Alzheimer’s Disease as Type 3 Diabetes: Understanding the Link and Implications
Abstract
:1. Introduction
2. Alzheimer’s Disease: Description, Types, and Prevalence in the World
3. Pathogenesis of AD
3.1. Tau Protein Hyperphosphorylation
3.2. Amyloid Beta (Aβ) Deposition
3.3. Influence of Gut Microbiota
3.4. Gene Mutations
3.5. Neuroinflammation
4. The Link Between Alzheimer’s Disease and Diabetes
4.1. Insulin Dysregulation in the Brain
4.2. Accumulation of Amyloid Beta (Aβ)
4.3. Accumulation of Tau Protein
5. Common Risk Factors
5.1. Genetic Aspects
5.2. Oxidative Stress
5.3. Obesity
5.4. Hypertension
5.5. Poor Diet
5.6. Sedentary Lifestyle
5.7. Alcohol and Tobacco Use
6. Treatment
6.1. Pharmacological Interventions
6.2. Non-Pharmacological Interventions
7. Conclusions and Future Prospects
7.1. Pathophysiology and Emerging Insights
7.2. Biomarkers and Diagnostic Challenges
7.3. Therapeutic Targets and Challenges
7.4. Addressing Disease Heterogeneity
- Detailed molecular studies to identify key regulatory pathways linking metabolic disorders to AD;
- Investigation of early biomarkers for both AD and T2DM, focusing on brain insulin resistance and glucose metabolism;
- Long-term cohort and population-based studies to assess lifestyle factors and their impact on disease progression;
- International research collaborations to standardize methodologies and enhance global understanding of AD.
Author Contributions
Funding
Conflicts of Interest
Abbreviations
AD | Alzheimer’s disease |
ABCA7 | ATP-binding cassette sub-family A member 7 |
AChEIs | acetylcholinesterase inhibitors |
ACTB | actin beta |
ADAM10 | disintegrin and metalloproteinase domain-containing protein 10 |
AET | aerobic exercise training |
AGEs | advanced glycation end products |
AKT | protein kinase B |
AMPK | adenosine monophosphate-activated protein kinase |
APLP1/2 | amyloid precursor-like protein 1/2 |
APOE | apolipoprotein E |
APOE-ε4 | apolipoprotein E epsilon 4 |
APP | amyloid precursor protein |
ATP | adenosine triphosphate |
Aβ | amyloid-beta |
BACE1 | beta-site amyloid precursor protein cleaving enzyme 1 |
BBB | blood–brain barrier |
BDNF | brain-derived neurotrophic factor |
BIN1 | bridging integrator 1 |
BIR | brain insulin resistance |
BMI | body mass index |
CD2AP | cortactin-CD2-associated protein |
CDK5 | cyclin-dependent kinase 5 |
CDKN1A | cyclin-dependent kinase inhibitor 1A |
cFDR | conditional false discovery rate |
CLU | clusterin |
CNS | central nervous system |
COL22A1 | collagen type XXII alpha 1 chain |
CR1 | complement receptor type 1 |
CRP | C-reactive protein |
CSF | cerebrospinal fluid |
CT | computed tomography |
CVD | cardiovascular disease |
DASH | dietary approaches to stop hypertension |
DEG | differentially expressed gene |
dTg | double transgenic |
EIF4A | eukaryotic initiation factor 4A |
EOAD | early-onset AD |
EPHA1 | ephrin type-A receptor 1 |
FADH2 | flavin adenine dinucleotide |
FAD | familial Alzheimer’s disease |
FDA | food and drug administration |
GABA | γ-aminobutyric acid |
GFAP | glial fibrillary acidic protein |
GI | glycemic index |
GLUT1/3/4 | glucose transporter protein 1/3/4 |
GLP-1 | glucagon-like peptide-1 |
GSK-3β | glycogen synthase kinase 3 beta |
GWASs | genome-wide association studies |
HbA1c | hemoglobin A1c |
HIIT | high-intensity interval training |
IDE | insulin-degrading enzyme |
IGF-1/2 | insulin-like growth factor 1/2 |
IL-1β | interleukin 1 beta |
IL-9 | interleukin 9 |
IRβ | insulin receptor beta |
IRS-(1) | insulin receptor substrate-(1) |
KD | ketogenic diet |
LOAD | late-onset AD |
LTP | long-term synaptic potentiation |
MAPK | mitogen-activated protein kinase |
MAPT | microtubule-associated protein tau |
MCI | mild cognitive impairment |
MCT | medium-chain triglyceride |
MCP-1 | monocyte chemoattractant protein-1 |
MeDS | Mediterranean diet |
MICT | moderate-intensity continuous training |
MIND | Mediterranean-DASH intervention for neurodegenerative delay |
miRNAs | microRNAs |
MMSE | mini-mental state examination |
MRI | magnetic resonance imaging |
MTBD | microtubule-binding domain |
mTOR | mechanistic target of rapamycin |
NADH | reduced nicotinamide adenine dinucleotide |
NDUFAF6 | nicotinamide adenine dinucleotide + reduced ubiquinone oxidoreductase complex assembly factor 6 |
NF-κB | nuclear factor kappa B |
NFTs | neurofibrillary tangles |
NMF | non-negative matrix factorization |
NMDA | N-methyl-D-aspartate |
PA | physical activity |
PDK1 | 3-phosphoinositide-dependent protein kinase 1 |
PDPKs | proline-directed protein kinases |
PET | positron emission tomography |
PHFs | paired helical filaments |
PI3K | phosphatidylinositol 3-kinase |
PICALM | phosphatidylinositol binding clathrin assembly protein |
PIP3 | phosphatidylinositol 3,4,5-trisphosphate |
PP2A | protein phosphatase 2 A |
PPAR-γ | peroxisome proliferator-activated receptor gamma |
PRR | proline-rich region |
PSEN1 | presenilin 1 |
PSEN2 | presenilin 2 |
PTP1B | protein tyrosine phosphatase 1B |
RAGEs | receptors for AGEs |
REM | rapid eye movement |
ROS | reactive oxygen species |
S6K | ribosomal protein S6 kinase |
sAPPα | soluble APP alpha |
SCFAs | short-chain fatty acids |
Ser473 | serine 473 |
SERINC3 | serine incorporator 3 |
SFs | straight filaments |
SGLT-2 | sodium–glucose cotransporter-2 |
SLC1A1 | solute carrier family 1 member 1 |
SNPs | single nucleotide polymorphisms |
SORL1 | sortilin-related receptor 1 |
T2DM | type 2 diabetes mellitus |
Thr308 | threonine 308 |
TMA | trimethylamine |
TMAO | trimethylamine N-oxide |
TNF-α | tumor necrosis factor-alpha |
TOMM40 | translocase of outer mitochondrial membrane 40 |
TP53INP1 | tumor protein p53 inducible nuclear protein 1 |
TZDs | Thiazolidinediones |
UDP-GlcNAc | uridine diphosphate N-acetylglucosamine |
VIM | Vimentin |
WHO | world health organization |
YOAD | young-onset AD |
ZMIZ1 | zinc finger MIZ-type containing 1 |
β-CTF | β-carboxy-terminal fragment |
References
- Kerwin, D.; Abdelnour, C.; Caramelli, P.; Ogunniyi, A.; Shi, J.; Zetterberg, H.; Traber, M. Alzheimer’s Disease Diagnosis and Management: Perspectives from around the World. Alzheimer’s Dement. Diagn. Assess. Dis. Monit. 2022, 14, e12334. [Google Scholar] [CrossRef]
- Li, X.; Feng, X.; Sun, X.; Hou, N.; Han, F.; Liu, Y. Global, Regional, and National Burden of Alzheimer’s Disease and Other Dementias, 1990–2019. Front. Aging Neurosci. 2022, 14, 937486. [Google Scholar] [CrossRef] [PubMed]
- Scheltens, P.; De Strooper, B.; Kivipelto, M.; Holstege, H.; Chételat, G.; Teunissen, C.E.; Cummings, J.; van der Flier, W.M. Alzheimer’s Disease. Lancet 2021, 397, 1577–1590. [Google Scholar] [CrossRef] [PubMed]
- Andrade-Guerrero, J.; Santiago-Balmaseda, A.; Jeronimo-Aguilar, P.; Vargas-Rodríguez, I.; Cadena-Suárez, A.R.; Sánchez-Garibay, C.; Pozo-Molina, G.; Méndez-Catalá, C.F.; Cardenas-Aguayo, M.-D.-C.; Diaz-Cintra, S.; et al. Alzheimer’s Disease: An Updated Overview of Its Genetics. Int. J. Mol. Sci. 2023, 24, 3754. [Google Scholar] [CrossRef] [PubMed]
- Seo, D.-O.; Holtzman, D.M. Current Understanding of the Alzheimer’s Disease-Associated Microbiome and Therapeutic Strategies. Exp. Mol. Med. 2024, 56, 86–94. [Google Scholar] [CrossRef]
- Johnson, K.A.; Fox, N.C.; Sperling, R.A.; Klunk, W.E. Brain Imaging in Alzheimer Disease. Cold Spring Harb. Perspect. Med. 2012, 2, a006213. [Google Scholar] [CrossRef]
