Insights into Adaption and Growth Evolution: Genome–Wide Copy Number Variation Analysis in Chinese Hainan Yellow Cattle Using Whole–Genome Re–Sequencing Data
Abstract
:1. Introduction
2. Results
2.1. Variation Detection and CNV Analysis
2.2. Population Genetic Structure Analysis of Chinese, Indian, and European Commercial Cattle Breeds
2.3. Fixation Index (FST) Selection Signatures Analysis
2.4. Functional Enrichment Analysis of Candidate Genes
3. Discussion
3.1. CNV Discovery
3.2. Population Genetic Structure of CNVRs
3.3. Breed–Specific Genes in Chinese Hainan Yellow Cattle and GO and KEGG Enrichment Analysis
3.4. Selection Signature Analysis of Hainan Yellow Cattle Based on Autosomal CNVRs and Identification of Candidate Genes
4. Materials and Methods
4.1. Sample Collection and Sequencing
4.2. Data Quality Control and CNV Detection
4.3. Detection and Statistical Analysis of CNVs in Hainan Yellow Cattle
4.4. Population Genetic Structure Analysis of Cattle Breeds from China, India, and Europe
4.5. Selection Signatures Analysis of CNVR in Hainan Yellow Cattle and European Commercial Cattle Breeds
4.6. Functional Enrichment Analysis of Candidate Genes Associated with CNVRs in Hainan Yellow Cattle
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cendron, F.; Ledesma–Rodríguez, A.; Mastrangelo, S.; Sardina, M.T.; Díaz–Herrera, D.F.; Uffo Reinosa, O.; Cassandro, M.; Penasa, M. Genome–wide analysis of the Siboney de Cuba cattle breed: Genetic characterization and framing with cattle breeds worldwide. Front. Genet. 2024, 15, 1302580. [Google Scholar] [CrossRef] [PubMed]
- Xia, X.; Zhang, S.; Zhang, H.; Zhang, Z.; Chen, N.; Li, Z.; Sun, H.; Liu, X.; Lyu, S.; Wang, X.; et al. Assessing genomic diversity and signatures of selection in Jiaxian Red cattle using whole–genome sequencing data. BMC Genom. 2021, 22, 43. [Google Scholar] [CrossRef] [PubMed]
- Zhao, F.; Xie, R.; Fang, L.; Xiang, R.; Yuan, Z.; Liu, Y.; Wang, L. Analysis of 206 whole–genome resequencing reveals selection signatures associated with breed–specific traits in Hu sheep. Evol. Appl. 2024, 17, e13697. [Google Scholar] [CrossRef] [PubMed]
- Zhong, Z.; Wang, Z.; Xie, X.; Tian, S.; Wang, F.; Wang, Q.; Ni, S.; Pan, Y.; Xiao, Q. Evaluation of the Genetic Diversity, Population Structure and Selection Signatures of Three Native Chinese Pig Populations. Animals 2023, 13, 2010. [Google Scholar] [CrossRef]
- Peripolli, E.; Stafuzza, N.B.; Machado, M.A.; do Carmo Panetto, J.C.; do Egito, A.A.; Baldi, F.; da Silva, M. Assessment of copy number variants in three Brazilian locally adapted cattle breeds using whole–genome re–sequencing data. Anim. Genet. 2023, 54, 254–270. [Google Scholar] [CrossRef]
- Redon, R.; Ishikawa, S.; Fitch, K.R.; Feuk, L.; Perry, G.H.; Andrews, T.D.; Fiegler, H.; Shapero, M.H.; Carson, A.R.; Chen, W.; et al. Global variation in copy number in the human genome. Nature 2006, 444, 444–454. [Google Scholar] [CrossRef]
- Sun, T.; Pei, S.; Liu, Y.; Hanif, Q.; Xu, H.; Chen, N.; Lei, C.; Yue, X. Whole genome sequencing of simmental cattle for SNP and CNV discovery. BMC Genom. 2023, 24, 179. [Google Scholar] [CrossRef]
- Hay, E.H.A.; Utsunomiya, Y.T.; Xu, L.; Zhou, Y.; Neves, H.H.R.; Carvalheiro, R.; Bickhart, D.M.; Ma, L.; Garcia, J.F.; Liu, G.E. Genomic predictions combining SNP markers and copy number variations in Nellore cattle. BMC Genom. 2018, 19, 441. [Google Scholar] [CrossRef]
