Distribution and Incorporation of Extracellular Vesicles into Chondrocytes and Synoviocytes
Abstract
:1. Introduction
2. Results
2.1. Characterization of EVs
2.2. Uptake of PKH67-Labelled EVs
2.3. Inhibition of EV Uptake by Dynamin Inhibitor
2.4. Transfer and Uptake of Red Fluorescent Protein (RFP)-Tagged CD9 EVs from HEK-293 Cells
2.5. In Vivo Uptake of Labelled EVs in Mouse Joint Tissues
3. Discussion
4. Materials and Methods
4.1. Reagents, Kits and Antibodies
4.2. Preparation of Conditioned Medium and Isolation of Extracellular Vesicles
4.3. Size Distribution
4.4. Transmission Electron Microscopy
4.5. Western Blotting Analysis
4.6. Plasmid DNA Construction
4.7. Stable Transgene Expression
4.8. Chondrocytes
4.9. Synoviocytes
4.10. Interactive Co-Culture
4.11. EVs Labelling with PKH67 and Uptake by OUMS-27 Cells
4.12. EV Uptake Inhibition
4.13. EVs Labelling and Injection into Mice Knee Joints
4.14. Kawamoto Method
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Perruccio, A.V.; Young, J.J.; Wilfong, J.M.; Denise Power, J.; Canizares, M.; Badley, E.M. Osteoarthritis Year in Review 2023: Epidemiology & Therapy. Osteoarthr. Cartil. 2024, 32, 159–165. [Google Scholar] [CrossRef]
- Tsuchiya, M.; Ohashi, Y.; Fukushima, K.; Okuda, Y.; Suto, A.; Matsui, T.; Kodera, Y.; Sato, M.; Tsukada, A.; Inoue, G.; et al. Fibrocyte Phenotype of ENTPD1+CD55+ Cells and Its Association with Pain in Osteoarthritic Synovium. Int. J. Mol. Sci. 2024, 25, 4085. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Lopez, E.; Coras, R.; Torres, A.; Lane, N.E.; Guma, M. Synovial Inflammation in Osteoarthritis Progression. Nat. Rev. Rheumatol. 2022, 18, 258–275. [Google Scholar] [CrossRef]
- Mabey, T.; Honsawek, S. Cytokines as Biochemical Markers for Knee Osteoarthritis. World J. Orthop. 2015, 6, 95–105. [Google Scholar] [CrossRef] [PubMed]
- Hardingham, T.E.; Muir, H. Hyaluronic Acid in Cartilage and Proteoglycan Aggregation. Biochem. J. 1974, 139, 565–581. [Google Scholar] [CrossRef]
- Cowman, M.K.; Schmidt, T.A.; Raghavan, P.; Stecco, A. Viscoelastic Properties of Hyaluronan in Physiological Conditions. F1000Research 2015, 4, 622. [Google Scholar] [CrossRef]
- Kiani, C.; Chen, L.; Wu, Y.J.; Yee, A.J.; Yang, B.B. Structure and Function of Aggrecan. Cell Res. 2002, 12, 19–32. [Google Scholar] [CrossRef]
- Inagaki, J.; Nakano, A.; Hatipoglu, O.F.; Ooka, Y.; Tani, Y.; Miki, A.; Ikemura, K.; Opoku, G.; Ando, R.; Kodama, S.; et al. Potential of a Novel Chemical Compound Targeting Matrix Metalloprotease-13 for Early Osteoarthritis: An In Vitro Study. Int. J. Mol. Sci. 2022, 23, 2681. [Google Scholar] [CrossRef]
- Demircan, K.; Hirohata, S.; Nishida, K.; Hatipoglu, O.F.; Oohashi, T.; Yonezawa, T.; Apte, S.S.; Ninomiya, Y. ADAMTS-9 Is Synergistically Induced by Interleukin-1beta and Tumor Necrosis Factor Alpha in OUMS-27 Chondrosarcoma Cells and in Human Chondrocytes. Arthritis Rheum. 2005, 52, 1451–1460. [Google Scholar] [CrossRef]
- Yao, Q.; Wu, X.; Tao, C.; Gong, W.; Chen, M.; Qu, M.; Zhong, Y.; He, T.; Chen, S.; Xiao, G. Osteoarthritis: Pathogenic Signaling Pathways and Therapeutic Targets. Signal Transduct. Target. Ther. 2023, 8, 56. [Google Scholar] [CrossRef]