- Jia, J.; Ning, Y.; Chen, M.; Wang, S.; Yang, H.; Li, F.; Ding, J.; Li, Y.; Zhao, B.; Lyu, J.; et al. Biomarker Changes during 20 Years Preceding Alzheimer’s Disease. N. Engl. J. Med. 2024, 390, 712–722. [Google Scholar] [CrossRef]
- Varadharajan, A.; Davis, A.D.; Ghosh, A.; Jagtap, T.; Xavier, A.; Menon, A.J.; Roy, D.; Gandhi, S.; Gregor, T. Guidelines for Pharmacotherapy in Alzheimer’s Disease—A Primer on FDA-Approved Drugs. J. Neurosci. Rural. Pract. 2023, 14, 566–573. [Google Scholar] [CrossRef]
- Rashad, A.; Rasool, A.; Shaheryar, M.; Sarfraz, A.; Sarfraz, Z.; Robles-Velasco, K.; Cherrez-Ojeda, I. Donanemab for Alzheimer’s Disease: A Systematic Review of Clinical Trials. Healthcare 2022, 11, 32. [Google Scholar] [CrossRef]
- Saeedi, P.; Petersohn, I.; Salpea, P.; Malanda, B.; Karuranga, S.; Unwin, N.; Colagiuri, S.; Guariguata, L.; Motala, A.A.; Ogurtsova, K.; et al. Global and Regional Diabetes Prevalence Estimates for 2019 and Projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th Edition. Diabetes Res. Clin. Pract. 2019, 157, 107843. [Google Scholar] [CrossRef]
- Hossain, M.J.; Al-Mamun, M.; Islam, M.R. Diabetes Mellitus, the Fastest Growing Global Public Health Concern: Early Detection Should Be Focused. Health Sci. Rep. 2024, 7, e2004. [Google Scholar] [CrossRef] [PubMed]
- Kruczkowska, W.; Gałęziewska, J.; Kciuk, M.; Gielecińska, A.; Płuciennik, E.; Pasieka, Z.; Zhao, L.-Y.; Yu, Y.-J.; Kołat, D.; Kałuzińska-Kołat, Ż. Senescent Adipocytes and Type 2 Diabetes—Current Knowledge and Perspective Concepts. Biomol. Concepts 2024, 15, 20220046. [Google Scholar] [CrossRef] [PubMed]
- Xue, M.; Xu, W.; Ou, Y.-N.; Cao, X.-P.; Tan, M.-S.; Tan, L.; Yu, J.-T. Diabetes Mellitus and Risks of Cognitive Impairment and Dementia: A Systematic Review and Meta-Analysis of 144 Prospective Studies. Ageing Res. Rev. 2019, 55, 100944. [Google Scholar] [CrossRef] [PubMed]
- Cao, F.; Yang, F.; Li, J.; Guo, W.; Zhang, C.; Gao, F.; Sun, X.; Zhou, Y.; Zhang, W. The Relationship between Diabetes and the Dementia Risk: A Meta-Analysis. Diabetol. Metab. Syndr. 2024, 16, 101. [Google Scholar] [CrossRef] [PubMed]
- Reinke, C.; Buchmann, N.; Fink, A.; Tegeler, C.; Demuth, I.; Doblhammer, G. Diabetes Duration and the Risk of Dementia: A Cohort Study Based on German Health Claims Data. Age Ageing 2022, 51, afab231. [Google Scholar] [CrossRef]
- Yen, F.-S.; Wei, J.C.-C.; Yip, H.-T.; Hwu, C.-M.; Hsu, C.-C. Diabetes, Hypertension, and the Risk of Dementia. J. Alzheimer’s Dis. 2022, 89, 323–333. [Google Scholar] [CrossRef]
- MacKnight, C.; Rockwood, K.; Awalt, E.; McDowell, I. Diabetes Mellitus and the Risk of Dementia, Alzheimer’s Disease and Vascular Cognitive Impairment in the Canadian Study of Health and Aging. Dement. Geriatr. Cogn. Disord. 2002, 14, 77–83. [Google Scholar] [CrossRef]
- Kadohara, K.; Sato, I.; Kawakami, K. Diabetes Mellitus and Risk of Early-Onset Alzheimer’s Disease: A Population-Based Case-Control Study. Eur. J. Neurol. 2017, 24, 944–949. [Google Scholar] [CrossRef]
- Hassing, L.B.; Johansson, B.; Nilsson, S.E.; Berg, S.; Pedersen, N.L.; Gatz, M.; McClearn, G. Diabetes Mellitus Is a Risk Factor for Vascular Dementia, but Not for Alzheimer’s Disease: A Population-Based Study of the Oldest Old. Int. Psychogeriatr. 2002, 14, 239–248. [Google Scholar] [CrossRef]
- Caberlotto, L.; Nguyen, T.-P.; Lauria, M.; Priami, C.; Rimondini, R.; Maioli, S.; Cedazo-Minguez, A.; Sita, G.; Morroni, F.; Corsi, M.; et al. Cross-Disease Analysis of Alzheimer’s Disease and Type-2 Diabetes Highlights the Role of Autophagy in the Pathophysiology of Two Highly Comorbid Diseases. Sci. Rep. 2019, 9, 3965. [Google Scholar] [CrossRef]
- Yoon, J.H.; Hwang, J.; Son, S.U.; Choi, J.; You, S.-W.; Park, H.; Cha, S.-Y.; Maeng, S. How Can Insulin Resistance Cause Alzheimer’s Disease? Int. J. Mol. Sci. 2023, 24, 3506. [Google Scholar] [CrossRef] [PubMed]
- Kellar, D.; Craft, S. Brain Insulin Resistance in Alzheimer’s Disease and Related Disorders: Mechanisms and Therapeutic Approaches. Lancet Neurol. 2020, 19, 758–766. [Google Scholar] [CrossRef] [PubMed]
- Alzheimer, A.; Stelzmann, R.A.; Schnitzlein, H.N.; Murtagh, F.R. An English Translation of Alzheimer’s 1907 Paper, “Uber Eine Eigenartige Erkankung Der Hirnrinde”. Clin. Anat. 1995, 8, 429–431. [Google Scholar] [CrossRef] [PubMed]
- Holtzman, D.M.; Morris, J.C.; Goate, A.M. Alzheimer’s Disease: The Challenge of the Second Century. Sci. Transl. Med. 2011, 3, 77sr1. [Google Scholar] [CrossRef] [PubMed]
- Reitz, C.; Rogaeva, E.; Beecham, G.W. Late-Onset vs Nonmendelian Early-Onset Alzheimer Disease: A Distinction without a Difference? Neurol. Genet. 2020, 6, e512. [Google Scholar] [CrossRef]
- Mendez, M.F. Early-Onset Alzheimer Disease and Its Variants. Continuum 2019, 25, 34–51. [Google Scholar] [CrossRef]
- Harvey, R.J.; Skelton-Robinson, M.; Rossor, M.N. The Prevalence and Causes of Dementia in People under the Age of 65 Years. J. Neurol. Neurosurg. Psychiatry 2003, 74, 1206–1209. [Google Scholar] [CrossRef]
- Firdaus, Z.; Li, X. Unraveling the Genetic Landscape of Neurological Disorders: Insights into Pathogenesis, Techniques for Variant Identification, and Therapeutic Approaches. Int. J. Mol. Sci. 2024, 25, 2320. [Google Scholar] [CrossRef]
- Chen, D.; Wang, X.; Huang, T.; Jia, J. Sleep and Late-Onset Alzheimer’s Disease: Shared Genetic Risk Factors, Drug Targets, Molecular Mechanisms, and Causal Effects. Front. Genet. 2022, 13, 794202. [Google Scholar] [CrossRef]
- Zhang, Q.; Sidorenko, J.; Couvy-Duchesne, B.; Marioni, R.E.; Wright, M.J.; Goate, A.M.; Marcora, E.; Huang, K.-L.; Porter, T.; Laws, S.M.; et al. Risk Prediction of Late-Onset Alzheimer’s Disease Implies an Oligogenic Architecture. Nat. Commun. 2020, 11, 4799. [Google Scholar] [CrossRef]
- Karve, S.J.; Ringman, J.M.; Lee, A.S.; Juarez, K.O.; Mendez, M.F. Comparison of Clinical Characteristics between Familial and Non-Familial Early Onset Alzheimer’s Disease. J. Neurol. 2012, 259, 2182–2188. [Google Scholar] [CrossRef] [PubMed]
- Chávez-Gutiérrez, L.; Szaruga, M. Mechanisms of Neurodegeneration—Insights from Familial Alzheimer’s Disease. Semin. Cell Dev. Biol. 2020, 105, 75–85. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.-C.; Xing, A.; Tan, M.-S.; Tan, L.; Yu, J.-T. The Role of MAPT in Neurodegenerative Diseases: Genetics, Mechanisms and Therapy. Mol. Neurobiol. 2016, 53, 4893–4904. [Google Scholar] [CrossRef] [PubMed]
- Nizynski, B.; Dzwolak, W.; Nieznanski, K. Amyloidogenesis of Tau Protein. Protein Sci. 2017, 26, 2126–2150. [Google Scholar] [CrossRef] [PubMed]
- Buchholz, S.; Zempel, H. The Six Brain-Specific TAU Isoforms and Their Role in Alzheimer’s Disease and Related Neurodegenerative Dementia Syndromes. Alzheimers Dement. 2024, 20, 3606–3628. [Google Scholar] [CrossRef]
- Barbier, P.; Zejneli, O.; Martinho, M.; Lasorsa, A.; Belle, V.; Smet-Nocca, C.; Tsvetkov, P.O.; Devred, F.; Landrieu, I. Role of Tau as a Microtubule-Associated Protein: Structural and Functional Aspects. Front. Aging Neurosci. 2019, 11, 204. [Google Scholar] [CrossRef]
- Alonso, A.D.; Grundke-Iqbal, I.; Barra, H.S.; Iqbal, K. Abnormal Phosphorylation of Tau and the Mechanism of Alzheimer Neurofibrillary Degeneration: Sequestration of Microtubule-Associated Proteins 1 and 2 and the Disassembly of Microtubules by the Abnormal Tau. Proc. Natl. Acad. Sci. USA 1997, 94, 298–303. [Google Scholar] [CrossRef]