- Conrad, D.F.; Bird, C.; Blackburne, B.; Lindsay, S.; Mamanova, L.; Lee, C.; Turner, D.J.; Hurles, M.E. Mutation spectrum revealed by breakpoint sequencing of human germline CNVs. Nat. Genet. 2010, 42, 385–391. [Google Scholar] [CrossRef]
- Xu, Y.; Jiang, Y.; Shi, T.; Cai, H.; Lan, X.; Zhao, X.; Plath, M.; Chen, H. Whole–genome sequencing reveals mutational landscape underlying phenotypic differences between two widespread Chinese cattle breeds. PLoS ONE 2017, 12, e0183921. [Google Scholar] [CrossRef]
- Wu, J.; Wu, T.; Xie, X.; Niu, Q.; Zhao, Z.; Zhu, B.; Chen, Y.; Zhang, L.; Gao, X.; Niu, X.; et al. Genetic Association Analysis of Copy Number Variations for Meat Quality in Beef Cattle. Foods 2023, 12, 3986. [Google Scholar] [CrossRef] [PubMed]
- Chen, N.; Cai, Y.; Chen, Q.; Li, R.; Wang, K.; Huang, Y.; Hu, S.; Huang, S.; Zhang, H.; Zheng, Z.; et al. Whole–genome resequencing reveals world–wide ancestry and adaptive introgression events of domesticated cattle in East Asia. Nat. Commun. 2018, 9, 2337. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Arbab, A.A.I.; Zhang, Z.; Fan, Y.; Han, Z.; Gao, Q.; Sun, Y.; Yang, Z. Comparative Transcriptomic Analysis of the Pituitary Gland between Cattle Breeds Differing in Growth: Yunling Cattle and Leiqiong Cattle. Animals 2020, 10, 1271. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.; Qiu, X.; Jiao, Z.; Yang, W.; Pan, H.; Li, H.; Bian, Z.; Geng, Q.; Wu, H.; Jiang, J.; et al. Integrated Analysis of Transcriptome and Metabolome Profiles in the Longissimus Dorsi Muscle of Buffalo and Cattle. Curr. Issues Mol. Biol. 2023, 45, 9723–9736. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Yan, X.; Wu, H.; Wang, F.; Zhong, Z.; Zheng, G.; Xiao, Q.; Wu, K.; Na, W. Selection Signal Analysis Reveals Hainan Yellow Cattle Are Being Selectively Bred for Heat Tolerance. Animals 2024, 14, 775. [Google Scholar] [CrossRef]
- Chen, S.; Chang, C.; Cui, K.; Yang, W.; Li, B.; Ni, S.; Zhang, W.; Li, S.; Li, X.; Wu, G.; et al. Whole–genome analyses reveal the genomic diversity and selection signatures of Hainan cattle. Livest. Sci. 2023, 275, 105311. [Google Scholar] [CrossRef]
- Liu, Y.; Zhao, G.; Lin, X.; Zhang, J.; Hou, G.; Zhang, L.; Liu, D.; Li, Y.; Li, J.; Xu, L. Genomic inbreeding and runs of homozygosity analysis of indigenous cattle populations in southern China. PLoS ONE 2022, 17, e0271718. [Google Scholar] [CrossRef] [PubMed]
- Walsh, J.B. Genomic selection signatures and animal breeding. J. Anim. Breed. Genet. 2021, 138, 1–3. [Google Scholar] [CrossRef]
- Huang, Y.; Li, Y.; Wang, X.; Yu, J.; Cai, Y.; Zheng, Z.; Li, R.; Zhang, S.; Chen, N.; Asadollahpour Nanaei, H.; et al. An atlas of CNV maps in cattle, goat and sheep. Sci. China Life Sci. 2021, 64, 1747–1764. [Google Scholar] [CrossRef]
- Yang, L.; Xu, L.; Zhou, Y.; Liu, M.; Wang, L.; Kijas, J.W.; Zhang, H.; Li, L.; Liu, G.E. Diversity of copy number variation in a worldwide population of sheep. Genomics 2018, 110, 143–148. [Google Scholar] [CrossRef]
