Heterologous Expression of MYB Gene (Rosea1) or bHLH Gene (Delila) from Antirrhinum Increases the Phenolics Pools in Salvia miltiorrhiza
Abstract
:1. Introduction
2. Results
2.1. Identification of Transgenic Salvia miltiorrhiza Plants
2.2. Determination of RA and Sal B Contents in Transgenic Plants by HPLC
2.3. Contents of Total Phenolics, Flavonoids, and Anthocyanin, and Antioxidant Activities
2.4. Key Genes for Flavonoid Synthesis and Expression of Related Genes
3. Discussion
4. Conclusions
5. Materials and Methods
5.1. Plant Material, Vector Construction, and Transformation in Salvia miltiorrhiza
5.2. Identification of Transgenic Plants via PCR and RT-Q-PCR
5.3. Extraction and HPLC Analysis of Phenolic Compounds, Determination of Total Phenolics, Total Flavonoids, and Anthocyanins, and Monitoring of Antioxidant Activities
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dhatterwal, P.; Sharma, N.; Prasad, M. Decoding the functionality of plant transcription factors. J. Exp. Bot. 2024, 75, 4745–4759. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Xia, M.; Su, P.; Zhang, Y.; Tu, L.; Zhao, H.; Gao, W.; Huang, L.; Hu, Y. MYB transcription factors in plants: A comprehensive review of their discovery, structure, classification, functional diversity and regulatory mechanism. Int. J. Biol. Macromol. 2024, 18, 136652. [Google Scholar] [CrossRef] [PubMed]
- Gao, F.; Dubos, C. The Arabidopsis bHLH transcription factor family. Trends Plant Sci. 2024, 29, 668–680. [Google Scholar] [CrossRef] [PubMed]
- Xie, X.; Xu, Y.; Zhou, X.; Su, P.; Jiang, X.; Jin, Z. The protective effect of an extract of Salvia miltiorrhiza Bunge (Danshen) on cerebral ischemic injury in animal models: A systematic review and meta-analysis. J. Ethnopharmacol. 2023, 317, 116772. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Yan, Y.P.; Wang, Z.Z. The Arabidopsis PAP1 transcription factor plays an important role in the enrichment of phenolic acids in Salvia miltiorrhiza. J. Agric. Food Chem. 2010, 58, 12168–12175. [Google Scholar] [CrossRef] [PubMed]
- He, G.R.; Zhang, R.; Jiang, S.H.; Wang, H.H.; Ming, F. The MYB transcription factor RcMYB1 plays a central role in rose anthocyanin biosynthesis. Hortic. Res. 2023, 10, uhad080. [Google Scholar] [CrossRef]
- Xue, L.; Liu, X.; Wang, W.; Huang, D.; Ren, C.; Huang, X.; Yin, X.; Lin-Wang, K.; Allan, A.C.; Chen, K.; et al. MYB transcription factors encoded by diversified tandem gene clusters cause varied Morella rubra fruit color. Plant Physiol. 2024, 195, 598–616. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Lin-Wang, K.; Wang, F.; Espley, R.V.; Ren, F.; Zhao, J.; Ogutu, C.; He, H.; Jiang, Q.; Allan, A.C.; et al. Activator-type R2R3-MYB genes induce a repressor-type R2R3-MYB gene to balance anthocyanin and proanthocyanidin accumulation. New Phytol. 2019, 221, 1919–1934. [Google Scholar] [CrossRef]
- Wang, X.C.; Wu, J.; Guan, M.L.; Zhao, C.H.; Geng, P.; Zhao, Q. Arabidopsis MYB4 plays dual roles in flavonoid biosynthesis. Plant J. 2020, 101, 637–652. [Google Scholar] [CrossRef]
