Supramolecular Structure of Sulfonamide-Substituted Silatranes: Quantum Chemical DFT Calculations
Abstract
:1. Introduction
2. Results and Discussion
2.1. X-Ray Diffraction Data and FTIR Analysis
2.2. Electron Density and MESP
2.3. Intermolecular H-Bonds and Intramolecular Covalent Tetrel and Non-Covalent Tetrel Bonds at the 4d and 5a Complexes with H2O and DMSO Molecules
2.4. Geometry of 4d-di1, 4d-di2 and 5a-di Dimers and Their Complexes with H2O and DMSO Molecules Calculated in Gas and Polar Environment
2.5. Wavefunction Analysis
3. Methods
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kano, N. Chapter 11—Penta- and Hexacoordinated Silicon(IV) Compounds. In Organosilicon Compounds, Theory and Experiment (Synthesis); Lee, V.Y., Ed.; Academic Press: Cambridge, MA, USA, 2017; pp. 645–716. [Google Scholar] [CrossRef]
- Rendler, S.; Oestreich, M. Hypervalent Silicon as a Reactive Site in Selective Bond-Forming Processes. Synthesis 2005, 11, 1727–1747. [Google Scholar] [CrossRef]
- Benaglia, M.; Guizzetti, S.; Pignataro, L. Stereoselective Reactions Involving Hypervalent Silicate Complexes. Coord. Chem. Rev. 2008, 252, 492–512. [Google Scholar] [CrossRef]
- Nikolin, A.A.; Negrebetsky, V.V. Synthesis, properties and reactivity of intramolecular hypercoordinate silicon complexes. Russ. Chem. Rev. 2014, 83, 848–883. [Google Scholar] [CrossRef]
- Korlyukov, A.A. Coordination compounds of tetravalent silicon, germanium and tin: The structure, chemical bonding and intermolecular interactions in them. Russ. Chem. Rev. 2015, 84, 422–440. [Google Scholar] [CrossRef]
- Puri, J.K.; Singh, R.; Chahal, V.K. Silatranes: A Review on their Synthesis, Structure, Reactivity and Applications. Chem. Soc. Rev. 2011, 40, 1791–1840. [Google Scholar] [CrossRef]
- Adamovich, S.N. New atranes and similar ionic complexes. Synthesis, structure, properties. Appl. Organomet. Chem. 2019, 33, e4940. [Google Scholar] [CrossRef]
- Voronkov, M.G.; Belyaeva, V.V.; Abzaeva, K.A. Basicity of silatranes (Review). Chem. Heterocycl. Compd. 2012, 47, 1330–1338. [Google Scholar] [CrossRef]
- Voronkov, M.G.; Baryshok, V.P. Antitumor Activity of Silatranes (A Review). Pharm. Chem. J. 2004, 38, 3–9. [Google Scholar] [CrossRef]
- Voronkov, M.G.; Baryshok, V.P. Use of Silatranes for Medicine and Agriculture; Tolstikov, G.A., Ed.; Publishing House of the Siberian Branch of Russian Academy of Sciences: Novosibirsk, Russia, 2005; p. 258. [Google Scholar]
- Voronkov, M.G.; Baryshok, V.P. Atranes As a New Generation of Biologically Active Substances. Her. Russ. Acad. Sci. 2010, 80, 514–521. [Google Scholar] [CrossRef]
- Adamovich, S.N.; Kondrashov, E.V.; Ushakov, I.A.; Shatokhina, N.S.; Oborina, E.N.; Vashchenko, A.V.; Belovezhets, L.A.; Rozentsveig, I.B.; Verpoort, F. Isoxazole derivatives of silatrane: Synthesis, characterization, in silico ADME profile, prediction of potential pharmacological activity and evaluation of antimicrobial action. Appl. Organomet. Chem. 2020, 34, e5976. [Google Scholar] [CrossRef]