- Hou, Y.; Liu, G.E.; Bickhart, D.M.; Cardone, M.F.; Wang, K.; Kim, E.S.; Matukumalli, L.K.; Ventura, M.; Song, J.; VanRaden, P.M.; et al. Genomic characteristics of cattle copy number variations. BMC Genom. 2011, 12, 127. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, S.F.; Chandrababu Shailaja, C.; Vaishnav, S.; Kumar, A.; Gaur, G.K.; Janga, S.C.; Ahmad, S.M.; Malla, W.A.; Dutt, T. Read–depth based approach on whole genome resequencing data reveals important insights into the copy number variation (CNV) map of major global buffalo breeds. BMC Genom. 2023, 24, 616. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Ma, J.; Wang, J.; Zhang, L.; Xu, L.; Chen, Y.; Zhu, B.; Wang, Z.; Gao, H.; Li, J.; et al. Genome–Wide Detection of Copy Number Variations and Their Potential Association with Carcass and Meat Quality Traits in Pingliang Red Cattle. Int. J. Mol. Sci. 2024, 25, 5626. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, H.R.; Chud, T.C.S.; Oliveira, G.A., Jr.; Hermisdorff, I.C.; Narayana, S.G.; Rochus, C.M.; Butty, A.M.; Malchiodi, F.; Stothard, P.; Miglior, F.; et al. Genome–wide association analyses reveals copy number variant regions associated with reproduction and disease traits in Canadian Holstein cattle. J. Dairy. Sci. 2024, 107, 7052–7063. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Gu, W.; Hurles, M.E.; Lupski, J.R. Copy number variation in human health, disease, and evolution. Annu. Rev. Genom. Hum. Genet. 2009, 10, 451–481. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Mu, Y.; Wang, W.; Ahmed, Z.; Wei, X.; Lei, C.; Ma, Z. Analysis of genomic copy number variations through whole–genome scan in Chinese Qaidam cattle. Front. Vet. Sci. 2023, 10, 1148070. [Google Scholar] [CrossRef]
- Wang, H.; Chai, Z.; Hu, D.; Ji, Q.; Xin, J.; Zhang, C.; Zhong, J. A global analysis of CNVs in diverse yak populations using whole–genome resequencing. BMC Genom. 2019, 20, 61. [Google Scholar] [CrossRef]
- Mei, C.; Junjvlieke, Z.; Raza, S.H.A.; Wang, H.; Cheng, G.; Zhao, C.; Zhu, W.; Zan, L. Copy number variation detection in Chinese indigenous cattle by whole genome sequencing. Genomics 2020, 112, 831–836. [Google Scholar] [CrossRef]
- Chen, N.; Xia, X.; Hanif, Q.; Zhang, F.; Dang, R.; Huang, B.; Lyu, Y.; Luo, X.; Zhang, H.; Yan, H.; et al. Global genetic diversity, introgression, and evolutionary adaptation of indicine cattle revealed by whole genome sequencing. Nat. Commun. 2023, 14, 7803. [Google Scholar] [CrossRef]
- Wu, D.D.; Ding, X.D.; Wang, S.; Wójcik, J.M.; Zhang, Y.; Tokarska, M.; Li, Y.; Wang, M.S.; Faruque, O.; Nielsen, R.; et al. Pervasive introgression facilitated domestication and adaptation in the Bos species complex. Nat. Ecol. Evol. 2018, 2, 1139–1145. [Google Scholar] [CrossRef] [PubMed]
- Vella, M.A.; García, D.C.; De Boeck, M.; Valdecantos, P.A.; Roldán–Olarte, M. Role of steroid hormones in the maintenance of focal adhesions in bovine oviductal epithelial cells. Domest. Anim. Endocrinol. 2024, 88, 106839. [Google Scholar] [CrossRef] [PubMed]
- Fontes, P.K.; Dos Santos, E.C.; da Rocha, H.C.; de Lima, C.B.; Milazzotto, M.P. Metabolic stressful environment drives epigenetic modifications in oviduct epithelial cells. Theriogenology 2024, 215, 151–157. [Google Scholar] [CrossRef] [PubMed]
- Lei, Z.; Pan, C.; Li, F.; Wei, D.; Ma, Y. SGK1 promotes the lipid accumulation via regulating the transcriptional activity of FOXO1 in bovine. BMC Genom. 2024, 25, 737. [Google Scholar] [CrossRef] [PubMed]
- Babij, R.; Ferrer, C.; Donatelle, A.; Wacks, S.; Buch, A.M.; Niemeyer, J.E.; Ma, H.; Duan, Z.R.S.; Fetcho, R.N.; Che, A.; et al. Gabrb3 is required for the functional integration of pyramidal neuron subtypes in the somatosensory cortex. Neuron 2023, 111, 256–274.e210. [Google Scholar] [CrossRef] [PubMed]
- Zernov, N.; Popugaeva, E. Role of Neuronal TRPC6 Channels in Synapse Development, Memory Formation and Animal Behavior. Int. J. Mol. Sci. 2023, 24, 5415. [Google Scholar] [CrossRef] [PubMed]
