analysis of the EIN3/EIL Gene Family in Populus × Xiaohei T. S. Hwang et Liang: Expression Profiling during Stress. Forests 2022, 13, 382. [Google Scholar] [CrossRef]
- Schmidt, R.; Mieulet, D.; Hubberten, H.-M.; Obata, T.; Hoefgen, R.; Fernie, A.R.; Fisahn, J.; San Segundo, B.; Guiderdoni, E.; Schippers, J.H.M.; et al. SALT-RESPONSIVE ERF1 Regulates Reactive Oxygen Species-Dependent Signaling during the Initial Response to Salt Stress in Rice. Plant Cell 2013, 25, 2115–2131. [Google Scholar] [CrossRef] [PubMed]
- Makhloufi, E.; Yousfi, F.-E.; Marande, W.; Mila, I.; Hanana, M.; Bergès, H.; Mzid, R.; Bouzayen, M. Isolation and Molecular Characterization of ERF1, an Ethylene Response Factor Gene from Durum Wheat (Triticum Turgidum L. Subsp. Durum), Potentially Involved in Salt-Stress Responses. J. Exp. Bot. 2014, 65, 6359–6371. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Wang, D.; Chen, P.; Zhang, C.; Yao, S.; Hao, Q.; Agassin, R.H.; Ji, K. The Transcriptomic Analysis of the Response of Pinus Massoniana to Drought Stress and a Functional Study on the ERF1 Transcription Factor. Int. J. Mol. Sci. 2023, 24, 11103. [Google Scholar] [CrossRef]
- Shafi, A.; Chauhan, R.; Gill, T.; Swarnkar, M.K.; Sreenivasulu, Y.; Kumar, S.; Kumar, N.; Shankar, R.; Ahuja, P.S.; Singh, A.K. Expression of SOD and APX Genes Positively Regulates Secondary Cell Wall Biosynthesis and Promotes Plant Growth and Yield in Arabidopsis under Salt Stress. Plant Mol. Biol. 2015, 87, 615–631. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, C.-J. Multifaceted Regulations of Gateway Enzyme Phenylalanine Ammonia-Lyase in the Biosynthesis of Phenylpropanoids. Mol. Plant 2015, 8, 17–27. [Google Scholar] [CrossRef]
- Shen, S.; Yan, W.; Xie, S.; Yu, J.; Yao, G.; Xia, P.; Wu, Y.; Yang, H. Physiological and Transcriptional Analysis Reveals the Response Mechanism of Camellia Vietnamensis Huang to Drought Stress. Int. J. Mol. Sci. 2022, 23, 11801. [Google Scholar] [CrossRef]
- Fraser, C.M.; Chapple, C. The Phenylpropanoid Pathway in Arabidopsis. Arab. Book. 2011, 9, e0152. [Google Scholar] [CrossRef]
- Hamberger, B.; Hahlbrock, K. The 4-Coumarate:CoA Ligase Gene Family in Arabidopsis Thaliana Comprises One Rare, Sinapate-Activating and Three Commonly Occurring Isoenzymes. Proc. Natl. Acad. Sci. USA 2004, 101, 2209–2214. [Google Scholar] [CrossRef]
- Costa, M.A.; Bedgar, D.L.; Moinuddin, S.G.A.; Kim, K.-W.; Cardenas, C.L.; Cochrane, F.C.; Shockey, J.M.; Helms, G.L.; Amakura, Y.; Takahashi, H.; et al. Characterization in Vitro and in Vivo of the Putative Multigene 4-Coumarate:CoA Ligase Network in Arabidopsis: Syringyl Lignin and Sinapate/Sinapyl Alcohol Derivative Formation. Phytochemistry 2005, 66, 2072–2091. [Google Scholar] [CrossRef]
- Huang, J.; Gu, M.; Lai, Z.; Fan, B.; Shi, K.; Zhou, Y.-H.; Yu, J.-Q.; Chen, Z. Functional Analysis of the Arabidopsis PAL Gene Family in Plant Growth, Development, and Response to Environmental Stress. Plant Physiol. 2010, 153, 1526–1538. [Google Scholar] [CrossRef] [PubMed]
- Van Acker, R.; Vanholme, R.; Storme, V.; Mortimer, J.C.; Dupree, P.; Boerjan, W. Lignin Biosynthesis Perturbations Affect Secondary Cell Wall Composition and Saccharification Yield in Arabidopsis Thaliana. Biotechnol. Biofuels 2013, 6, 46. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.-C.; Xiong, X.-P.; Zhang, X.-L.; Feng, H.-J.; Zhu, Q.-H.; Sun, J.; Li, Y.-J. Characterization of the Gh4CL Gene Family Reveals a Role of Gh4CL7 in Drought Tolerance. BMC Plant Biol. 2020, 20, 125. [Google Scholar] [CrossRef] [PubMed]