- Adamovich, S.N.; Oborina, E.N.; Nalibayeva, A.M.; Rozentsveig, I.B. 3-Aminopropylsilatrane and Its Derivatives: A Variety of Applications. Molecules 2022, 27, 3549. [Google Scholar] [CrossRef] [PubMed]
- Adamovich, S.N.; Ushakov, I.A.; Oborina, E.N.; Lukyanova, S.V.; Komarov, V.Y. New 3-Aminopropylsilatrane Derivatives: Synthesis, Structure, Properties, and Biological Activity. Int. J. Mol. Sci. 2023, 24, 9965. [Google Scholar] [CrossRef] [PubMed]
- Hussein, E.M.; Al-Rooqi, M.M.; Abd El-Galil, S.M.; Ahmed, S.A. Design, synthesis, and biological evaluation of novel N4-substituted sulfonamides: Acetamides derivatives as dihydrofolate reductase (DHFR) inhibitors. BMC Chem. 2019, 13, 91. [Google Scholar] [CrossRef] [PubMed]
- Shaveta; Mishra, S.; Singh, P. Hybrid molecules: The privileged scaffolds for various Pharmaceuticals. Eur. J. Med. Chem. 2016, 124, 500–536. [Google Scholar] [CrossRef] [PubMed]
- Adamovich, S.N.; Ushakov, I.A.; Oborina, E.N.; Vashchenko, A.V. Silatrane-sulfonamide hybrids: Synthesis, characterization, and evaluation of biological activity. J. Organomet. Chem. 2022, 957, 122150. [Google Scholar] [CrossRef]
- Murray, J.S.; Politzer, P. σ-Holes and Si···N intramolecular interactions. J. Mol. Model. 2019, 25, 101. [Google Scholar] [CrossRef]
- Scheiner, S. Crowding in Tetrel Bonds. J. Phys. Chem. A 2018, 122, 2550–2562. [Google Scholar] [CrossRef]
- Marin-Luna, M.; Alkorta, I.; Elguero, J. A theoretical study of the HnF4−nSi:N-base (n = 1–4) tetrel-bonded complexes. Theor. Chem. Acc. 2017, 136, 41. [Google Scholar] [CrossRef]
- Varadwaj, P.R.; Varadwaj, A.; Marques, H.M.; Yamashita, K. The Tetrel Bond: Definition of the Tetrel Bond. CrystEngComm 2023, 25, 1411–1423. [Google Scholar] [CrossRef]
- Müller-Dethlefs, K.; Hobza, P. Noncovalent Interactions: A Challenge for Experiment and Theory. Chem. Rev. 2000, 100, 143–168. [Google Scholar] [CrossRef]
- Bauzá, A.; Mooibroek, T.J.; Frontera, A. Tetrel-Bonding Interaction: Rediscovered Supramolecular Force? Angew. Chem. Int. Ed. 2013, 52, 12317–12321. [Google Scholar] [CrossRef] [PubMed]
- Bauzá, A.; Seth, S.K.; Frontera, A. Tetrel Bonding Interactions at Work: Impact on Tin and Lead Coordination Compounds. Coord. Chem. Rev. 2019, 384, 107–125. [Google Scholar] [CrossRef]
- Clark, T. σ-Holes. WIREs Comput. Mol. Sci. 2013, 3, 13–20. [Google Scholar] [CrossRef]
- Varadwaj, P.R.; Varadwaj, A.; Jin, B.-Y. Significant evidence of C∙∙∙O and C∙∙∙C long-range contacts in several heterodimeric complexes of CO with CH3–X, should one refer to them as carbon and dicarbon bonds. Phys. Chem. Chem. Phys. 2014, 16, 17238–17252. [Google Scholar] [CrossRef] [PubMed]
- Legon, A.C. Tetrel, pnictogen and chalcogen bonds identified in the gas phase before they had names: A systematic look at non-covalent interactions. Phys. Chem. Chem. Phys. 2017, 19, 14884–14896. [Google Scholar] [CrossRef]