- Scala, M.; Zonneveld–Huijssoon, E.; Brienza, M.; Mecarelli, O.; van der Hout, A.H.; Zambrelli, E.; Turner, K.; Zara, F.; Peron, A.; Vignoli, A.; et al. De novo ARHGEF9 missense variants associated with neurodevelopmental disorder in females: Expanding the genotypic and phenotypic spectrum of ARHGEF9 disease in females. Neurogenetics 2021, 22, 87–94. [Google Scholar] [CrossRef]
- Chen, D.; Wang, X.; Guo, Q.; Deng, H.; Luo, J.; Yi, K.; Sun, A.; Chen, K.; Shen, Q. Muscle Fatty Acids, Meat Flavor Compounds and Sensory Characteristics of Xiangxi Yellow Cattle in Comparison to Aberdeen Angus. Animals 2022, 12, 1161. [Google Scholar] [CrossRef]
- Zhang, W.; Yang, M.; Zhou, M.; Wang, Y.; Wu, X.; Zhang, X.; Ding, Y.; Zhao, G.; Yin, Z.; Wang, C. Identification of Signatures of Selection by Whole–Genome Resequencing of a Chinese Native Pig. Front. Genet. 2020, 11, 566255. [Google Scholar] [CrossRef]
- Hitit, M.; Kaya, A.; Memili, E. Sperm long non–coding RNAs as markers for ram fertility. Front. Vet. Sci. 2024, 11, 1337939. [Google Scholar] [CrossRef]
- Guo, S.; Liu, C.; Wang, Y.; Chen, F.; Zhu, J.; Li, S.; Li, E. Effect of resveratrol on spermatogenesis in breeding boars and the proteomic analysis for testes. Reprod. Biol. 2024, 24, 100930. [Google Scholar] [CrossRef]
- Karanwal, S.; Pal, A.; Josan, F.; Patel, A.; Chera, J.S.; Yadav, S.; Gaur, V.; Verma, P.; Badrhan, S.; Chauhan, V.; et al. Higher abundance of DLD protein in buffalo bull spermatozoa causes elevated ROS production leading to early sperm capacitation and reduction in fertilizing ability. J. Anim. Sci. Biotechnol. 2024, 15, 126. [Google Scholar] [CrossRef] [PubMed]
- Mostek, A.; Janta, A.; Majewska, A.; Ciereszko, A. Bull Sperm Capacitation Is Accompanied by Redox Modifications of Proteins. Int. J. Mol. Sci. 2021, 22, 7903. [Google Scholar] [CrossRef] [PubMed]
- Baufeld, A.; Koczan, D.; Vanselow, J. Induction of altered gene expression profiles in cultured bovine granulosa cells at high cell density. Reprod. Biol. Endocrinol. 2017, 15, 3. [Google Scholar] [CrossRef]
- Mate, N.A.; Wadhwa, G.; Taliyan, R.; Banerjee, A. Impact of polyamine supplementation on GnRH expression, folliculogenesis, and puberty onset in young mice. Theriogenology 2024, 229, 202–213. [Google Scholar] [CrossRef] [PubMed]
- Zimmerman, K.L.; Panciera, D.L.; Hoeschele, I.; Monroe, W.E.; Todd, S.M.; Werre, S.R.; LeRoith, T.; Fecteau, K.; Lake, B.B. Adrenocortical Challenge Response and Genomic Analyses in Scottish Terriers with Increased Alkaline Phosphate Activity. Front. Vet. Sci. 2018, 5, 231. [Google Scholar] [CrossRef] [PubMed]
- Loveland, J.L.; Giraldo–Deck, L.M.; Kelly, A.M. How inversion variants can shape neural circuitry: Insights from the three–morph mating tactics of ruffs. Front. Physiol. 2022, 13, 1011629. [Google Scholar] [CrossRef]
- Xiong, X.; Huang, X.; Zhu, Y.; Hai, Z.; Fei, X.; Pan, B.; Yang, Q.; Xiong, Y.; Fu, W.; Lan, D.; et al. Testis–specific knockout of Kdm2a reveals nonessential roles in male fertility but partially compromises spermatogenesis. Theriogenology 2023, 209, 9–20. [Google Scholar] [CrossRef]
- Feng, S.; Gui, Y.; Yin, S.; Xiong, X.; Liu, K.; Li, J.; Dong, J.; Ma, X.; Zhou, S.; Zhang, B.; et al. Histone demethylase KDM2A recruits HCFC1 and E2F1 to orchestrate male germ cell meiotic entry and progression. EMBO J. 2024, 43, 4197–4227. [Google Scholar] [CrossRef]