- Basheer, N.; Smolek, T.; Hassan, I.; Liu, F.; Iqbal, K.; Zilka, N.; Novak, P. Does Modulation of Tau Hyperphosphorylation Represent a Reasonable Therapeutic Strategy for Alzheimer’s Disease? From Preclinical Studies to the Clinical Trials. Mol. Psychiatry 2023, 28, 2197–2214. [Google Scholar] [CrossRef]
- Gong, C.-X.; Iqbal, K. Hyperphosphorylation of Microtubule-Associated Protein Tau: A Promising Therapeutic Target for Alzheimer Disease. Curr. Med. Chem. 2008, 15, 2321–2328. [Google Scholar] [CrossRef]
- Muralidar, S.; Ambi, S.V.; Sekaran, S.; Thirumalai, D.; Palaniappan, B. Role of Tau Protein in Alzheimer’s Disease: The Prime Pathological Player. Int. J. Biol. Macromol. 2020, 163, 1599–1617. [Google Scholar] [CrossRef]
- Chen, G.-F.; Xu, T.-H.; Yan, Y.; Zhou, Y.-R.; Jiang, Y.; Melcher, K.; Xu, H.E. Amyloid Beta: Structure, Biology and Structure-Based Therapeutic Development. Acta Pharmacol. Sin. 2017, 38, 1205–1235. [Google Scholar] [CrossRef] [PubMed]
- Hampel, H.; Hardy, J.; Blennow, K.; Chen, C.; Perry, G.; Kim, S.H.; Villemagne, V.L.; Aisen, P.; Vendruscolo, M.; Iwatsubo, T.; et al. The Amyloid-β Pathway in Alzheimer’s Disease. Mol. Psychiatry 2021, 26, 5481–5503. [Google Scholar] [CrossRef] [PubMed]
- Hammond, T.C.; Xing, X.; Wang, C.; Ma, D.; Nho, K.; Crane, P.K.; Elahi, F.; Ziegler, D.A.; Liang, G.; Cheng, Q.; et al. β-Amyloid and Tau Drive Early Alzheimer’s Disease Decline While Glucose Hypometabolism Drives Late Decline. Commun. Biol. 2020, 3, 352. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Zimbrón, L.F.; Rivas-Arancibia, S. Deciphering an Interplay of Proteins Associated with Amyloid β 1-42 Peptide and Molecular Mechanisms of Alzheimer’s Disease. Rev. Neurosci. 2014, 25, 773–783. [Google Scholar] [CrossRef] [PubMed]
- Sehar, U.; Rawat, P.; Reddy, A.P.; Kopel, J.; Reddy, P.H. Amyloid Beta in Aging and Alzheimer’s Disease. Int. J. Mol. Sci. 2022, 23, 12924. [Google Scholar] [CrossRef]
- Ono, K.; Watanabe-Nakayama, T. Aggregation and Structure of Amyloid β-Protein. Neurochem. Int. 2021, 151, 105208. [Google Scholar] [CrossRef]
- Sideris, D.I.; Danial, J.S.H.; Emin, D.; Ruggeri, F.S.; Xia, Z.; Zhang, Y.P.; Lobanova, E.; Dakin, H.; De, S.; Miller, A.; et al. Soluble Amyloid Beta-Containing Aggregates Are Present throughout the Brain at Early Stages of Alzheimer’s Disease. Brain Commun. 2021, 3, fcab147. [Google Scholar] [CrossRef]
- Yang, Y.-H.; Huang, L.-C.; Hsieh, S.-W.; Huang, L.-J. Dynamic Blood Concentrations of Aβ1-40 and Aβ1-42 in Alzheimer’s Disease. Front. Cell Dev. Biol. 2020, 8, 768. [Google Scholar] [CrossRef]
- de Vos, W.M.; de Vos, E.A.J. Role of the Intestinal Microbiome in Health and Disease: From Correlation to Causation. Nutr. Rev. 2012, 70 (Suppl. 1), S45–S56. [Google Scholar] [CrossRef]
- Rinninella, E.; Raoul, P.; Cintoni, M.; Franceschi, F.; Miggiano, G.A.D.; Gasbarrini, A.; Mele, M.C. What Is the Healthy Gut Microbiota Composition? A Changing Ecosystem across Age, Environment, Diet, and Diseases. Microorganisms 2019, 7, 14. [Google Scholar] [CrossRef]
- Liu, S.; Gao, J.; Zhu, M.; Liu, K.; Zhang, H.-L. Gut Microbiota and Dysbiosis in Alzheimer’s Disease: Implications for Pathogenesis and Treatment. Mol. Neurobiol. 2020, 57, 5026–5043. [Google Scholar] [CrossRef] [PubMed]
- Loh, J.S.; Mak, W.Q.; Tan, L.K.S.; Ng, C.X.; Chan, H.H.; Yeow, S.H.; Foo, J.B.; Ong, Y.S.; How, C.W.; Khaw, K.Y. Microbiota-Gut-Brain Axis and Its Therapeutic Applications in Neurodegenerative Diseases. Signal Transduct. Target. Ther. 2024, 9, 37. [Google Scholar] [CrossRef] [PubMed]
- Carabotti, M.; Scirocco, A.; Maselli, M.A.; Severi, C. The Gut-Brain Axis: Interactions between Enteric Microbiota, Central and Enteric Nervous Systems. Ann. Gastroenterol. 2015, 28, 203–209. [Google Scholar] [PubMed]
- Chen, Y.; Xu, J.; Chen, Y. Regulation of Neurotransmitters by the Gut Microbiota and Effects on Cognition in Neurological Disorders. Nutrients 2021, 13, 2099. [Google Scholar] [CrossRef] [PubMed]
- Góralczyk-Bińkowska, A.; Szmajda-Krygier, D.; Kozłowska, E. The Microbiota-Gut-Brain Axis in Psychiatric Disorders. Int. J. Mol. Sci. 2022, 23, 11245. [Google Scholar] [CrossRef]
- Vagnerová, K.; Vodička, M.; Hermanová, P.; Ergang, P.; Šrůtková, D.; Klusoňová, P.; Balounová, K.; Hudcovic, T.; Pácha, J. Interactions Between Gut Microbiota and Acute Restraint Stress in Peripheral Structures of the Hypothalamic-Pituitary-Adrenal Axis and the Intestine of Male Mice. Front. Immunol. 2019, 10, 2655. [Google Scholar] [CrossRef]
- Bravo, J.A.; Julio-Pieper, M.; Forsythe, P.; Kunze, W.; Dinan, T.G.; Bienenstock, J.; Cryan, J.F. Communication between Gastrointestinal Bacteria and the Nervous System. Curr. Opin. Pharmacol. 2012, 12, 667–672. [Google Scholar] [CrossRef]
- Murray, E.R.; Kemp, M.; Nguyen, T.T. The Microbiota-Gut-Brain Axis in Alzheimer’s Disease: A Review of Taxonomic Alterations and Potential Avenues for Interventions. Arch. Clin. Neuropsychol. 2022, 37, 595–607. [Google Scholar] [CrossRef]
- Li, Z.-L.; Ma, H.-T.; Wang, M.; Qian, Y.-H. Research Trend of Microbiota-Gut-Brain Axis in Alzheimer’s Disease Based on CiteSpace (2012–2021): A Bibliometrics Analysis of 608 Articles. Front. Aging Neurosci. 2022, 14, 1036120. [Google Scholar] [CrossRef]
- Hou, K.; Wu, Z.-X.; Chen, X.-Y.; Wang, J.-Q.; Zhang, D.; Xiao, C.; Zhu, D.; Koya, J.B.; Wei, L.; Li, J.; et al. Microbiota in Health and Diseases. Signal Transduct. Target. Ther. 2022, 7, 135. [Google Scholar] [CrossRef]
- Al Bataineh, M.T.; Künstner, A.; Dash, N.R.; Alsafar, H.S.; Ragab, M.; Schmelter, F.; Sina, C.; Busch, H.; Ibrahim, S.M. Uncovering the Relationship between Gut Microbial Dysbiosis, Metabolomics, and Dietary Intake in Type 2 Diabetes Mellitus and in Healthy Volunteers: A Multi-Omics Analysis. Sci. Rep. 2023, 13, 17943. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Ahn, E.H.; Kang, S.S.; Liu, X.; Alam, A.; Ye, K. Gut Dysbiosis Contributes to Amyloid Pathology, Associated with C/EBPβ/AEP Signaling Activation in Alzheimer’s Disease Mouse Model. Sci. Adv. 2020, 6, eaba0466. [Google Scholar] [CrossRef] [PubMed]
- Vogt, N.M.; Kerby, R.L.; Dill-McFarland, K.A.; Harding, S.J.; Merluzzi, A.P.; Johnson, S.C.; Carlsson, C.M.; Asthana, S.; Zetterberg, H.; Blennow, K.; et al. Gut Microbiome Alterations in Alzheimer’s Disease. Sci. Rep. 2017, 7, 13537. [Google Scholar] [CrossRef] [PubMed]
- O’Callaghan, A.; van Sinderen, D. Bifidobacteria and Their Role as Members of the Human Gut Microbiota. Front. Microbiol. 2016, 7, 925. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.; Xu, X.; Fu, D.; Gu, Y.; Fan, R.; Yi, H.; He, X.; Wang, C.; Ouyang, B.; Zhao, P.; et al. Butyrate-Producing Eubacterium Rectale Suppresses Lymphomagenesis by Alleviating the TNF-Induced TLR4/MyD88/NF-κB Axis. Cell Host Microbe 2022, 30, 1139–1150.e7. [Google Scholar] [CrossRef]
- Hung, C.-C.; Chang, C.-C.; Huang, C.-W.; Nouchi, R.; Cheng, C.-H. Gut Microbiota in Patients with Alzheimer’s Disease Spectrum: A Systematic Review and Meta-Analysis. Aging 2022, 14, 477–496. [Google Scholar] [CrossRef]