- Chipanina, N.N.; Shainyan, B.A.; Oznobikhina, L.P.; Lazareva, N.F. The Rivalry between Intramolecular Tetrel Bonds and Intermolecular Hydrogen Bonds in (O–Si) Chelates of N-Silylmethylamides and -ureas. A Theoretical Study. Chem. Phys. Chem. 2024, 25, e202400410. [Google Scholar] [CrossRef]
- Alkorta, I.; Rozas, I.; Elguero, J. Molecular complexes between silicon derivatives and electron-rich groups. J. Phys. Chem. A 2001, 105, 743–749. [Google Scholar] [CrossRef]
- Scheiner, S. Sensitivity of noncovalent bonds to intermolecular separation: Hydrogen, halogen, chalcogen, and pnicogen bonds. CrystEngComm 2013, 15, 3119–3124. [Google Scholar] [CrossRef]
- Scheiner, S. The pnicogen bond: Its relation to hydrogen, halogen, and other noncovalent bonds. Acc. Chem. Res. 2013, 46, 280–288. [Google Scholar] [CrossRef]
- Amonov, A.; Scheiner, S. Comparison of the Ability of N-Bases to Engage in Noncovalent Bonds. Chem. Phys. Chem. 2023, 24, e202300326. [Google Scholar] [CrossRef]
- Sterkhova, I.V.; Korlyukov, A.A.; Lazareva, N.F.; Smirnov, V.I. Silatranes: Relationship between the experimental Si → N dative bond length and its calculated energy according to AIM analysis data. Chem. Phys. 2024, 578, 112153. [Google Scholar] [CrossRef]
- Cordero, B.; Gómez, V.; Platero-Prats, A.E.; Revés, M.; Echeverra, J.; Cremades, E.; Barragán, F.; Alvarez, S. Covalent radii revisited. Dalton Trans. 2008, 21, 2832–2838. [Google Scholar] [CrossRef] [PubMed]
- Romanovs, V.; Belyakov, S.; Doronina, E.; Sidorkin, V.; Roisnel, T.; Jouikov, V. Crystal Structure of New 1-Phenyl-Substituted Tribenzsilatranes. Crystals 2023, 13, 772. [Google Scholar] [CrossRef]
- Bauzá, A.; Mooibroek, T.J.; Frontera, A. Tetrel Bonding Interactions. Chem. Rec. 2016, 16, 473–487. [Google Scholar] [CrossRef]
- Bondi, A. Van der Waals radius. J. Phys. Chem. 1964, 68, 441–451. [Google Scholar] [CrossRef]
- Voronkov, M.G.; Dyakov, V.M.; Kirpichenko, S.V. Silatranes. J. Organomet. Chem. 1982, 233, 1–147. [Google Scholar] [CrossRef]
- Oznobikhina, L.P.; Chipanina, N.N.; Astakhova, V.V.; Moskalik, M.Y.; Shainyan, B.A. Theoretical Analysis of the Reactivity of N-[2-Bromo-2-(trimethylsilyl)ethyl]sulfonamides and Their Self-Association. Russ. J. Gen. Chem. 2021, 91, 2373–2379. [Google Scholar] [CrossRef]
- Liu, N.; Xie, X.; Li, Q.; Scheiner, S. Enhancement of the Tetrel Bond by the Effects of Substituents, Cooperativity, and Electric Field: Transition from Noncovalent to Covalent Bond. ChemPhysChem 2021, 22, 2305–2312. [Google Scholar] [CrossRef]
- Politzer, P.; Laurence, P.R.; Jayasuriya, K. Molecular electrostatic potentials: An effective tool for the elucidation of biochemical phenomena. Environ. Health Perspect. 1985, 61, 191–202. [Google Scholar] [CrossRef]
- Chipanina, N.N.; Oznobikhina, L.P.; Sterkhova, I.V.; Ganin, A.S.; Shainyan, B.A. New oxyalkyl derivatives of trifluoromethanesulfonamide: Dynamic rivalry between different types of chain and cyclic associates in different phase states. J. Mol. Struct. 2020, 1219, 128534. [Google Scholar] [CrossRef]