- Häfliger, I.M.; Marchionatti, E.; Stengård, M.; Wolf–Hofstetter, S.; Paris, J.M.; Jacinto, J.G.P.; Watté, C.; Voelter, K.; Occelli, L.M.; Komáromy, A.M.; et al. CNGB3 Missense Variant Causes Recessive Achromatopsia in Original Braunvieh Cattle. Int. J. Mol. Sci. 2021, 22, 12440. [Google Scholar] [CrossRef]
- Chen, Q.; Chai, Y.; Zhang, W.; Cheng, Y.; Zhang, Z.; An, Q.; Chen, S.; Man, C.; Du, L.; Zhang, W.; et al. Whole–Genome Sequencing Reveals the Genomic Characteristics and Selection Signatures of Hainan Black Goat. Genes 2022, 13, 1539. [Google Scholar] [CrossRef]
- Viringipurampeer, I.A.; Shan, X.; Gregory–Evans, K.; Zhang, J.P.; Mohammadi, Z.; Gregory–Evans, C.Y. Rip3 knockdown rescues photoreceptor cell death in blind pde6c zebrafish. Cell Death Differ. 2014, 21, 665–675. [Google Scholar] [CrossRef] [PubMed]
- Arsenijevic, Y.; Chang, N.; Mercey, O.; El Fersioui, Y.; Koskiniemi–Kuendig, H.; Joubert, C.; Bemelmans, A.P.; Rivolta, C.; Banin, E.; Sharon, D.; et al. Fine–tuning FAM161A gene augmentation therapy to restore retinal function. EMBO Mol. Med. 2024, 16, 805–822. [Google Scholar] [CrossRef] [PubMed]
- Stanbury, K.; Schofield, E.C.; McLaughlin, B.; Forman, O.P.; Mellersh, C.S. Exonic Short Interspersed Nuclear Element Insertion in FAM161A Is Associated with Autosomal Recessive Progressive Retinal Atrophy in the English Shepherd. Genes 2024, 15, 952. [Google Scholar] [CrossRef]
- Schoen, C.J.; Burmeister, M.; Lesperance, M.M. Diaphanous homolog 3 (Diap3) overexpression causes progressive hearing loss and inner hair cell defects in a transgenic mouse model of human deafness. PLoS ONE 2013, 8, e56520. [Google Scholar] [CrossRef]
- Gilels, F.A.; Wang, J.; Bullen, A.; White, P.M.; Kiernan, A.E. Deletion of the Notch ligand Jagged1 during cochlear maturation leads to inner hair cell defects and hearing loss. Cell Death Dis. 2022, 13, 971. [Google Scholar] [CrossRef]
- Chiereghin, C.; Robusto, M.; Massa, V.; Castorina, P.; Ambrosetti, U.; Asselta, R.; Soldà, G. Role of Cytoskeletal Diaphanous–Related Formins in Hearing Loss. Cells 2022, 11, 1726. [Google Scholar] [CrossRef]
- Carvalho, G.M.; Ramos, P.Z.; Castilho, A.M.; Guimarães, A.C.; Sartorato, E.L. Molecular study of patients with auditory neuropathy. Mol. Med. Rep. 2016, 14, 481–490. [Google Scholar] [CrossRef] [PubMed]
- Choi, B.Y.; Park, G.; Gim, J.; Kim, A.R.; Kim, B.J.; Kim, H.S.; Park, J.H.; Park, T.; Oh, S.H.; Han, K.H.; et al. Diagnostic application of targeted resequencing for familial nonsyndromic hearing loss. PLoS ONE 2013, 8, e68692. [Google Scholar] [CrossRef]
- Cornejo–Sanchez, D.M.; Li, G.; Fabiha, T.; Wang, R.; Acharya, A.; Everard, J.L.; Kadlubowska, M.K.; Huang, Y.; Schrauwen, I.; Wang, G.T.; et al. Rare–variant association analysis reveals known and new age–related hearing loss genes. Eur. J. Hum. Genet. 2023, 31, 638–647. [Google Scholar] [CrossRef]
- Aldè, M.; Cantarella, G.; Zanetti, D.; Pignataro, L.; La Mantia, I.; Maiolino, L.; Ferlito, S.; Di Mauro, P.; Cocuzza, S.; Lechien, J.R.; et al. Autosomal Dominant Non–Syndromic Hearing Loss (DFNA): A Comprehensive Narrative Review. Biomedicines 2023, 11, 1616. [Google Scholar] [CrossRef]
- Liu, W.; Johansson, Å.; Rask–Andersen, H.; Rask–Andersen, M. A combined genome–wide association and molecular study of age–related hearing loss in H. sapiens. BMC Med. 2021, 19, 302. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Ma, S.; Zhao, B.; Qin, C.; Wu, Y.; Di, J.; Suo, L.; Fu, X. Drivers of plateau adaptability in cashmere goats revealed by genomic and transcriptomic analyses. BMC Genom. 2023, 24, 428. [Google Scholar] [CrossRef]