- Fan, B.; Sun, F.; Yu, Z.; Zhang, X.; Yu, X.; Wu, J.; Yan, X.; Zhao, Y.; Nie, L.; Fang, Y.; et al. Integrated Analysis of Small RNAs, Transcriptome and Degradome Sequencing Reveal the Drought Stress Network in Agropyron Mongolicum Keng. Front. Plant Sci. 2022, 13, 976684. [Google Scholar] [CrossRef]
- Catalá, R.; Medina, J.; Salinas, J. Integration of Low Temperature and Light Signaling during Cold Acclimation Response in Arabidopsis. Proc. Natl. Acad. Sci. USA 2011, 108, 16475–16480. [Google Scholar] [CrossRef]
- Maeda, H.; Dudareva, N. The Shikimate Pathway and Aromatic Amino Acid Biosynthesis in Plants. Annu. Rev. Plant Biol. 2012, 63, 73–105. [Google Scholar] [CrossRef]
- Nakabayashi, R.; Yonekura-Sakakibara, K.; Urano, K.; Suzuki, M.; Yamada, Y.; Nishizawa, T.; Matsuda, F.; Kojima, M.; Sakakibara, H.; Shinozaki, K.; et al. Enhancement of Oxidative and Drought Tolerance in Arabidopsis by Overaccumulation of Antioxidant Flavonoids. Plant J. 2014, 77, 367–379. [Google Scholar] [CrossRef]
- Feyissa, B.A.; Arshad, M.; Gruber, M.Y.; Kohalmi, S.E.; Hannoufa, A. The Interplay between miR156/SPL13 and DFR/WD40-1 Regulate Drought Tolerance in Alfalfa. BMC Plant Biol. 2019, 19, 434. [Google Scholar] [CrossRef]
- Tirumalai, V.; Swetha, C.; Nair, A.; Pandit, A.; Shivaprasad, P.V. miR828 and miR858 Regulate VvMYB114 to Promote Anthocyanin and Flavonol Accumulation in Grapes. J. Exp. Bot. 2019, 70, 4775–4792. [Google Scholar] [CrossRef]
- Moura, J.C.M.S.; Bonine, C.A.V.; De Oliveira Fernandes Viana, J.; Dornelas, M.C.; Mazzafera, P. Abiotic and Biotic Stresses and Changes in the Lignin Content and Composition in Plants. J. Integr. Plant Biol. 2010, 52, 360–376. [Google Scholar] [CrossRef]
- Ralph, J.; Lapierre, C.; Boerjan, W. Lignin Structure and Its Engineering. Curr. Opin. Biotechnol. 2019, 56, 240–249. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, D.M.; Mota, T.R.; Salatta, F.V.; Sinzker, R.C.; Končitíková, R.; Kopečný, D.; Simister, R.; Silva, M.; Goeminne, G.; Morreel, K.; et al. Cell Wall Remodeling under Salt Stress: Insights into Changes in Polysaccharides, Feruloylation, Lignification, and Phenolic Metabolism in Maize. Plant Cell Environ. 2020, 43, 2172–2191. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Yi, N.; Yao, S.B.; Zhuang, J.; Fu, Z.; Ma, J.; Yin, S.; Jiang, X.; Liu, Y.; Gao, L.; et al. CsHCT-Mediated Lignin Synthesis Pathway Involved in the Response of Tea Plants to Biotic and Abiotic Stresses. J. Agric. Food Chem. 2021, 69, 10069–10081. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Zhang, Y.; Xu, C.; Wang, X.; Wang, P.; Huang, S. Abscisic Acid Collaborates with Lignin and Flavonoid to Improve Pre-silking Drought Tolerance by Tuning Stem Elongation and Ear Development in Maize (Zea Mays L.). Plant J. 2023, 114, 437–454. [Google Scholar] [CrossRef]
- Chen, K.; Song, M.; Guo, Y.; Liu, L.; Xue, H.; Dai, H.; Zhang, Z. MdMYB46 Could Enhance Salt and Osmotic Stress Tolerance in Apple by Directly Activating Stress-responsive Signals. Plant Biotechnol. J. 2019, 17, 2341–2355. [Google Scholar] [CrossRef]
- Hu, P.; Zhang, K.; Yang, C. BpNAC012 Positively Regulates Abiotic Stress Responses and Secondary Wall Biosynthesis. Plant Physiol. 2019, 179, 700–717. [Google Scholar] [CrossRef]
- Domon, J.-M.; Baldwin, L.; Acket, S.; Caudeville, E.; Arnoult, S.; Zub, H.; Gillet, F.; Lejeune-Hénaut, I.; Brancourt-Hulmel, M.; Pelloux, J.; et al. Cell Wall Compositional Modifications of Miscanthus Ecotypes in Response to Cold Acclimation. Phytochemistry 2013, 85, 51–61. [Google Scholar] [CrossRef]