- Bader, R.F.W. Atoms in Molecules, a Quantum Theory; Clarendon Press: Oxford, UK, 1990; p. 456. [Google Scholar]
- Espinosa, E.; Molins, E.; Lecomte, C. Hydrogen bond strengths revealed by topological analyses of experimentally observed electron densities. Chem. Phys. Lett. 1998, 285, 170–173. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Gaussian 09 Software; Gaussian Inc.: Wallingford, CT, USA, 2013. [Google Scholar]
- Belogolova, E.F.; Shlykov, S.A.; Eroshin, A.V.; Doronina, E.P.; Sidorkin, V.F. The hierarchy of ab initio and DFT methods for describing an intramolecular non-covalent Si∙∙∙N contact in the silicon compounds using electron diffraction geometries. Phys. Chem. Chem. Phys. 2021, 23, 2762–2774. [Google Scholar] [CrossRef] [PubMed]
- Hobza, P. Calculations on noncovalent interactions and databases of benchmark interaction energies. Acc. Chem. Res. 2012, 17, 663–672. [Google Scholar] [CrossRef] [PubMed]
- Biegler-Konig, F.; Schonbohm, J.; Bayles, D. AIM2000. J. Comput. Chem. 2001, 22, 545. [Google Scholar] [CrossRef]
- Chipanina, N.N.; Shainyan, B.A.; Oznobikhina, L.P.; Lazareva, N.F. Tetrel Bonding along the Pathways of Transsilylation and Alkylation of N-Trimethylsilyl-N-methylacetamide with Bifunctional (Chloromethyl)fluorosilanes. J. Phys. Chem. A 2019, 123, 5178–5189. [Google Scholar] [CrossRef]
- Lu, T.; Chen, F.J. Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33, 580–592. [Google Scholar] [CrossRef]
Entry | O=S | O-(Si) | H-N | Si | CH2O-Si | Cl-CH2 | l (N–Si) |
---|---|---|---|---|---|---|---|
4d | −42.06 | −32.62 | 30.73 | 6.31 | 33.95 | −5.52 | 2.289 |
−40.71 | −27.22 | ||||||
PCM | −44.75 | −35.88 | 30.01 | 3.27 | 39.25 | ||
−43.34 | −30.88 | 36.36 | −9.35 | 2.143 | |||
X-ray | 2.036 | ||||||
5a | −47.87 −45.96 | −21.26 | − | − | 31.24 31.49 | −12.77 | 2.390 |
PCM | −51.55 −50.09 | −43.39 −28.66 | − | − | 36.57 35.46 | −15.86 | 2.193 |
X-ray | 2.136 | ||||||
6 | −39.24 −37.60 | −33.08 −27.33 | 32.76 | 7.00 | 32.83 28.42 | −6.26 | 2.297 |
PCM | −41.84 −40.14 | −36.33 −31.65 | 32.41 | 5.47 | 38.91 36.20 | −10.15 | 2.138 |
7 | −49.60 −48.18 | −35.22 −27.99 −25.18 | 24.44 | 3.52 | 31.57 26.37 | −7.91 | 2.310 |
PCM | −52.66 −51.39 | −38.85 −32.72 −27.85 | 23.43 | − | 37.35 35.74 35.29 | −12.41 | 2.146 |
8 | −31.49 −29.58 | 46.19 | − | ||||
9 | −32.83 −32.05 | 54.62 | − |
Entry | Bond | l | ρ(rc) | ∇2ρ(rc) | E | Bond | l | ρ(rc) | ∇2ρ(rc) | E |
---|---|---|---|---|---|---|---|---|---|---|
Gas | PCM | |||||||||
4d | N∙∙∙Si | 2.289 | 0.050 | 0.037 | 16.6 | N–Si | 2.143 | 0.058 | 0.075 | 23.0 |
4d-I H2O | N∙∙∙Si OH∙∙∙O-Si | 2.248 2.050 | 0.053 0.020 | 0.049 0.080 | 19.1 5.1 | N–Si OH∙∙∙OSi | 2.125 1.894 | 0.064 0.028 | 0.105 0.107 | 27.7 7.6 |
4d-II H2O | N∙∙∙Si NH∙∙∙OH OH∙∙∙O=S | 2.304 1.999 2.021 | 0.049 0.024 0.021 | 0.034 0.091 0.084 | 15.9 5.8 5.3 | N–Si NH∙∙∙OH OH∙∙∙O=S | 2.152 1.897 – | 0.061 0.029 – | 0.091 0.091 – | 25.5 7.7 – |
4d-III DMSO | N∙∙∙Si OH∙∙∙O=S | 2.281 2.038 | 0.050 0.019 | 0.039 0.076 | 17.1 4.6 | N–Si OH∙∙∙O=S | 2.139 1.952 | 0.063 0.023 | 0.098 0.093 | 26.6 6.0 |