- Dominy, S.S.; Lynch, C.; Ermini, F.; Benedyk, M.; Marczyk, A.; Konradi, A.; Nguyen, M.; Haditsch, U.; Raha, D.; Griffin, C.; et al. Porphyromonas Gingivalis in Alzheimer’s Disease Brains: Evidence for Disease Causation and Treatment with Small-Molecule Inhibitors. Sci. Adv. 2019, 5, eaau3333. [Google Scholar] [CrossRef]
- Leblhuber, F.; Ehrlich, D.; Steiner, K.; Geisler, S.; Fuchs, D.; Lanser, L.; Kurz, K. The Immunopathogenesis of Alzheimer’s Disease Is Related to the Composition of Gut Microbiota. Nutrients 2021, 13, 361. [Google Scholar] [CrossRef]
- Eicher, T.P.; Mohajeri, M.H. Overlapping Mechanisms of Action of Brain-Active Bacteria and Bacterial Metabolites in the Pathogenesis of Common Brain Diseases. Nutrients 2022, 14, 2661. [Google Scholar] [CrossRef]
- Giau, V.V.; Wu, S.Y.; Jamerlan, A.; An, S.S.A.; Kim, S.Y.; Hulme, J. Gut Microbiota and Their Neuroinflammatory Implications in Alzheimer’s Disease. Nutrients 2018, 10, 1765. [Google Scholar] [CrossRef]
- Dissanayaka, D.M.S.; Jayasena, V.; Rainey-Smith, S.R.; Martins, R.N.; Fernando, W.M.A.D.B. The Role of Diet and Gut Microbiota in Alzheimer’s Disease. Nutrients 2024, 16, 412. [Google Scholar] [CrossRef] [PubMed]
- Santos-Lozano, A.; Pareja-Galeano, H.; Sanchis-Gomar, F.; Quindós-Rubial, M.; Fiuza-Luces, C.; Cristi-Montero, C.; Emanuele, E.; Garatachea, N.; Lucia, A. Physical Activity and Alzheimer Disease: A Protective Association. Mayo Clin. Proc. 2016, 91, 999–1020. [Google Scholar] [CrossRef] [PubMed]
- Lambert, J.-C.; Ramirez, A.; Grenier-Boley, B.; Bellenguez, C. Step by Step: Towards a Better Understanding of the Genetic Architecture of Alzheimer’s Disease. Mol. Psychiatry 2023, 28, 2716–2727. [Google Scholar] [CrossRef] [PubMed]
- Bellenguez, C.; Grenier-Boley, B.; Lambert, J.-C. Genetics of Alzheimer’s Disease: Where We Are, and Where We Are Going. Curr. Opin. Neurobiol. 2020, 61, 40–48. [Google Scholar] [CrossRef]
- Goate, A.; Chartier-Harlin, M.C.; Mullan, M.; Brown, J.; Crawford, F.; Fidani, L.; Giuffra, L.; Haynes, A.; Irving, N.; James, L. Segregation of a Missense Mutation in the Amyloid Precursor Protein Gene with Familial Alzheimer’s Disease. Nature 1991, 349, 704–706. [Google Scholar] [CrossRef]
- Liu, Y.; Xiao, X.; Liu, H.; Liao, X.; Zhou, Y.; Weng, L.; Zhou, L.; Liu, X.; Bi, X.-Y.; Xu, T.; et al. Clinical Characteristics and Genotype-Phenotype Correlation Analysis of Familial Alzheimer’s Disease Patients with Pathogenic/Likely Pathogenic Amyloid Protein Precursor Mutations. Front. Aging Neurosci. 2022, 14, 1013295. [Google Scholar] [CrossRef]
- Barber, I.S.; García-Cárdenas, J.M.; Sakdapanichkul, C.; Deacon, C.; Zapata Erazo, G.; Guerreiro, R.; Bras, J.; Hernandez, D.; Singleton, A.; Guetta-Baranes, T.; et al. Screening Exons 16 and 17 of the Amyloid Precursor Protein Gene in Sporadic Early-Onset Alzheimer’s Disease. Neurobiol. Aging 2016, 39, 220.e1–220.e7. [Google Scholar] [CrossRef]
- Li, N.-M.; Liu, K.-F.; Qiu, Y.-J.; Zhang, H.-H.; Nakanishi, H.; Qing, H. Mutations of Beta-Amyloid Precursor Protein Alter the Consequence of Alzheimer’s Disease Pathogenesis. Neural Regen. Res. 2019, 14, 658–665. [Google Scholar] [CrossRef]
- Lanoiselée, H.-M.; Nicolas, G.; Wallon, D.; Rovelet-Lecrux, A.; Lacour, M.; Rousseau, S.; Richard, A.-C.; Pasquier, F.; Rollin-Sillaire, A.; Martinaud, O.; et al. APP, PSEN1, and PSEN2 Mutations in Early-Onset Alzheimer Disease: A Genetic Screening Study of Familial and Sporadic Cases. PLoS Med. 2017, 14, e1002270. [Google Scholar] [CrossRef]
- Course, M.M.; Gudsnuk, K.; Keene, C.D.; Bird, T.D.; Jayadev, S.; Valdmanis, P.N. Aberrant Splicing of PSEN2, but Not PSEN1, in Individuals with Sporadic Alzheimer’s Disease. Brain 2023, 146, 507–518. [Google Scholar] [CrossRef]
- Kabir, M.T.; Uddin, M.S.; Setu, J.R.; Ashraf, G.M.; Bin-Jumah, M.N.; Abdel-Daim, M.M. Exploring the Role of PSEN Mutations in the Pathogenesis of Alzheimer’s Disease. Neurotox. Res. 2020, 38, 833–849. [Google Scholar] [CrossRef] [PubMed]
- Bagaria, J.; Bagyinszky, E.; An, S.S.A. Genetics, Functions, and Clinical Impact of Presenilin-1 (PSEN1) Gene. Int. J. Mol. Sci. 2022, 23, 10970. [Google Scholar] [CrossRef] [PubMed]
- Do, H.N.; Devkota, S.; Bhattarai, A.; Wolfe, M.S.; Miao, Y. Effects of Presenilin-1 Familial Alzheimer’s Disease Mutations on γ-Secretase Activation for Cleavage of Amyloid Precursor Protein. Commun. Biol. 2023, 6, 174. [Google Scholar] [CrossRef] [PubMed]
- Hernandez-Sapiens, M.A.; Reza-Zaldívar, E.E.; Márquez-Aguirre, A.L.; Gómez-Pinedo, U.; Matias-Guiu, J.; Cevallos, R.R.; Mateos-Díaz, J.C.; Sánchez-González, V.J.; Canales-Aguirre, A.A. Presenilin Mutations and Their Impact on Neuronal Differentiation in Alzheimer’s Disease. Neural Regen. Res. 2022, 17, 31–37. [Google Scholar] [CrossRef] [PubMed]
- Petit, D.; Fernández, S.G.; Zoltowska, K.M.; Enzlein, T.; Ryan, N.S.; O’Connor, A.; Szaruga, M.; Hill, E.; Vandenberghe, R.; Fox, N.C.; et al. Aβ Profiles Generated by Alzheimer’s Disease Causing PSEN1 Variants Determine the Pathogenicity of the Mutation and Predict Age at Disease Onset. Mol. Psychiatry 2022, 27, 2821–2832. [Google Scholar] [CrossRef]
- Flowers, S.A.; Rebeck, G.W. APOE in the Normal Brain. Neurobiol. Dis. 2020, 136, 104724. [Google Scholar] [CrossRef]
- Raulin, A.-C.; Doss, S.V.; Trottier, Z.A.; Ikezu, T.C.; Bu, G.; Liu, C.-C. ApoE in Alzheimer’s Disease: Pathophysiology and Therapeutic Strategies. Mol. Neurodegener. 2022, 17, 72. [Google Scholar] [CrossRef]
- Husain, M.A.; Laurent, B.; Plourde, M. APOE and Alzheimer’s Disease: From Lipid Transport to Physiopathology and Therapeutics. Front. Neurosci. 2021, 15, 630502. [Google Scholar] [CrossRef]
- Yassine, H.N.; Finch, C.E. APOE Alleles and Diet in Brain Aging and Alzheimer’s Disease. Front. Aging Neurosci. 2020, 12, 150. [Google Scholar] [CrossRef]
- Kulas, J.A.; Weigel, T.K.; Ferris, H.A. Insulin Resistance and Impaired Lipid Metabolism as a Potential Link between Diabetes and Alzheimer’s Disease. Drug Dev. Res. 2020, 81, 194–205. [Google Scholar] [CrossRef]
- Belloy, M.E.; Andrews, S.J.; Le Guen, Y.; Cuccaro, M.; Farrer, L.A.; Napolioni, V.; Greicius, M.D. APOE Genotype and Alzheimer Disease Risk Across Age, Sex, and Population Ancestry. JAMA Neurol. 2023, 80, 1284–1294. [Google Scholar] [CrossRef] [PubMed]
- Yamazaki, Y.; Zhao, N.; Caulfield, T.R.; Liu, C.-C.; Bu, G. Apolipoprotein E and Alzheimer Disease: Pathobiology and Targeting Strategies. Nat. Rev. Neurol. 2019, 15, 501–518. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Giraldo, M.; González-Reyes, R.E.; Ramírez-Guerrero, S.; Bonilla-Trilleras, C.E.; Guardo-Maya, S.; Nava-Mesa, M.O. Astrocytes as a Therapeutic Target in Alzheimer’s Disease-Comprehensive Review and Recent Developments. Int. J. Mol. Sci. 2022, 23, 13630. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Ta, Q.T.H.; Nguyen, T.K.O.; Nguyen, T.T.D.; Giau, V.V. Type 3 Diabetes and Its Role Implications in Alzheimer’s Disease. Int. J. Mol. Sci. 2020, 21, 3165. [Google Scholar] [CrossRef] [PubMed]
- Athanasaki, A.; Melanis, K.; Tsantzali, I.; Stefanou, M.I.; Ntymenou, S.; Paraskevas, S.G.; Kalamatianos, T.; Boutati, E.; Lambadiari, V.; Voumvourakis, K.I.; et al. Type 2 Diabetes Mellitus as a Risk Factor for Alzheimer’s Disease: Review and Meta-Analysis. Biomedicines 2022, 10, 778. [Google Scholar] [CrossRef] [PubMed]