- Zhang, J.; Yin, X.-R.; Li, H.; Xu, M.; Zhang, M.-X.; Li, S.-J.; Liu, X.-F.; Shi, Y.-N.; Grierson, D.; Chen, K.-S. ETHYLENE RESPONSE FACTOR39-MYB8 Complex Regulates Low-Temperature-Induced Lignification of Loquat Fruit. J. Exp. Bot. 2020, 71, 3172–3184. [Google Scholar] [CrossRef]
- Zhang, Y.; Diao, S.; Ding, X.; Sun, J.; Luan, Q.; Jiang, J. Transcriptional Regulation Modulates Terpenoid Biosynthesis of Pinus Elliottii under Drought Stress. Ind. Crops Prod. 2023, 202, 116975. [Google Scholar] [CrossRef]
- Lang, S.; Dong, B.; Liu, X.; Gu, Y.; Kim, K.; Xie, Q.; Wang, Z.; Song, X. The Key Pathways for Drought Tolerance in Cerasus Humilis Were Unveiled through Transcriptome Analysis. Physiol. Plant. 2024, 176, e14350. [Google Scholar] [CrossRef]
- Li, H.; Sun, J.; Xu, Y.; Jiang, H.; Wu, X.; Li, C. The bHLH-Type Transcription Factor AtAIB Positively Regulates ABA Response in Arabidopsis. Plant Mol. Biol. 2007, 65, 655–665. [Google Scholar] [CrossRef] [PubMed]
- Umezawa, T.; Sugiyama, N.; Takahashi, F.; Anderson, J.C.; Ishihama, Y.; Peck, S.C.; Shinozaki, K. Genetics and Phosphoproteomics Reveal a Protein Phosphorylation Network in the Abscisic Acid Signaling Pathway in Arabidopsis Thaliana. Sci. Signal. 2013, 6, rs8. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Tai, H.; Li, S.; Gao, W.; Zhao, M.; Xie, C.; Li, W. BHLH122 Is Important for Drought and Osmotic Stress Resistance inArabidopsis and in the Repression of ABA Catabolism. New Phytol. 2014, 201, 1192–1204. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, Y.; Ebisu, Y.; Shimazaki, K. Reconstitution of Abscisic Acid Signaling from the Receptor to DNA via bHLH Transcription Factors. Plant Physiol. 2017, 174, 815–822. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.-P.; Lu, D.; Yu, T.-F.; Ji, Y.-J.; Zheng, W.-J.; Zhang, S.-X.; Chai, S.-C.; Chen, Z.-Y.; Cui, X.-Y. Genome-Wide Analysis of the YABBY Family in Soybean and Functional Identification of GmYABBY10 Involvement in High Salt and Drought Stresses. Plant Physiol. Biochem. 2017, 119, 132–146. [Google Scholar] [CrossRef]
- Zhang, T.; Li, C.; Li, D.; Liu, Y.; Yang, X. Roles of YABBY Transcription Factors in the Modulation of Morphogenesis, Development, and Phytohormone and Stress Responses in Plants. J. Plant Res. 2020, 133, 751–763. [Google Scholar] [CrossRef]
- Fang, Q.; Wang, X.; Wang, H.; Tang, X.; Liu, C.; Yin, H.; Ye, S.; Jiang, Y.; Duan, Y.; Luo, K. The Poplar R2R3 MYB Transcription Factor PtrMYB94 Coordinates with Abscisic Acid Signaling to Improve Drought Tolerance in Plants. Tree Physiol. 2020, 40, 46–59. [Google Scholar] [CrossRef]
- Geng, D.; Shen, X.; Xie, Y.; Yang, Y.; Bian, R.; Gao, Y.; Li, P.; Sun, L.; Feng, H.; Ma, F.; et al. Regulation of Phenylpropanoid Biosynthesis by MdMYB88 and MdMYB124 Contributes to Pathogen and Drought Resistance in Apple. Hortic. Res. 2020, 7, 102. [Google Scholar] [CrossRef]
- Wang, F.; Kong, W.; Wong, G.; Fu, L.; Peng, R.; Li, Z.; Yao, Q. AtMYB12 Regulates Flavonoids Accumulation and Abiotic Stress Tolerance in Transgenic Arabidopsis Thaliana. Mol. Genet. Genom. 2016, 291, 1545–1559. [Google Scholar] [CrossRef]
- Zhang, G.; Yu, Z.; Yao, B.; Teixeira Da Silva, J.A.; Wen, D. SsMYB113, a Schima Superba MYB Transcription Factor, Regulates the Accumulation of Flavonoids and Functions in Drought Stress Tolerance by Modulating ROS Generation. Plant Soil. 2022, 478, 427–444. [Google Scholar] [CrossRef]