4d-IV DMSO | N∙∙∙Si NH∙∙∙O=S | 2.341 1.792 | 0.045 0.037 | 0.029 0.129 | 14.0 10.3 | N–Si NH∙∙∙O=S | 2.153 1.783 | 0.061 0.037 | 0.091 0.131 | 26.3 10.6 |
5a | N∙∙∙Si | 2.390 | 0.042 | 0.026 | 12.0 | N–Si | 2.193 | 0.057 | 0.072 | 22.4 |
5a-V H2O | N∙∙∙Si OH∙∙∙O-Si | 2.344 1.984 | 0.046 0.023 | 0.028 0.088 | 13.9 5.8 | N–Si OH∙∙∙OSi | 2.178 1.875 | 0.058 0.030 | 0.080 0.088 | 23.5 8.0 |
5a-VI H2O | N∙∙∙Si OH∙∙∙O=S | 2.352 2.004 | 0.045 0.020 | 0.028 0.082 | 13.5 4.9 | N–Si OH∙∙∙O=S | 2.191 1.962 | 0.057 0.022 | 0.073 0.091 | 22.6 5.8 |
Entry | Bond | l | ρ(rc) | ∇2ρ(rc) | E | Bond | l | ρ(rc) | ∇2ρ(rc) | E |
---|---|---|---|---|---|---|---|---|---|---|
Gas | PCM | |||||||||
4d-di1a | N∙∙∙Si N∙∙∙Si NH∙∙∙O-Si NH∙∙∙O-Si | 2.246 2.246 1.995 1.995 | 0.053 0.053 0.023 0.023 | 0.048 0.048 0.088 0.088 | 19.3 19.3 5.7 5.7 | N–Si N–Si NH∙∙∙O-Si NH∙∙∙O-Si | 2.141 2.141 1.991 1.991 | 0.063 0.063 0.024 0.024 | 0.095 0.095 0.089 0.089 | 26.5 26.5 5.8 5.8 |
4d-di1a 2H2O | N∙∙∙Si N∙∙∙Si NH∙∙∙OH NH∙∙∙OH OH∙∙∙O-Si OH∙∙∙O-Si | 2.208 2.322 1.842 1.863 1.867 1.941 | 0.063 0.063 0.031 0.038 0.035 0.029 | 0.085 0.084 0.116 0.134 0.122 0.106 | 26.7 26.4 8.3 11.0 9.7 7.7 | N–Si N–Si NH∙∙∙OH NH∙∙∙OH OH∙∙∙O-Si OH∙∙∙O-Si | 2.140 2.143 1.827 1.920 1.814 1.885 | 0.063 0.062 0.035 0.028 0.034 0.029 | 0.096 0.094 0.124 0.104 0.120 0.107 | 25.7 26.8 9.5 7.2 9.4 7.8 |
5a-di1 | N∙∙∙Si CH∙∙∙ O=S CH∙∙∙O=S N∙∙∙Si CH∙∙∙O=S CH∙∙∙O=S | 2.272 2.517 2.640 2.272 2.521 2.640 | 0.051 0.007 0.004 0.051 0.007 0.004 | 0.041 0.029 0.015 0.041 0.029 0.015 | 17.7 1.4 0.7 17.7 1.4 0.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chipanina, N.N.; Adamovich, S.N.; Nalibayeva, A.M.; Abdikalykov, Y.N.; Oznobikhina, L.P.; Oborina, E.N.; Rozentsveig, I.B. Supramolecular Structure of Sulfonamide-Substituted Silatranes: Quantum Chemical DFT Calculations. Int. J. Mol. Sci. 2024, 25, 11920. https://doi.org/10.3390/ijms252211920
Chipanina NN, Adamovich SN, Nalibayeva AM, Abdikalykov YN, Oznobikhina LP, Oborina EN, Rozentsveig IB. Supramolecular Structure of Sulfonamide-Substituted Silatranes: Quantum Chemical DFT Calculations. International Journal of Molecular Sciences. 2024; 25(22):11920. https://doi.org/10.3390/ijms252211920
Chicago/Turabian StyleChipanina, Nina N., Sergey N. Adamovich, Arailym M. Nalibayeva, Yerlan N. Abdikalykov, Larisa P. Oznobikhina, Elizaveta N. Oborina, and Igor B. Rozentsveig. 2024. "Supramolecular Structure of Sulfonamide-Substituted Silatranes: Quantum Chemical DFT Calculations" International Journal of Molecular Sciences 25, no. 22: 11920. https://doi.org/10.3390/ijms252211920
APA StyleChipanina, N. N., Adamovich, S. N., Nalibayeva, A. M., Abdikalykov, Y. N., Oznobikhina, L. P., Oborina, E. N., & Rozentsveig, I. B. (2024). Supramolecular Structure of Sulfonamide-Substituted Silatranes: Quantum Chemical DFT Calculations. International Journal of Molecular Sciences, 25(22), 11920. https://doi.org/10.3390/ijms252211920