- Zhu, L.; Guan, Y.; Zhang, Z.; Song, A.; Chen, S.; Jiang, J.; Chen, F. CmMYB8 encodes an R2R3 MYB transcription factor which represses lignin and flavonoid synthesis in chrysanthemum. Plant Physiol. Biochem. 2020, 149, 217–224. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.L.; Wang, Y.X.; Li, H.; Liu, Z.W.; Cui, X.; Zhuang, J. Two MYB transcription factors (CsMYB2 and CsMYB26) are involved in flavonoid biosynthesis in tea plant [Camellia sinensis (L.) O. Kuntze]. BMC Plant Biol. 2018, 18, 288. [Google Scholar] [CrossRef] [PubMed]
- Premathilake, A.T.; Ni, J.; Bai, S.; Tao, R.; Ahmad, M.; Teng, Y. R2R3-MYB transcription factor PpMYB17 positively regulates flavonoid biosynthesis in pear fruit. Planta 2020, 252, 59. [Google Scholar] [CrossRef] [PubMed]
- Su, L.; Lv, A.; Wen, W.; Fan, N.; Li, J.; Gao, L.; Zhou, P.; An, Y. MsMYB741 is involved in alfalfa resistance to aluminum stress by regulating flavonoid biosynthesis. Plant J. 2022, 112, 756–771. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Zhang, Y.Y.; Liu, H.; Zhang, X.S.; Ni, R.; Wang, P.Y.; Gao, S.; Lou, H.X.; Cheng, A.X. Functional characterization of a liverworts bHLH transcription factor involved in the regulation of bisbibenzyls and flavonoids biosynthesis. BMC Plant Biol. 2019, 19, 497. [Google Scholar] [CrossRef] [PubMed]
- Jia, N.; Wang, J.J.; Liu, J.; Jiang, J.; Sun, J.; Yan, P.; Sun, Y.; Wan, P.; Ye, W.; Fan, B. DcTT8, a bHLH transcription factor, regulates anthocyanin biosynthesis in Dendrobium candidum. Plant Physiol. Biochem. 2021, 162, 603–612. [Google Scholar] [CrossRef]
- Gao, Q.; Song, W.; Li, X.; Xiang, C.; Chen, G.; Xiang, G.; Liu, X.; Zhang, G.; Li, X.; Yang, S.; et al. Genome-wide identification of bHLH transcription factors: Discovery of a candidate regulator related to flavonoid biosynthesis in Erigeron breviscapus. Front. Plant Sci. 2022, 13, 977649. [Google Scholar] [CrossRef]
- Sun, X.; Zhang, Z.; Li, J.; Zhang, H.; Peng, Y.; Li, Z. Uncovering hierarchical regulation among MYB-bHLH-WD40 proteins and manipulating anthocyanin pigmentation in rice. Int. J. Mol. Sci. 2022, 23, 8203. [Google Scholar] [CrossRef]
- Yue, M.; Jiang, L.; Zhang, N.; Zhang, L.; Liu, Y.; Lin, Y.; Zhang, Y.; Luo, Y.; Zhang, Y.; Wang, Y.; et al. Regulation of flavonoids in strawberry fruits by FaMYB5/FaMYB10 dominated MYB-bHLH-WD40 ternary complexes. Front. Plant Sci. 2023, 14, 1145670. [Google Scholar] [CrossRef]
- Wang, F.; Zhu, H.; Kong, W.; Peng, R.; Liu, Q.; Yao, Q. The Antirrhinum AmDEL gene enhances flavonoids accumulation and salt and drought tolerance in transgenic Arabidopsis. Planta 2016, 244, 59–73. [Google Scholar] [CrossRef] [PubMed]
- Butelli, E.; Titta, L.; Giorgio, M.; Mock, H.P.; Matros, A.; Peterek, S.; Schijlen, E.G.W.M.; Hall, R.D.; Bovy, A.G.; Luo, J.; et al. Enrichment of tomato fruit with health-promoting anthocyanins by expression of select transcription factors. Nat. Biotechnol. 2008, 26, 1301–1308. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.H.; Song, Y.; Chen, Y.Q.; Yao, W.; Li, Z.; Liu, W.C.; Yue, S.S.; Wang, Z.Z. Metabolic pools of phenolic acids in Salvia miltiorrhiza are enhanced by co-expression of Antirrhinum majus Delila and Rosea1 transcription factors. Biochem. Eng. J. 2013, 74, 115–120. [Google Scholar] [CrossRef]