- Ohtsuki, T.; Shinaoka, A.; Kumagishi-Shinaoka, K.; Asano, K.; Hatipoglu, O.F.; Inagaki, J.; Takahashi, K.; Oohashi, T.; Nishida, K.; Naruse, K.; et al. Mechanical Strain Attenuates Cytokine-Induced ADAMTS9 Expression via Transient Receptor Potential Vanilloid Type 1. Exp. Cell Res. 2019, 383, 111556. [Google Scholar] [CrossRef] [PubMed]
- Ohtsuki, T.; Asano, K.; Inagaki, J.; Shinaoka, A.; Kumagishi-Shinaoka, K.; Cilek, M.Z.; Hatipoglu, O.F.; Oohashi, T.; Nishida, K.; Komatsubara, I.; et al. High Molecular Weight Hyaluronan Protects Cartilage from Degradation by Inhibiting Aggrecanase Expression. J. Orthop. Res. 2018, 36, 3247–3255. [Google Scholar] [CrossRef] [PubMed]
- Murphy, C.; Withrow, J.; Hunter, M.; Liu, Y.; Tang, Y.L.; Fulzele, S.; Hamrick, M.W. Emerging Role of Extracellular Vesicles in Musculoskeletal Diseases. Mol. Asp. Med. 2018, 60, 123–128. [Google Scholar] [CrossRef] [PubMed]
- Ni, Z.; Kuang, L.; Chen, H.; Xie, Y.; Zhang, B.; Ouyang, J.; Wu, J.; Zhou, S.; Chen, L.L.; Su, N.; et al. The Exosome-like Vesicles from Osteoarthritic Chondrocyte Enhanced Mature IL-1β Production of Macrophages and Aggravated Synovitis in Osteoarthritis. Cell Death Dis. 2019, 10, 522. [Google Scholar] [CrossRef]
- Théry, C.; Zitvogel, L.; Amigorena, S. Exosomes: Composition, Biogenesis and Function. Nat. Rev. Immunol. 2002, 2, 569–579. [Google Scholar] [CrossRef]
- Raposo, G.; Stoorvogel, W. Extracellular Vesicles: Exosomes, Microvesicles, and Friends. J. Cell Biol. 2013, 200, 373–383. [Google Scholar] [CrossRef]
- Macia, E.; Ehrlich, M.; Massol, R.; Boucrot, E.; Brunner, C.; Kirchhausen, T. Dynasore, a Cell-Permeable Inhibitor of Dynamin. Dev. Cell 2006, 10, 839–850. [Google Scholar] [CrossRef]
- Cabrera-Pastor, A. Extracellular Vesicles as Mediators of Neuroinflammation in Intercellular and Inter-Organ Crosstalk. Int. J. Mol. Sci. 2024, 25, 7041. [Google Scholar] [CrossRef]
- Shahi, S.; Kang, T.; Fonseka, P. Extracellular Vesicles in Pathophysiology: A Prudent Target That Requires Careful Consideration. Cells 2024, 13, 754. [Google Scholar] [CrossRef]
- Kim, M.; Shin, D.I.; Choi, B.H.; Min, B.H. Exosomes from IL-1β-Primed Mesenchymal Stem Cells Inhibited IL-1β- and TNF-α-Mediated Inflammatory Responses in Osteoarthritic SW982 Cells. Tissue Eng. Regen. Med. 2021, 18, 525–536. [Google Scholar] [CrossRef]
- Zhang, B.; Tian, X.; Qu, Z.; Hao, J.; Zhang, W. Hypoxia-Preconditioned Extracellular Vesicles from Mesenchymal Stem Cells Improve Cartilage Repair in Osteoarthritis. Membranes 2022, 12, 225. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, L.; Al-Massri, K. New Approaches for Enhancement of the Efficacy of Mesenchymal Stem Cell-Derived Exosomes in Cardiovascular Diseases. Tissue Eng. Regen. Med. 2022, 19, 1129–1146. [Google Scholar] [CrossRef] [PubMed]
- Yáñez-Mó, M.; Siljander, P.R.M.; Andreu, Z.; Zavec, A.B.; Borràs, F.E.; Buzas, E.I.; Buzas, K.; Casal, E.; Cappello, F.; Carvalho, J.; et al. Biological Properties of Extracellular Vesicles and Their Physiological Functions. J. Extracell. Vesicles 2015, 4, 27066. [Google Scholar] [CrossRef]
- Kürtösi, B.; Kazsoki, A.; Zelkó, R. A Systematic Review on Plant-Derived Extracellular Vesicles as Drug Delivery Systems. Int. J. Mol. Sci. 2024, 25, 7559. [Google Scholar] [CrossRef]
- Gundu, C.; Arruri, V.K.; Yadav, P.; Navik, U.; Kumar, A.; Amalkar, V.S.; Vikram, A.; Gaddam, R.R. Dynamin-Independent Mechanisms of Endocytosis and Receptor Trafficking. Cells 2022, 11, 2557. [Google Scholar] [CrossRef]