- Jayaraj, R.L.; Azimullah, S.; Beiram, R. Diabetes as a Risk Factor for Alzheimer’s Disease in the Middle East and Its Shared Pathological Mediators. Saudi J. Biol. Sci. 2020, 27, 736–750. [Google Scholar] [CrossRef]
- Antal, B.; McMahon, L.P.; Sultan, S.F.; Lithen, A.; Wexler, D.J.; Dickerson, B.; Ratai, E.M.; Mujica-Parodi, L.R. Type 2 Diabetes Mellitus Accelerates Brain Aging and Cognitive Decline: Complementary Findings from UK Biobank and Meta-Analyses. eLife 2022, 11, e73138. [Google Scholar] [CrossRef]
- Tuligenga, R.H.; Dugravot, A.; Tabák, A.G.; Elbaz, A.; Brunner, E.J.; Kivimäki, M.; Singh-Manoux, A. Midlife Type 2 Diabetes and Poor Glycaemic Control as Risk Factors for Cognitive Decline in Early Old Age: A Post-Hoc Analysis of the Whitehall II Cohort Study. Lancet Diabetes Endocrinol. 2014, 2, 228–235. [Google Scholar] [CrossRef]
- Kleinridders, A.; Ferris, H.A.; Cai, W.; Kahn, C.R. Insulin Action in Brain Regulates Systemic Metabolism and Brain Function. Diabetes 2014, 63, 2232–2243. [Google Scholar] [CrossRef]
- Butterfield, D.A.; Halliwell, B. Oxidative Stress, Dysfunctional Glucose Metabolism and Alzheimer Disease. Nat. Rev. Neurosci. 2019, 20, 148–160. [Google Scholar] [CrossRef]
- Cholerton, B.; Baker, L.D.; Craft, S. Insulin Resistance and Pathological Brain Ageing. Diabet. Med. 2011, 28, 1463–1475. [Google Scholar] [CrossRef] [PubMed]
- Ferrario, C.R.; Reagan, L.P. Insulin-Mediated Synaptic Plasticity in the CNS: Anatomical, Functional and Temporal Contexts. Neuropharmacology 2018, 136, 182–191. [Google Scholar] [CrossRef] [PubMed]
- Cimini, F.A.; Perluigi, M.; Barchetta, I.; Cavallo, M.G.; Barone, E. Role of Biliverdin Reductase A in the Regulation of Insulin Signaling in Metabolic and Neurodegenerative Diseases: An Update. Int. J. Mol. Sci. 2022, 23, 5574. [Google Scholar] [CrossRef] [PubMed]
- Ruud, J.; Steculorum, S.M.; Brüning, J.C. Neuronal Control of Peripheral Insulin Sensitivity and Glucose Metabolism. Nat. Commun. 2017, 8, 15259. [Google Scholar] [CrossRef] [PubMed]
- Spinelli, M.; Fusco, S.; Grassi, C. Brain Insulin Resistance and Hippocampal Plasticity: Mechanisms and Biomarkers of Cognitive Decline. Front. Neurosci. 2019, 13, 788. [Google Scholar] [CrossRef]
- Banks, W.A.; Owen, J.B.; Erickson, M.A. Insulin in the Brain: There and Back Again. Pharmacol. Ther. 2012, 136, 82–93. [Google Scholar] [CrossRef]
- Wang, Z.; Tang, X.; Swaminathan, S.K.; Kandimalla, K.K.; Kalari, K.R. Mapping the Dynamics of Insulin-Responsive Pathways in the Blood-Brain Barrier Endothelium Using Time-Series Transcriptomics Data. NPJ Syst. Biol. Appl. 2022, 8, 29. [Google Scholar] [CrossRef]
- Stanley, M.; Macauley, S.L.; Holtzman, D.M. Changes in Insulin and Insulin Signaling in Alzheimer’s Disease: Cause or Consequence? J. Exp. Med. 2016, 213, 1375–1385. [Google Scholar] [CrossRef]
- Leclerc, M.; Bourassa, P.; Tremblay, C.; Caron, V.; Sugère, C.; Emond, V.; Bennett, D.A.; Calon, F. Cerebrovascular Insulin Receptors Are Defective in Alzheimer’s Disease. Brain 2023, 146, 75–90. [Google Scholar] [CrossRef]
- Koepsell, H. Glucose Transporters in Brain in Health and Disease. Pflug. Arch. 2020, 472, 1299–1343. [Google Scholar] [CrossRef]
- Cai, M.; Wan, J.; Cai, K.; Li, S.; Du, X.; Song, H.; Sun, W.; Hu, J. The Mitochondrial Quality Control System: A New Target for Exercise Therapeutic Intervention in the Treatment of Brain Insulin Resistance-Induced Neurodegeneration in Obesity. Int. J. Obes. 2024, 48, 749–763. [Google Scholar] [CrossRef] [PubMed]
- Rhea, E.M.; Leclerc, M.; Yassine, H.N.; Capuano, A.W.; Tong, H.; Petyuk, V.A.; Macauley, S.L.; Fioramonti, X.; Carmichael, O.; Calon, F.; et al. State of the Science on Brain Insulin Resistance and Cognitive Decline Due to Alzheimer’s Disease. Aging Dis. 2024, 15, 1688–1725. [Google Scholar] [CrossRef] [PubMed]
- Jolivalt, C.G.; Lee, C.A.; Beiswenger, K.K.; Smith, J.L.; Orlov, M.; Torrance, M.A.; Masliah, E. Defective Insulin Signaling Pathway and Increased Glycogen Synthase Kinase-3 Activity in the Brain of Diabetic Mice: Parallels with Alzheimer’s Disease and Correction by Insulin. J. Neurosci. Res. 2008, 86, 3265–3274. [Google Scholar] [CrossRef] [PubMed]
- Ho, L.; Yemul, S.; Knable, L.; Katsel, P.; Zhao, R.; Haroutunian, V.; Pasinetti, G.M. Insulin Receptor Expression and Activity in the Brains of Nondiabetic Sporadic Alzheimer’s Disease Cases. Int. J. Alzheimers Dis. 2012, 2012, 321280. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Zhong, C. Decoding Alzheimer’s Disease from Perturbed Cerebral Glucose Metabolism: Implications for Diagnostic and Therapeutic Strategies. Prog. Neurobiol. 2013, 108, 21–43. [Google Scholar] [CrossRef]
- Gibson, G.E.; Hirsch, J.A.; Fonzetti, P.; Jordan, B.D.; Cirio, R.T.; Elder, J. Vitamin B1 (Thiamine) and Dementia. Ann. N. Y. Acad. Sci. 2016, 1367, 21–30. [Google Scholar] [CrossRef]
- Zhu, Y.; Shan, X.; Yuzwa, S.A.; Vocadlo, D.J. The Emerging Link between O-GlcNAc and Alzheimer Disease. J. Biol. Chem. 2014, 289, 34472–34481. [Google Scholar] [CrossRef]
- Sędzikowska, A.; Szablewski, L. Insulin and Insulin Resistance in Alzheimer’s Disease. Int. J. Mol. Sci. 2021, 22, 9987. [Google Scholar] [CrossRef]
- Wei, Z.; Koya, J.; Reznik, S.E. Insulin Resistance Exacerbates Alzheimer Disease via Multiple Mechanisms. Front. Neurosci. 2021, 15, 687157. [Google Scholar] [CrossRef]
- Arnold, S.E.; Arvanitakis, Z.; Macauley-Rambach, S.L.; Koenig, A.M.; Wang, H.-Y.; Ahima, R.S.; Craft, S.; Gandy, S.; Buettner, C.; Stoeckel, L.E.; et al. Brain Insulin Resistance in Type 2 Diabetes and Alzheimer Disease: Concepts and Conundrums. Nat. Rev. Neurol. 2018, 14, 168–181. [Google Scholar] [CrossRef]
- Berlanga-Acosta, J.; Guillén-Nieto, G.; Rodríguez-Rodríguez, N.; Bringas-Vega, M.L.; García-Del-Barco-Herrera, D.; Berlanga-Saez, J.O.; García-Ojalvo, A.; Valdés-Sosa, M.J.; Valdés-Sosa, P.A. Insulin Resistance at the Crossroad of Alzheimer Disease Pathology: A Review. Front. Endocrinol. 2020, 11, 560375. [Google Scholar] [CrossRef] [PubMed]
- Ball, B.K.; Kuhn, M.K.; Fleeman Bechtel, R.M.; Proctor, E.A.; Brubaker, D.K. Differential Responses of Primary Neuron-Secreted MCP-1 and IL-9 to Type 2 Diabetes and Alzheimer’s Disease-Associated Metabolites. Sci. Rep. 2024, 14, 12743. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Liu, F.; Grundke-Iqbal, I.; Iqbal, K.; Gong, C.X. Deficient Brain Insulin Signalling Pathway in Alzheimer’s Disease and Diabetes. J. Pathol. 2011, 225, 54–62. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Chen, C.; Hua, S.; Liao, H.; Wang, M.; Xiong, Y.; Cao, F. An Updated Meta-Analysis of Cohort Studies: Diabetes and Risk of Alzheimer’s Disease. Diabetes Res. Clin. Pract. 2017, 124, 41–47. [Google Scholar] [CrossRef] [PubMed]
- Yoon, S.-S.; Jo, S.A. Mechanisms of Amyloid-β Peptide Clearance: Potential Therapeutic Targets for Alzheimer’s Disease. Biomol. Ther. 2012, 20, 245–255. [Google Scholar] [CrossRef]
- Wang, D.; Chen, F.; Han, Z.; Yin, Z.; Ge, X.; Lei, P. Relationship Between Amyloid-β Deposition and Blood-Brain Barrier Dysfunction in Alzheimer’s Disease. Front. Cell. Neurosci. 2021, 15, 695479. [Google Scholar] [CrossRef]
- Tian, Y.; Jing, G.; Zhang, M. Insulin-Degrading Enzyme: Roles and Pathways in Ameliorating Cognitive Impairment Associated with Alzheimer’s Disease and Diabetes. Ageing Res. Rev. 2023, 90, 101999. [Google Scholar] [CrossRef]