- Yan, Y.P.; Wang, Z.Z. Genetic transformation of the medicinal plant Salvia miltiorrhiza by Agrobacterium tumefaciens-mediated method. Plant Cell Tissue Organ Cult. 2007, 88, 175–184. [Google Scholar] [CrossRef]
- Heendeniya, R.G.; Gruber, M.Y.; Lei, Y.; Yu, P. Biodegradation profiles of proanthocyanidin-accumulating alfalfa plants co-expressing Lc-bHLH and C1-MYB transcriptive flavanoid regulatory genes. J. Agric. Food Chem. 2019, 67, 4793–4799. [Google Scholar] [CrossRef] [PubMed]
- Soni, P.; Shivhare, R.; Kaur, A.; Bansal, S.; Sonah, H.; Deshmukh, R.; Giri, J.; Lata, C.; Ram, H. Reference gene identification for gene expression analysis in rice under different metal stress. J. Biotechnol. 2021, 332, 83–93. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wang, Z.Z. Phenolic composition and antioxidant activities of two Phlomis species: A correlation study. C. R. Biol. 2009, 332, 816–826. [Google Scholar] [CrossRef] [PubMed]
- Mano, H.; Ogasawara, F.; Sato, K.; Higo, H.; Minobe, Y. Isolation of a regulatory gene of anthocyanin biosynthesis in tuberous roots of purple-fleshed sweet potato. Plant Physiol. 2007, 143, 1252–1268. [Google Scholar] [CrossRef]
Compound | CK− | CK+ | ROS1-7 | ROS1-14 | ROS1-15 | DEL-9 | DEL-15 | DEL-16 |
---|---|---|---|---|---|---|---|---|
RA | 63.35 ± 1.90 mg g−1 | 62.15 ± 2.51 mg g−1 | 95.38 ± 3.24 mg g−1 *** | 113.28 ± 2.20 mg g−1 *** | 94.50 ± 3.44 mg g−1 *** | 72.21 ± 0.28 mg g−1 ** | 76.16 ± 0.84 mg g−1 *** | 72.82 ± 0.41 mg g−1 ** |
Sal B | 5.86 ± 0.10 mg g−1 | 5.71 ± 0.50 mg g−1 | 11.77 ± 1.24 mg g−1 *** | 11.72 ± 0.93 mg g−1 *** | 5.24 ± 0.61 mg g−1 | 8.55 ± 0.40 mg g−1 * | 9.18 ± 0.18 mg g−1 ** | 8.54 ± 0.78 mg g−1 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, Q.; Han, W.; Wang, D.; Wang, Z. Heterologous Expression of MYB Gene (Rosea1) or bHLH Gene (Delila) from Antirrhinum Increases the Phenolics Pools in Salvia miltiorrhiza. Int. J. Mol. Sci. 2024, 25, 11917. https://doi.org/10.3390/ijms252211917
Tian Q, Han W, Wang D, Wang Z. Heterologous Expression of MYB Gene (Rosea1) or bHLH Gene (Delila) from Antirrhinum Increases the Phenolics Pools in Salvia miltiorrhiza. International Journal of Molecular Sciences. 2024; 25(22):11917. https://doi.org/10.3390/ijms252211917
Chicago/Turabian StyleTian, Qian, Wei Han, Donghao Wang, and Zhezhi Wang. 2024. "Heterologous Expression of MYB Gene (Rosea1) or bHLH Gene (Delila) from Antirrhinum Increases the Phenolics Pools in Salvia miltiorrhiza" International Journal of Molecular Sciences 25, no. 22: 11917. https://doi.org/10.3390/ijms252211917
APA StyleTian, Q., Han, W., Wang, D., & Wang, Z. (2024). Heterologous Expression of MYB Gene (Rosea1) or bHLH Gene (Delila) from Antirrhinum Increases the Phenolics Pools in Salvia miltiorrhiza. International Journal of Molecular Sciences, 25(22), 11917. https://doi.org/10.3390/ijms252211917