- Dash, M.; Palaniyandi, K.; Ramalingam, S.; Sahabudeen, S.; Raja, N.S. Exosomes Isolated from Two Different Cell Lines Using Three Different Isolation Techniques Show Variation in Physical and Molecular Characteristics. Biochim. Biophys. Acta Biomembr. 2021, 1863, 183490. [Google Scholar] [CrossRef]
- Dashtaki, M.E.; Tabibkhooei, A.; Parvizpour, S.; Soltani, R.; Ghasemi, S. Isolation of Cells and Exosomes from Glioblastoma Tissue to Investigate the Effects of Ascorbic Acid on the C-Myc, HIF-1α, and Lnc-SNHG16 Genes. Int. J. Mol. Cell. Med. 2023, 12, 135–143. [Google Scholar] [CrossRef]
- Kamerkar, S.; Lebleu, V.S.; Sugimoto, H.; Yang, S.; Ruivo, C.F.; Melo, S.A.; Lee, J.J.; Kalluri, R. Exosomes Facilitate Therapeutic Targeting of Oncogenic KRAS in Pancreatic Cancer. Nature 2017, 546, 498–503. [Google Scholar] [CrossRef]
- Kalra, H.; Adda, C.G.; Liem, M.; Ang, C.S.; Mechler, A.; Simpson, R.J.; Hulett, M.D.; Mathivanan, S. Comparative Proteomics Evaluation of Plasma Exosome Isolation Techniques and Assessment of the Stability of Exosomes in Normal Human Blood Plasma. Proteomics 2013, 13, 3354–3364. [Google Scholar] [CrossRef]
- Chen, J.; Ni, X.; Yang, J.; Yang, H.; Liu, X.; Chen, M.; Sun, C.; Wang, Y. Cartilage Stem/Progenitor Cells-Derived Exosomes Facilitate Knee Cartilage Repair in a Subacute Osteoarthritis Rat Model. J. Cell. Mol. Med. 2024, 28, e18327. [Google Scholar] [CrossRef]
- Jiang, H.; Zhao, H.; Zhang, M.; He, Y.; Li, X.; Xu, Y.; Liu, X. Hypoxia Induced Changes of Exosome Cargo and Subsequent Biological Effects. Front. Immunol. 2022, 13, 824188. [Google Scholar] [CrossRef] [PubMed]
- Yoon, J.; Lee, S.K.; Park, A.; Lee, J.; Jung, I.; Song, K.B.; Choi, E.J.; Kim, S.; Yu, J. Exosome from IFN-γ-Primed Induced Pluripotent Stem Cell-Derived Mesenchymal Stem Cells Improved Skin Inflammation and Barrier Function. Int. J. Mol. Sci. 2023, 24, 11635. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.H.; Yun, D.W.; Kim, Y.H.; Im, G.B.; Hyun, J.; Park, H.S.; Bhang, S.H.; Choi, S.H. Various Three-Dimensional Culture Methods and Cell Types for Exosome Production. Tissue Eng. Regen. Med. 2023, 20, 621–635. [Google Scholar] [CrossRef]
- Chen, P.; Zhou, J.; Ruan, A.; Guan, H.; Xie, J.; Zeng, L.; Liu, J.; Wang, Q. Synovial Tissue-Derived Extracellular Vesicles Induce Chondrocyte Inflammation and Degradation via NF-ΚB Signalling Pathway: An in Vitro Study. J. Cell. Mol. Med. 2022, 26, 2038–2048. [Google Scholar] [CrossRef]
- Tkach, M.; Théry, C. Communication by Extracellular Vesicles: Where We Are and Where We Need to Go. Cell 2016, 164, 1226–1232. [Google Scholar] [CrossRef]
- Kunisada, T.; Miyazaki, M.; Mihara, K.; Gao, C.; Kawai, A.; Inoue, H.; Namba, M. A New Human Chondrosarcoma Cell Line (OUMS-27) That Maintains Chondrocytic Differentiation. Int. J. Cancer 1998, 77, 854–859. [Google Scholar] [CrossRef]
- Shen, Z.N.; Nishida, K.; Doi, H.; Oohashi, T.; Hirohata, S.; Ozaki, T.; Yoshida, A.; Ninomiya, Y.; Inoue, H. Suppression of Chondrosarcoma Cells by 15-Deoxy-Δ12,14- Prostaglandin J2 Is Associated with Altered Expression of Bax/Bcl-XL and P21. Biochem. Biophys. Res. Commun. 2005, 328, 375–382. [Google Scholar] [CrossRef]