- Al-Kuraishy, H.M.; Jabir, M.S.; Al-Gareeb, A.I.; Albuhadily, A.K.; Albukhaty, S.; Sulaiman, G.M.; Batiha, G.E.-S. Evaluation and Targeting of Amyloid Precursor Protein (APP)/Amyloid Beta (Aβ) Axis in Amyloidogenic and Non-Amyloidogenic Pathways: A Time Outside the Tunnel. Ageing Res. Rev. 2023, 92, 102119. [Google Scholar] [CrossRef]
- Kandimalla, R.; Thirumala, V.; Reddy, P.H. Is Alzheimer’s Disease a Type 3 Diabetes? A Critical Appraisal. Biochim. Biophys. Acta Mol. Basis Dis. 2017, 1863, 1078–1089. [Google Scholar] [CrossRef]
- Razani, E.; Pourbagheri-Sigaroodi, A.; Safaroghli-Azar, A.; Zoghi, A.; Shanaki-Bavarsad, M.; Bashash, D. The PI3K/Akt Signaling Axis in Alzheimer’s Disease: A Valuable Target to Stimulate or Suppress? Cell Stress. Chaperones 2021, 26, 871–887. [Google Scholar] [CrossRef]
- Kumar, M.; Bansal, N. Implications of Phosphoinositide 3-Kinase-Akt (PI3K-Akt) Pathway in the Pathogenesis of Alzheimer’s Disease. Mol. Neurobiol. 2022, 59, 354–385. [Google Scholar] [CrossRef] [PubMed]
- Gabbouj, S.; Ryhänen, S.; Marttinen, M.; Wittrahm, R.; Takalo, M.; Kemppainen, S.; Martiskainen, H.; Tanila, H.; Haapasalo, A.; Hiltunen, M.; et al. Altered Insulin Signaling in Alzheimer’s Disease Brain—Special Emphasis on PI3K-Akt Pathway. Front. Neurosci. 2019, 13, 629. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Huang, N.-Q.; Yan, F.; Jin, H.; Zhou, S.-Y.; Shi, J.-S.; Jin, F. Diabetes Mellitus and Alzheimer’s Disease: GSK-3β as a Potential Link. Behav. Brain Res. 2018, 339, 57–65. [Google Scholar] [CrossRef] [PubMed]
- Hamzé, R.; Delangre, E.; Tolu, S.; Moreau, M.; Janel, N.; Bailbé, D.; Movassat, J. Type 2 Diabetes Mellitus and Alzheimer’s Disease: Shared Molecular Mechanisms and Potential Common Therapeutic Targets. Int. J. Mol. Sci. 2022, 23, 15287. [Google Scholar] [CrossRef] [PubMed]
- Amin, A.M.; Mostafa, H.; Khojah, H.M.J. Insulin Resistance in Alzheimer’s Disease: The Genetics and Metabolomics Links. Clin. Chim. Acta 2023, 539, 215–236. [Google Scholar] [CrossRef]
- Burillo, J.; Marqués, P.; Jiménez, B.; González-Blanco, C.; Benito, M.; Guillén, C. Insulin Resistance and Diabetes Mellitus in Alzheimer’s Disease. Cells 2021, 10, 1236. [Google Scholar] [CrossRef]
- Troncone, L.; Luciani, M.; Coggins, M.; Wilker, E.H.; Ho, C.-Y.; Codispoti, K.E.; Frosch, M.P.; Kayed, R.; Del Monte, F. Aβ Amyloid Pathology Affects the Hearts of Patients With Alzheimer’s Disease: Mind the Heart. J. Am. Coll. Cardiol. 2016, 68, 2395–2407. [Google Scholar] [CrossRef]
- Kauwe, G.; Tracy, T.E. Amyloid Beta Emerges from below the Neck to Disable the Brain. PLoS Biol. 2021, 19, e3001388. [Google Scholar] [CrossRef]
- Anwar, M.M.; Mabrouk, A.A. Hepatic and Cardiac Implications of Increased Toxic Amyloid-Beta Serum Level in Lipopolysaccharide-Induced Neuroinflammation in Rats: New Insights into Alleviating Therapeutic Interventions. Inflammopharmacology 2023, 31, 1257–1277. [Google Scholar] [CrossRef]
- Wijesekara, N.; Ahrens, R.; Sabale, M.; Wu, L.; Ha, K.; Verdile, G.; Fraser, P.E. Amyloid-β and Islet Amyloid Pathologies Link Alzheimer’s Disease and Type 2 Diabetes in a Transgenic Model. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 2017, 31, 5409–5418. [Google Scholar] [CrossRef]
- Moreno-Gonzalez, I.; Edwards Iii, G.; Salvadores, N.; Shahnawaz, M.; Diaz-Espinoza, R.; Soto, C. Molecular Interaction between Type 2 Diabetes and Alzheimer’s Disease through Cross-Seeding of Protein Misfolding. Mol. Psychiatry 2017, 22, 1327–1334. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Meng, L.; Wang, Z.; Peng, Q.; Chen, G.; Xiong, J.; Zhang, Z. Islet Amyloid Polypeptide Cross-Seeds Tau and Drives the Neurofibrillary Pathology in Alzheimer’s Disease. Mol. Neurodegener. 2022, 17, 12. [Google Scholar] [CrossRef] [PubMed]
- Duarte, A.I.; Candeias, E.; Alves, I.N.; Mena, D.; Silva, D.F.; Machado, N.J.; Campos, E.J.; Santos, M.S.; Oliveira, C.R.; Moreira, P.I. Liraglutide Protects Against Brain Amyloid-Β1-42 Accumulation in Female Mice with Early Alzheimer’s Disease-Like Pathology by Partially Rescuing Oxidative/Nitrosative Stress and Inflammation. Int. J. Mol. Sci. 2020, 21, 1746. [Google Scholar] [CrossRef] [PubMed]
- Carranza-Naval, M.J.; Del Marco, A.; Hierro-Bujalance, C.; Alves-Martinez, P.; Infante-Garcia, C.; Vargas-Soria, M.; Herrera, M.; Barba-Cordoba, B.; Atienza-Navarro, I.; Lubian-Lopez, S.; et al. Liraglutide Reduces Vascular Damage, Neuronal Loss, and Cognitive Impairment in a Mixed Murine Model of Alzheimer’s Disease and Type 2 Diabetes. Front. Aging Neurosci. 2021, 13, 741923. [Google Scholar] [CrossRef] [PubMed]
- Zhou, M.; Chen, S.; Peng, P.; Gu, Z.; Yu, J.; Zhao, G.; Deng, Y. Dulaglutide Ameliorates STZ Induced AD-like Impairment of Learning and Memory Ability by Modulating Hyperphosphorylation of Tau and NFs through GSK3β. Biochem. Biophys. Res. Commun. 2019, 511, 154–160. [Google Scholar] [CrossRef]
- Cai, H.-Y.; Yang, J.-T.; Wang, Z.-J.; Zhang, J.; Yang, W.; Wu, M.-N.; Qi, J.-S. Lixisenatide Reduces Amyloid Plaques, Neurofibrillary Tangles and Neuroinflammation in an APP/PS1/Tau Mouse Model of Alzheimer’s Disease. Biochem. Biophys. Res. Commun. 2018, 495, 1034–1040. [Google Scholar] [CrossRef]
- Cukierman-Yaffe, T.; Gerstein, H.C.; Colhoun, H.M.; Diaz, R.; García-Pérez, L.E.; Lakshmanan, M.; Bethel, A.; Xavier, D.; Probstfield, J.; Riddle, M.C.; et al. Effect of Dulaglutide on Cognitive Impairment in Type 2 Diabetes: An Exploratory Analysis of the REWIND Trial. Lancet Neurol. 2020, 19, 582–590. [Google Scholar] [CrossRef]
- Kellar, D.; Register, T.; Lockhart, S.N.; Aisen, P.; Raman, R.; Rissman, R.A.; Brewer, J.; Craft, S. Intranasal Insulin Modulates Cerebrospinal Fluid Markers of Neuroinflammation in Mild Cognitive Impairment and Alzheimer’s Disease: A Randomized Trial. Sci. Rep. 2022, 12, 1346. [Google Scholar] [CrossRef]
- Craft, S.; Baker, L.D.; Montine, T.J.; Minoshima, S.; Watson, G.S.; Claxton, A.; Arbuckle, M.; Callaghan, M.; Tsai, E.; Plymate, S.R.; et al. Intranasal Insulin Therapy for Alzheimer Disease and Amnestic Mild Cognitive Impairment: A Pilot Clinical Trial. Arch. Neurol. 2012, 69, 29–38. [Google Scholar] [CrossRef]
- Swaminathan, S.K.; Ahlschwede, K.M.; Sarma, V.; Curran, G.L.; Omtri, R.S.; Decklever, T.; Lowe, V.J.; Poduslo, J.F.; Kandimalla, K.K. Insulin Differentially Affects the Distribution Kinetics of Amyloid Beta 40 and 42 in Plasma and Brain. J. Cereb. Blood Flow. Metab. 2018, 38, 904–918. [Google Scholar] [CrossRef]
- Liu, Z.; Li, T.; Li, P.; Wei, N.; Zhao, Z.; Liang, H.; Ji, X.; Chen, W.; Xue, M.; Wei, J. The Ambiguous Relationship of Oxidative Stress, Tau Hyperphosphorylation, and Autophagy Dysfunction in Alzheimer’s Disease. Oxid. Med. Cell Longev. 2015, 2015, 352723. [Google Scholar] [CrossRef] [PubMed]
- Rawat, P.; Sehar, U.; Bisht, J.; Selman, A.; Culberson, J.; Reddy, P.H. Phosphorylated Tau in Alzheimer’s Disease and Other Tauopathies. Int. J. Mol. Sci. 2022, 23, 12841. [Google Scholar] [CrossRef] [PubMed]
- Madhusudhanan, J.; Suresh, G.; Devanathan, V. Neurodegeneration in Type 2 Diabetes: Alzheimer’s as a Case Study. Brain Behav. 2020, 10, e01577. [Google Scholar] [CrossRef] [PubMed]