- Chong, Y.; Xiong, H.; Gao, Z.; Lu, Y.; Hong, J.; Wu, J.; He, X.; Xi, D.; Tu, X.; Deng, W. Genomic and transcriptomic landscape to decipher the genetic basis of hyperpigmentation in Lanping black–boned sheep (Ovis aries). BMC Genom. 2024, 25, 845. [Google Scholar] [CrossRef] [PubMed]
- Rafiepour, M.; Ebrahimie, E.; Vahidi, M.F.; Salekdeh, G.H.; Niazi, A.; Dadpasand, M.; Liang, D.; Si, J.; Ding, X.; Han, J.; et al. Whole–Genome Resequencing Reveals Adaptation Prior to the Divergence of Buffalo Subspecies. Genome Biol. Evol. 2021, 13, evaa231. [Google Scholar] [CrossRef]
- Muller, P.; van Bakel, H.; van de Sluis, B.; Holstege, F.; Wijmenga, C.; Klomp, L.W. Gene expression profiling of liver cells after copper overload in vivo and in vitro reveals new copper–regulated genes. J. Biol. Inorg. Chem. 2007, 12, 495–507. [Google Scholar] [CrossRef] [PubMed]
- Taye, M.; Lee, W.; Jeon, S.; Yoon, J.; Dessie, T.; Hanotte, O.; Mwai, O.A.; Kemp, S.; Cho, S.; Oh, S.J.; et al. Exploring evidence of positive selection signatures in cattle breeds selected for different traits. Mamm. Genome 2017, 28, 528–541. [Google Scholar] [CrossRef]
- Akter, M.; Ma, H.; Hasan, M.; Karim, A.; Zhu, X.; Zhang, L.; Li, Y. Exogenous L–lactate administration in rat hippocampus increases expression of key regulators of mitochondrial biogenesis and antioxidant defense. Front. Mol. Neurosci. 2023, 16, 1117146. [Google Scholar] [CrossRef]
- Zhai, P.; Shi, L.; Zhong, G.; Jiang, J.; Zhou, J.; Chen, X.; Dong, G.; Zhang, L.; Li, R.; Song, J. The OxrA Protein of Aspergillus fumigatus Is Required for the Oxidative Stress Response and Fungal Pathogenesis. Appl. Environ. Microbiol. 2021, 87, e0112021. [Google Scholar] [CrossRef]
- Sallam, A.M.; Abou–Souliman, I.; Reyer, H.; Wimmers, K.; Rabee, A.E. New insights into the genetic predisposition of brucellosis and its effect on the gut and vaginal microbiota in goats. Sci. Rep. 2023, 13, 20086. [Google Scholar] [CrossRef]
- Deng, Y.; Zhu, W.; Zhou, X. Immune Regulatory Genes Are Major Genetic Factors to Behcet Disease: Systematic Review. Open Rheumatol. J. 2018, 12, 70–85. [Google Scholar] [CrossRef]
- Zampeli, E.; Tiligada, E. The role of histamine H4 receptor in immune and inflammatory disorders. Br. J. Pharmacol. 2009, 157, 24–33. [Google Scholar] [CrossRef] [PubMed]
- Yamaura, K.; Shigemori, A.; Suwa, E.; Ueno, K. Expression of the histamine H4 receptor in dermal and articular tissues. Life Sci. 2013, 92, 108–113. [Google Scholar] [CrossRef] [PubMed]
- Onouchi, Y. Genetics of Kawasaki disease: What we know and don’t know. Circ. J. 2012, 76, 1581–1586. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Yao, Z.; Li, X.; Zhang, Z.; Liu, X.; Yang, P.; Chen, N.; Xia, X.; Lyu, S.; Shi, Q.; et al. Assessing genomic diversity and signatures of selection in Pinan cattle using whole–genome sequencing data. BMC Genom. 2022, 23, 460. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Yang, R.; Lu, X.; Liu, Y.; He, W.; Li, Y.; Yu, H.; Qin, L.; Cao, Y.; Zhao, Z.; et al. RNA–Seq Analysis Identifies Differentially Expressed Genes in the Longissimus dorsi of Wagyu and Chinese Red Steppe Cattle. Int. J. Mol. Sci. 2022, 24, 387. [Google Scholar] [CrossRef]