- Wang, J.; Li, Q.; Zhang, M.; Wang, Y. The High pH Value of Alkaline Salt Destroys the Root Membrane Permeability of Reaumuria Trigyna and Leads to Its Serious Physiological Decline. J. Plant Res. 2022, 135, 785–798. [Google Scholar] [CrossRef] [PubMed]
- Miao, Z.; Xu, W.; Li, D.; Hu, X.; Liu, J.; Zhang, R.; Tong, Z.; Dong, J.; Su, Z.; Zhang, L.; et al. De Novo Transcriptome Analysis of Medicago Falcata Reveals Novel Insights about the Mechanisms Underlying Abiotic Stress-Responsive Pathway. BMC Genom. 2015, 16, 818. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Cheng, K.; Liu, X.; Dai, Z.; Zheng, L.; Wang, Y. Exogenous Abscisic Acid and Sodium Nitroprusside Regulate Flavonoid Biosynthesis and Photosynthesis of Nitraria Tangutorum Bobr in Alkali Stress. Front. Plant Sci. 2023, 14, 1118984. [Google Scholar] [CrossRef] [PubMed]
- Mao, X.; Cai, T.; Olyarchuk, J.G.; Wei, L. Automated Genome Annotation and Pathway Identification Using the KEGG Orthology (KO) as a Controlled Vocabulary. Bioinformatics 2005, 21, 3787–3793. [Google Scholar] [CrossRef] [PubMed]
- Young, M.D.; Wakefield, M.J.; Smyth, G.K.; Oshlack, A. Gene Ontology Analysis for RNA-Seq: Accounting for Selection Bias. Genome Biol. 2010, 11, R14. [Google Scholar] [CrossRef]
- Qiao, K.; Liang, S.; Wang, F.; Wang, H.; Hu, Z.; Chai, T. Effects of Cadmium Toxicity on Diploid Wheat (Triticum Urartu) and the Molecular Mechanism of the Cadmium Response. J. Hazard. Mater. 2019, 374, 1–10. [Google Scholar] [CrossRef]
- Silva, K.J.P.; Singh, J.; Bednarek, R.; Fei, Z.; Khan, A. Differential Gene Regulatory Pathways and Co-Expression Networks Associated with Fire Blight Infection in Apple (Malus × Domestica). Hortic. Res. 2019, 6, 35. [Google Scholar] [CrossRef]
- Deng, X.; Yang, D.; Sun, H.; Liu, J.; Song, H.; Xiong, Y.; Wang, Y.; Ma, J.; Zhang, M.; Li, J.; et al. Time-Course Analysis and Transcriptomic Identification of Key Response Strategies of Nelumbo Nucifera to Complete Submergence. Hortic. Res. 2022, 9, uhac001. [Google Scholar] [CrossRef]
- Saito, R.; Smoot, M.E.; Ono, K.; Ruscheinski, J.; Wang, P.-L.; Lotia, S.; Pico, A.R.; Bader, G.D.; Ideker, T. A Travel Guide to Cytoscape Plugins. Nat. Methods 2012, 9, 1069–1076. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Wang, Y.; Ma, B.; Bu, X.; Dang, Z.; Wang, Y. Transcriptional Profiling Analysis Providing Insights into the Harsh Environments Tolerance Mechanisms of Krascheninnikovia arborescens. Int. J. Mol. Sci. 2024, 25, 11891. https://doi.org/10.3390/ijms252211891
Zhang H, Wang Y, Ma B, Bu X, Dang Z, Wang Y. Transcriptional Profiling Analysis Providing Insights into the Harsh Environments Tolerance Mechanisms of Krascheninnikovia arborescens. International Journal of Molecular Sciences. 2024; 25(22):11891. https://doi.org/10.3390/ijms252211891
Chicago/Turabian StyleZhang, Hongyi, Yingnan Wang, Binjie Ma, Xiangqi Bu, Zhenhua Dang, and Yingchun Wang. 2024. "Transcriptional Profiling Analysis Providing Insights into the Harsh Environments Tolerance Mechanisms of Krascheninnikovia arborescens" International Journal of Molecular Sciences 25, no. 22: 11891. https://doi.org/10.3390/ijms252211891
APA StyleZhang, H., Wang, Y., Ma, B., Bu, X., Dang, Z., & Wang, Y. (2024). Transcriptional Profiling Analysis Providing Insights into the Harsh Environments Tolerance Mechanisms of Krascheninnikovia arborescens. International Journal of Molecular Sciences, 25(22), 11891. https://doi.org/10.3390/ijms252211891