- Qu, M.; Zuo, L.; Zhang, M.; Cheng, P.; Guo, Z.; Yang, J.; Li, C.; Wu, J. High Glucose Induces Tau Hyperphosphorylation in Hippocampal Neurons via Inhibition of ALKBH5-Mediated Dgkh m6A Demethylation: A Potential Mechanism for Diabetic Cognitive Dysfunction. Cell Death Dis. 2023, 14, 385. [Google Scholar] [CrossRef] [PubMed]
- Planel, E.; Miyasaka, T.; Launey, T.; Chui, D.-H.; Tanemura, K.; Sato, S.; Murayama, O.; Ishiguro, K.; Tatebayashi, Y.; Takashima, A. Alterations in Glucose Metabolism Induce Hypothermia Leading to Tau Hyperphosphorylation through Differential Inhibition of Kinase and Phosphatase Activities: Implications for Alzheimer’s Disease. J. Neurosci. 2004, 24, 2401–2411. [Google Scholar] [CrossRef]
- Sato, N.; Morishita, R. The Roles of Lipid and Glucose Metabolism in Modulation of β-Amyloid, Tau, and Neurodegeneration in the Pathogenesis of Alzheimer Disease. Front. Aging Neurosci. 2015, 7, 199. [Google Scholar] [CrossRef]
- Rajmohan, R.; Reddy, P.H. Amyloid-Beta and Phosphorylated Tau Accumulations Cause Abnormalities at Synapses of Alzheimer’s Disease Neurons. J. Alzheimers Dis. 2017, 57, 975–999. [Google Scholar] [CrossRef]
- Balczon, R.; Lin, M.T.; Voth, S.; Nelson, A.R.; Schupp, J.C.; Wagener, B.M.; Pittet, J.-F.; Stevens, T. Lung Endothelium, Tau, and Amyloids in Health and Disease. Physiol. Rev. 2024, 104, 533–587. [Google Scholar] [CrossRef]
- Li, W.; Tiedt, S.; Lo, E.H. Tau in the Pancreas: Understanding the Link between Type 2 Diabetes Mellitus and Alzheimer’s Disease. Signal Transduct. Target. Ther. 2023, 8, 447. [Google Scholar] [CrossRef]
- Balczon, R.; Pittet, J.-F.; Wagener, B.M.; Moser, S.A.; Voth, S.; Vorhees, C.V.; Williams, M.T.; Bridges, J.P.; Alvarez, D.F.; Koloteva, A.; et al. Infection-Induced Endothelial Amyloids Impair Memory. FASEB J. 2019, 33, 10300–10314. [Google Scholar] [CrossRef]
- Lin, M.T.; Balczon, R.; Pittet, J.-F.; Wagener, B.M.; Moser, S.A.; Morrow, K.A.; Voth, S.; Francis, C.M.; Leavesley, S.; Bell, J.; et al. Nosocomial Pneumonia Elicits an Endothelial Proteinopathy: Evidence for a Source of Neurotoxic Amyloids in Critically Ill Patients. Am. J. Respir. Crit. Care Med. 2018, 198, 1575–1578. [Google Scholar] [CrossRef] [PubMed]
- Scott, A.M.; Jager, A.C.; Gwin, M.; Voth, S.; Balczon, R.; Stevens, T.; Lin, M.T. Pneumonia-Induced Endothelial Amyloids Reduce Dendritic Spine Density in Brain Neurons. Sci. Rep. 2020, 10, 9327. [Google Scholar] [CrossRef] [PubMed]
- Mangiafico, S.P.; Tuo, Q.-Z.; Li, X.-L.; Liu, Y.; Haralambous, C.; Ding, X.-L.; Ayton, S.; Wang, Q.; Laybutt, D.R.; Chan, J.Y.; et al. Tau Suppresses Microtubule-Regulated Pancreatic Insulin Secretion. Mol. Psychiatry 2023, 28, 3982–3993. [Google Scholar] [CrossRef] [PubMed]
- Motta, C.; Assogna, M.; Bonomi, C.G.; Mascolo, A.P.; De Lucia, V.; Semprini, R.; Mercuri, N.B.; Koch, G.; Martorana, A. Diabetes Mellitus Contributes to Higher Cerebrospinal Fluid Tau Levels Selectively in Alzheimer’s Disease Patients with the APOE4 Genotype. Eur. J. Neurol. 2021, 28, 3965–3971. [Google Scholar] [CrossRef] [PubMed]
- Ito, Y.; Takeda, S.; Nakajima, T.; Oyama, A.; Takeshita, H.; Miki, K.; Takami, Y.; Takeya, Y.; Shimamura, M.; Rakugi, H.; et al. High-Fat Diet-Induced Diabetic Conditions Exacerbate Cognitive Impairment in a Mouse Model of Alzheimer’s Disease Via a Specific Tau Phosphorylation Pattern. J. Prev. Alzheimers Dis. 2024, 11, 138–148. [Google Scholar] [CrossRef]
- Lu, Y.; Jiang, X.; Liu, S.; Li, M. Changes in Cerebrospinal Fluid Tau and β-Amyloid Levels in Diabetic and Prediabetic Patients: A Meta-Analysis. Front. Aging Neurosci. 2018, 10, 271. [Google Scholar] [CrossRef]
- Chatterjee, S.; Mudher, A. Alzheimer’s Disease and Type 2 Diabetes: A Critical Assessment of the Shared Pathological Traits. Front. Neurosci. 2018, 12, 383. [Google Scholar] [CrossRef]
- Chung, Y.; Lee, H. the Alzheimer’s Disease Neuroimaging Initiative Correlation between Alzheimer’s Disease and Type 2 Diabetes Using Non-Negative Matrix Factorization. Sci. Rep. 2021, 11, 15265. [Google Scholar] [CrossRef]
- Afzal, M.; Alharbi, K.S.; Alzarea, S.I.; Alyamani, N.M.; Kazmi, I.; Güven, E. Revealing Genetic Links of Type 2 Diabetes That Lead to the Development of Alzheimer’s Disease. Heliyon 2023, 9, e12202. [Google Scholar] [CrossRef]
- Wang, X.-F.; Lin, X.; Li, D.-Y.; Zhou, R.; Greenbaum, J.; Chen, Y.-C.; Zeng, C.-P.; Peng, L.-P.; Wu, K.-H.; Ao, Z.-X.; et al. Linking Alzheimer’s Disease and Type 2 Diabetes: Novel Shared Susceptibility Genes Detected by cFDR Approach. J. Neurol. Sci. 2017, 380, 262–272. [Google Scholar] [CrossRef]
- Wojsiat, J.; Zoltowska, K.M.; Laskowska-Kaszub, K.; Wojda, U. Oxidant/Antioxidant Imbalance in Alzheimer’s Disease: Therapeutic and Diagnostic Prospects. Oxid. Med. Cell Longev. 2018, 2018, 6435861. [Google Scholar] [CrossRef] [PubMed]
- Choi, B.-R.; Cho, W.-H.; Kim, J.; Lee, H.J.; Chung, C.; Jeon, W.K.; Han, J.-S. Increased Expression of the Receptor for Advanced Glycation End Products in Neurons and Astrocytes in a Triple Transgenic Mouse Model of Alzheimer’s Disease. Exp. Mol. Med. 2014, 46, e75. [Google Scholar] [CrossRef] [PubMed]
- Veselov, I.M.; Vinogradova, D.V.; Maltsev, A.V.; Shevtsov, P.N.; Spirkova, E.A.; Bachurin, S.O.; Shevtsova, E.F. Mitochondria and Oxidative Stress as a Link between Alzheimer’s Disease and Diabetes Mellitus. Int. J. Mol. Sci. 2023, 24, 14450. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Wang, W.; Chen, H.-L.; Zhang, H.-Y.; Zhang, N.-X. Interplay between Alzheimer’s Disease and Global Glucose Metabolism Revealed by the Metabolic Profile Alterations of Pancreatic Tissue and Serum in APP/PS1 Transgenic Mice. Acta Pharmacol. Sin. 2019, 40, 1259–1268. [Google Scholar] [CrossRef]
- Sultana, R.; Perluigi, M.; Butterfield, D.A. Oxidatively Modified Proteins in Alzheimer’s Disease (AD), Mild Cognitive Impairment and Animal Models of AD: Role of Abeta in Pathogenesis. Acta Neuropathol. 2009, 118, 131–150. [Google Scholar] [CrossRef] [PubMed]
- Chornenkyy, Y.; Wang, W.-X.; Wei, A.; Nelson, P.T. Alzheimer’s Disease and Type 2 Diabetes Mellitus Are Distinct Diseases with Potential Overlapping Metabolic Dysfunction Upstream of Observed Cognitive Decline. Brain Pathol. 2019, 29, 3–17. [Google Scholar] [CrossRef] [PubMed]
- Chandrasekaran, P.; Weiskirchen, R. The Role of Obesity in Type 2 Diabetes Mellitus-An Overview. Int. J. Mol. Sci. 2024, 25, 1882. [Google Scholar] [CrossRef]
- Schnurr, T.M.; Jakupović, H.; Carrasquilla, G.D.; Ängquist, L.; Grarup, N.; Sørensen, T.I.A.; Tjønneland, A.; Overvad, K.; Pedersen, O.; Hansen, T.; et al. Obesity, Unfavourable Lifestyle and Genetic Risk of Type 2 Diabetes: A Case-Cohort Study. Diabetologia 2020, 63, 1324–1332. [Google Scholar] [CrossRef]
- Flores-Cordero, J.A.; Pérez-Pérez, A.; Jiménez-Cortegana, C.; Alba, G.; Flores-Barragán, A.; Sánchez-Margalet, V. Obesity as a Risk Factor for Dementia and Alzheimer’s Disease: The Role of Leptin. Int. J. Mol. Sci. 2022, 23, 5202. [Google Scholar] [CrossRef]
- Lloret, A.; Monllor, P.; Esteve, D.; Cervera-Ferri, A.; Lloret, M.-A. Obesity as a Risk Factor for Alzheimer’s Disease: Implication of Leptin and Glutamate. Front. Neurosci. 2019, 13, 508. [Google Scholar] [CrossRef]
- Morys, F.; Potvin, O.; Zeighami, Y.; Vogel, J.; Lamontagne-Caron, R.; Duchesne, S.; Dagher, A. Alzheimer’s Disease Neuroimaging Initiative Obesity-Associated Neurodegeneration Pattern Mimics Alzheimer’s Disease in an Observational Cohort Study. J. Alzheimers Dis. 2023, 91, 1059–1071. [Google Scholar] [CrossRef] [PubMed]