- San, J.; Du, Y.; Wu, G.; Xu, R.; Yang, J.; Hu, J. Transcriptome analysis identifies signaling pathways related to meat quality in broiler chickens—The extracellular matrix (ECM) receptor interaction signaling pathway. Poult. Sci. 2021, 100, 101135. [Google Scholar] [CrossRef]
- Zhang, M.; Zha, X.; Ma, X.; La, Y.; Guo, X.; Chu, M.; Bao, P.; Yan, P.; Wu, X.; Liang, C. Genome–Wide Transcriptome Profiling Reveals the Mechanisms Underlying Hepatic Metabolism under Different Raising Systems in Yak. Animals 2024, 14, 695. [Google Scholar] [CrossRef]
- Fernández–Barroso, M.; Caraballo, C.; Silió, L.; Rodríguez, C.; Nuñez, Y.; Sánchez–Esquiliche, F.; Matos, G.; García–Casco, J.M.; Muñoz, M. Differences in the Loin Tenderness of Iberian Pigs Explained through Dissimilarities in Their Transcriptome Expression Profile. Animals 2020, 10, 1715. [Google Scholar] [CrossRef] [PubMed]
- Gunawan, A.; Listyarini, K.; Harahap, R.S.; Jakaria; Roosita, K.; Sumantri, C.; Inounu, I.; Akter, S.H.; Islam, M.A.; Uddin, M.J. Hepatic transcriptome analysis identifies genes, polymorphisms and pathways involved in the fatty acids metabolism in sheep. PLoS ONE 2021, 16, e0260514. [Google Scholar] [CrossRef]
- Bakhtiarizadeh, M.R.; Alamouti, A.A. RNA–Seq based genetic variant discovery provides new insights into controlling fat deposition in the tail of sheep. Sci. Rep. 2020, 10, 13525. [Google Scholar] [CrossRef]
- Claire D’Andre, H.; Paul, W.; Shen, X.; Jia, X.; Zhang, R.; Sun, L.; Zhang, X. Identification and characterization of genes that control fat deposition in chickens. J. Anim. Sci. Biotechnol. 2013, 4, 43. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Zhou, Y.; Chen, Y.; Gu, J. fastp: An ultra–fast all–in–one FASTQ preprocessor. Bioinformatics 2018, 34, i884–i890. [Google Scholar] [CrossRef]
- Li, H.; Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 2009, 25, 1754–1760. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Handsaker, B.; Wysoker, A.; Fennell, T.; Ruan, J.; Homer, N.; Marth, G.; Abecasis, G.; Durbin, R.; Genome Project Data Processing, S. The Sequence Alignment/Map format and SAMtools. Bioinformatics 2009, 25, 2078–2079. [Google Scholar] [CrossRef]
- Tarasov, A.; Vilella, A.J.; Cuppen, E.; Nijman, I.J.; Prins, P. Sambamba: Fast processing of NGS alignment formats. Bioinformatics 2015, 31, 2032–2034. [Google Scholar] [CrossRef] [PubMed]
- McKenna, A.; Hanna, M.; Banks, E.; Sivachenko, A.; Cibulskis, K.; Kernytsky, A.; Garimella, K.; Altshuler, D.; Gabriel, S.; Daly, M.; et al. The Genome Analysis Toolkit: A MapReduce framework for analyzing next–generation DNA sequencing data. Genome Res. 2010, 20, 1297–1303. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Jiang, J.; Yang, S.; Hou, Y.; Liu, G.E.; Zhang, S.; Zhang, Q.; Sun, D. CNV discovery for milk composition traits in dairy cattle using whole genome resequencing. BMC Genom. 2017, 18, 265. [Google Scholar] [CrossRef]
- Abyzov, A.; Urban, A.E.; Snyder, M.; Gerstein, M. CNVnator: An approach to discover, genotype, and characterize typical and atypical CNVs from family and population genome sequencing. Genome Res. 2011, 21, 974–984. [Google Scholar] [CrossRef]
- Li, H. A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics 2011, 27, 2987–2993. [Google Scholar] [CrossRef] [PubMed]
- Mei, C.; Gui, L.; Hong, J.; Raza, S.H.A.; Aorigele, C.; Tian, W.; Garcia, M.; Xin, Y.; Yang, W.; Zhang, S.; et al. Insights into adaption and growth evolution: A comparative genomics study on two distinct cattle breeds from Northern and Southern China. Mol. Ther. Nucleic Acids 2021, 23, 959–967. [Google Scholar] [CrossRef]