- Hatipoglu, O.F.; Uctepe, E.; Opoku, G.; Wake, H.; Ikemura, K.; Ohtsuki, T.; Inagaki, J.; Gunduz, M.; Gunduz, E.; Watanabe, S.; et al. Osteopontin Silencing Attenuates Bleomycin-Induced Murine Pulmonary Fibrosis by Regulating Epithelial-Mesenchymal Transition. Biomed. Pharmacother. 2021, 139, 111633. [Google Scholar] [CrossRef]
- Nakamura, K.; Hirohata, S.; Murakami, T.; Miyoshi, T.; Demircan, K.; Oohashi, T.; Ogawa, H.; Koten, K.; Toeda, K.; Kusachi, S.; et al. Dynamic Induction of ADAMTS1 Gene in the Early Phase of Acute Myocardial Infarction. J. Biochem. 2004, 136, 439–446. [Google Scholar] [CrossRef]
- Miyoshi, T.; Hirohata, S.; Ogawa, H.; Doi, M.; Obika, M.; Yonezawa, T.; Sado, Y.; Kusachi, S.; Kyo, S.; Kondo, S.; et al. Tumor-Specific Expression of the RGD-Alpha3(IV)NC1 Domain Suppresses Endothelial Tube Formation and Tumor Growth in Mice. FASEB J. 2006, 20, 1904–1906. [Google Scholar] [CrossRef]
- Haneda, M.; Hayashi, S.; Matsumoto, T.; Hashimoto, S.; Takayama, K.; Chinzei, N.; Kihara, S.; Takeuchi, K.; Nishida, K.; Kuroda, R. Depletion of Aquaporin 1 Decreased ADAMTS-4 Expression in Human Chondrocytes. Mol. Med. Rep. 2018, 17, 4874–4882. [Google Scholar] [CrossRef] [PubMed]
- Fukuda, K.; Miura, Y.; Maeda, T.; Hayashi, S.; Matsumoto, T.; Kuroda, R. Expression Profiling of Genes in Rheumatoid Fibroblast-like Synoviocytes Regulated by Fas Ligand via CDNA Microarray Analysis. Exp. Ther. Med. 2021, 22, 1000. [Google Scholar] [CrossRef] [PubMed]
- Asano, K.; Nelson, C.M.; Nandadasa, S.; Aramaki-Hattori, N.; Lindner, D.J.; Alban, T.; Inagaki, J.; Ohtsuki, T.; Oohashi, T.; Apte, S.S.; et al. Stromal Versican Regulates Tumor Growth by Promoting Angiogenesis. Sci. Rep. 2017, 7, 17225. [Google Scholar] [CrossRef] [PubMed]
- Kawamoto, T.; Kawamoto, K. Preparation of Thin Frozen Sections from Nonfixed and Undecalcified Hard Tissues Using Kawamot’s Film Method (2012). Methods Mol. Biol. 2014, 1130, 149–164. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ohtsuki, T.; Sato, I.; Takashita, R.; Kodama, S.; Ikemura, K.; Opoku, G.; Watanabe, S.; Furumatsu, T.; Yamada, H.; Ando, M.; et al. Distribution and Incorporation of Extracellular Vesicles into Chondrocytes and Synoviocytes. Int. J. Mol. Sci. 2024, 25, 11942. https://doi.org/10.3390/ijms252211942
Ohtsuki T, Sato I, Takashita R, Kodama S, Ikemura K, Opoku G, Watanabe S, Furumatsu T, Yamada H, Ando M, et al. Distribution and Incorporation of Extracellular Vesicles into Chondrocytes and Synoviocytes. International Journal of Molecular Sciences. 2024; 25(22):11942. https://doi.org/10.3390/ijms252211942
Chicago/Turabian StyleOhtsuki, Takashi, Ikumi Sato, Ren Takashita, Shintaro Kodama, Kentaro Ikemura, Gabriel Opoku, Shogo Watanabe, Takayuki Furumatsu, Hiroshi Yamada, Mitsuru Ando, and et al. 2024. "Distribution and Incorporation of Extracellular Vesicles into Chondrocytes and Synoviocytes" International Journal of Molecular Sciences 25, no. 22: 11942. https://doi.org/10.3390/ijms252211942
APA StyleOhtsuki, T., Sato, I., Takashita, R., Kodama, S., Ikemura, K., Opoku, G., Watanabe, S., Furumatsu, T., Yamada, H., Ando, M., Akiyoshi, K., Nishida, K., & Hirohata, S. (2024). Distribution and Incorporation of Extracellular Vesicles into Chondrocytes and Synoviocytes. International Journal of Molecular Sciences, 25(22), 11942. https://doi.org/10.3390/ijms252211942