- Browning, B.L.; Zhou, Y.; Browning, S.R. A One–Penny Imputed Genome from Next–Generation Reference Panels. Am. J. Hum. Genet. 2018, 103, 338–348. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Li, M.; Hakonarson, H. ANNOVAR: Functional annotation of genetic variants from high–throughput sequencing data. Nucleic Acids Res. 2010, 38, e164. [Google Scholar] [CrossRef] [PubMed]
- Hall, B.G. Building phylogenetic trees from molecular data with MEGA. Mol. Biol. Evol. 2013, 30, 1229–1235. [Google Scholar] [CrossRef] [PubMed]
- Letunic, I.; Bork, P. Interactive Tree Of Life (iTOL) v5: An online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 2021, 49, W293–W296. [Google Scholar] [CrossRef]
- Purcell, S.; Neale, B.; Todd–Brown, K.; Thomas, L.; Ferreira, M.A.; Bender, D.; Maller, J.; Sklar, P.; de Bakker, P.I.; Daly, M.J.; et al. PLINK: A tool set for whole–genome association and population–based linkage analyses. Am. J. Hum. Genet. 2007, 81, 559–575. [Google Scholar] [CrossRef]
- Alexander, D.H.; Novembre, J.; Lange, K. Fast model–based estimation of ancestry in unrelated individuals. Genome Res. 2009, 19, 1655–1664. [Google Scholar] [CrossRef]
- Danecek, P.; Auton, A.; Abecasis, G.; Albers, C.A.; Banks, E.; DePristo, M.A.; Handsaker, R.E.; Lunter, G.; Marth, G.T.; Sherry, S.T.; et al. The variant call format and VCFtools. Bioinformatics 2011, 27, 2156–2158. [Google Scholar] [CrossRef]
- Dennis, G., Jr.; Sherman, B.T.; Hosack, D.A.; Yang, J.; Gao, W.; Lane, H.C.; Lempicki, R.A. DAVID: Database for Annotation, Visualization, and Integrated Discovery. Genome Biol. 2003, 4, P3. [Google Scholar] [CrossRef]
Term | Gene.ratio | p-Value | Genes |
---|---|---|---|
KEGG_PATHWAY | bta00140:Steroid hormone biosynthesis | 0.004481625 | SULT1E1, UGT1A1, HSD17B2, UGT2A1 |
KEGG_PATHWAY | bta01240:Biosynthesis of cofactors | 0.030034677 | UGT1A1, UGT2A1, COQ7, DLD |
KEGG_PATHWAY | bta04390:Hippo signaling pathway | 0.032063576 | PPP1CB, PATJ, FZD2, PARD6G |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhong, Z.; Wang, Z.; Xie, X.; Pan, D.; Su, Z.; Fan, J.; Xiao, Q.; Sun, R. Insights into Adaption and Growth Evolution: Genome–Wide Copy Number Variation Analysis in Chinese Hainan Yellow Cattle Using Whole–Genome Re–Sequencing Data. Int. J. Mol. Sci. 2024, 25, 11919. https://doi.org/10.3390/ijms252211919
Zhong Z, Wang Z, Xie X, Pan D, Su Z, Fan J, Xiao Q, Sun R. Insights into Adaption and Growth Evolution: Genome–Wide Copy Number Variation Analysis in Chinese Hainan Yellow Cattle Using Whole–Genome Re–Sequencing Data. International Journal of Molecular Sciences. 2024; 25(22):11919. https://doi.org/10.3390/ijms252211919
Chicago/Turabian StyleZhong, Ziqi, Ziyi Wang, Xinfeng Xie, Deyou Pan, Zhiqing Su, Jinwei Fan, Qian Xiao, and Ruiping Sun. 2024. "Insights into Adaption and Growth Evolution: Genome–Wide Copy Number Variation Analysis in Chinese Hainan Yellow Cattle Using Whole–Genome Re–Sequencing Data" International Journal of Molecular Sciences 25, no. 22: 11919. https://doi.org/10.3390/ijms252211919
APA StyleZhong, Z., Wang, Z., Xie, X., Pan, D., Su, Z., Fan, J., Xiao, Q., & Sun, R. (2024). Insights into Adaption and Growth Evolution: Genome–Wide Copy Number Variation Analysis in Chinese Hainan Yellow Cattle Using Whole–Genome Re–Sequencing Data. International Journal of Molecular Sciences, 25(22), 11919. https://doi.org/10.3390/ijms252211919