- Cho, S.H.; Jang, M.; Ju, H.; Kang, M.J.; Yun, J.M.; Yun, J.W. Association of Late-Life Body Mass Index with the Risk of Alzheimer Disease: A 10-Year Nationwide Population-Based Cohort Study. Sci. Rep. 2022, 12, 15298. [Google Scholar] [CrossRef] [PubMed]
- Pegueroles, J.; Jiménez, A.; Vilaplana, E.; Montal, V.; Carmona-Iragui, M.; Pané, A.; Alcolea, D.; Videla, L.; Casajoana, A.; Clarimón, J.; et al. Obesity and Alzheimer’s Disease, Does the Obesity Paradox Really Exist? A Magnetic Resonance Imaging Study. Oncotarget 2018, 9, 34691–34698. [Google Scholar] [CrossRef] [PubMed]
- Malone, J.E.; Elkasaby, M.I.; Lerner, A.J. Effects of Hypertension on Alzheimer’s Disease and Related Disorders. Curr. Hypertens. Rep. 2022, 24, 615–625. [Google Scholar] [CrossRef] [PubMed]
- Yamada, T.; Kimura-Koyanagi, M.; Sakaguchi, K.; Ogawa, W.; Tamori, Y. Obesity and Risk for Its Comorbidities Diabetes, Hypertension, and Dyslipidemia in Japanese Individuals Aged 65 Years. Sci. Rep. 2023, 13, 2346. [Google Scholar] [CrossRef]
- Lennon, M.J.; Koncz, R.; Sachdev, P.S. Hypertension and Alzheimer’s Disease: Is the Picture Any Clearer? Curr. Opin. Psychiatry 2021, 34, 142–148. [Google Scholar] [CrossRef]
- Tanaka, A.; Node, K. Pathogenic Connection between Hypertension and Type 2 Diabetes: How Do They Mutually Affect Each Other? Hypertens. Res. 2022, 45, 1840–1842. [Google Scholar] [CrossRef]
- Shi, S.; Gouskova, N.; Najafzadeh, M.; Wei, L.-J.; Kim, D.H. Intensive versus Standard Blood Pressure Control in Type 2 Diabetes: A Restricted Mean Survival Time Analysis of a Randomised Controlled Trial. BMJ Open 2021, 11, e050335. [Google Scholar] [CrossRef]
- Canavan, M.; O’Donnell, M.J. Hypertension and Cognitive Impairment: A Review of Mechanisms and Key Concepts. Front. Neurol. 2022, 13, 821135. [Google Scholar] [CrossRef]
- Ungvari, Z.; Toth, P.; Tarantini, S.; Prodan, C.I.; Sorond, F.; Merkely, B.; Csiszar, A. Hypertension-Induced Cognitive Impairment: From Pathophysiology to Public Health. Nat. Rev. Nephrol. 2021, 17, 639–654. [Google Scholar] [CrossRef]
- Lennon, M.J.; Makkar, S.R.; Crawford, J.D.; Sachdev, P.S. Midlife Hypertension and Alzheimer’s Disease: A Systematic Review and Meta-Analysis. J. Alzheimers Dis. 2019, 71, 307–316. [Google Scholar] [CrossRef] [PubMed]
- Eglit, G.M.L.; Weigand, A.J.; Nation, D.A.; Bondi, M.W.; Bangen, K.J. Hypertension and Alzheimer’s Disease: Indirect Effects through Circle of Willis Atherosclerosis. Brain Commun. 2020, 2, fcaa114. [Google Scholar] [CrossRef] [PubMed]
- Gabin, J.M.; Tambs, K.; Saltvedt, I.; Sund, E.; Holmen, J. Association between Blood Pressure and Alzheimer Disease Measured up to 27 Years Prior to Diagnosis: The HUNT Study. Alzheimers Res. Ther. 2017, 9, 37. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.J.; Lee, J.-Y.; Han, K.; Kim, D.H.; Cho, H.; Kim, K.J.; Kang, E.S.; Cha, B.-S.; Lee, Y.-H.; Park, S. Blood Pressure Levels and Risks of Dementia: A Nationwide Study of 4.5 Million People. Hypertension 2022, 79, 218–229. [Google Scholar] [CrossRef] [PubMed]
- Lennon, M.J.; Lipnicki, D.M.; Lam, B.C.P.; Crawford, J.D.; Schutte, A.E.; Peters, R.; Rydberg-Sterner, T.; Najar, J.; Skoog, I.; Riedel-Heller, S.G.; et al. Blood Pressure, Antihypertensive Use, and Late-Life Alzheimer and Non-Alzheimer Dementia Risk: An Individual Participant Data Meta-Analysis. Neurology 2024, 103, e209715. [Google Scholar] [CrossRef]
- Li, Z.; Li, S.; Xiao, Y.; Zhong, T.; Yu, X.; Wang, L. Nutritional Intervention for Diabetes Mellitus with Alzheimer’s Disease. Front. Nutr. 2022, 9, 1046726. [Google Scholar] [CrossRef]
- Silbert, R.; Salcido-Montenegro, A.; Rodriguez-Gutierrez, R.; Katabi, A.; McCoy, R.G. Hypoglycemia Among Patients with Type 2 Diabetes: Epidemiology, Risk Factors, and Prevention Strategies. Curr. Diabetes Rep. 2018, 18, 53. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, J.; Wang, L.-J.; Lin, H.; Huang, P.-J. Effect of Different Blood Glucose Intervention Plans on Elderly People with Type 2 Diabetes Mellitus Combined with Dementia. Eur. Rev. Med. Pharmacol. Sci. 2017, 21, 2702–2707. [Google Scholar]
- Chester, B.; Babu, J.R.; Greene, M.W.; Geetha, T. The Effects of Popular Diets on Type 2 Diabetes Management. Diabetes Metab. Res. Rev. 2019, 35, e3188. [Google Scholar] [CrossRef]
- Schwingshackl, L.; Chaimani, A.; Hoffmann, G.; Schwedhelm, C.; Boeing, H. A Network Meta-Analysis on the Comparative Efficacy of Different Dietary Approaches on Glycaemic Control in Patients with Type 2 Diabetes Mellitus. Eur. J. Epidemiol. 2018, 33, 157–170. [Google Scholar] [CrossRef]
- Becerra-Tomás, N.; Blanco Mejía, S.; Viguiliouk, E.; Khan, T.; Kendall, C.W.C.; Kahleova, H.; Rahelić, D.; Sievenpiper, J.L.; Salas-Salvadó, J. Mediterranean Diet, Cardiovascular Disease and Mortality in Diabetes: A Systematic Review and Meta-Analysis of Prospective Cohort Studies and Randomized Clinical Trials. Crit. Rev. Food Sci. Nutr. 2020, 60, 1207–1227. [Google Scholar] [CrossRef] [PubMed]
- Mattei, J.; Bigornia, S.J.; Sotos-Prieto, M.; Scott, T.; Gao, X.; Tucker, K.L. The Mediterranean Diet and 2-Year Change in Cognitive Function by Status of Type 2 Diabetes and Glycemic Control. Diabetes Care 2019, 42, 1372–1379. [Google Scholar] [CrossRef] [PubMed]
- Morris, M.C. Nutrition and Risk of Dementia: Overview and Methodological Issues. Ann. N. Y. Acad. Sci. 2016, 1367, 31–37. [Google Scholar] [CrossRef] [PubMed]
- Morris, M.C.; Tangney, C.C.; Wang, Y.; Sacks, F.M.; Bennett, D.A.; Aggarwal, N.T. MIND Diet Associated with Reduced Incidence of Alzheimer’s Disease. Alzheimers Dement. 2015, 11, 1007–1014. [Google Scholar] [CrossRef] [PubMed]
- Wengreen, H.; Munger, R.G.; Cutler, A.; Quach, A.; Bowles, A.; Corcoran, C.; Tschanz, J.T.; Norton, M.C.; Welsh-Bohmer, K.A. Prospective Study of Dietary Approaches to Stop Hypertension- and Mediterranean-Style Dietary Patterns and Age-Related Cognitive Change: The Cache County Study on Memory, Health and Aging. Am. J. Clin. Nutr. 2013, 98, 1263–1271. [Google Scholar] [CrossRef]
- Veech, R.L. The Therapeutic Implications of Ketone Bodies: The Effects of Ketone Bodies in Pathological Conditions: Ketosis, Ketogenic Diet, Redox States, Insulin Resistance, and Mitochondrial Metabolism. Prostaglandins Leukot. Essent. Fat. Acids 2004, 70, 309–319. [Google Scholar] [CrossRef]
- Batch, J.T.; Lamsal, S.P.; Adkins, M.; Sultan, S.; Ramirez, M.N. Advantages and Disadvantages of the Ketogenic Diet: A Review Article. Cureus 2020, 12, e9639. [Google Scholar] [CrossRef]
- Takeishi, J.; Tatewaki, Y.; Nakase, T.; Takano, Y.; Tomita, N.; Yamamoto, S.; Mutoh, T.; Taki, Y. Alzheimer’s Disease and Type 2 Diabetes Mellitus: The Use of MCT Oil and a Ketogenic Diet. Int. J. Mol. Sci. 2021, 22, 12310. [Google Scholar] [CrossRef]
- Abboud, M.; AlAnouti, F.; Georgaki, E.; Papandreou, D. Effect of Ketogenic Diet on Quality of Life in Adults with Chronic Disease: A Systematic Review of Randomized Controlled Trials. Nutrients 2021, 13, 4463. [Google Scholar] [CrossRef]
- Tinguely, D.; Gross, J.; Kosinski, C. Efficacy of Ketogenic Diets on Type 2 Diabetes: A Systematic Review. Curr. Diab Rep. 2021, 21, 32. [Google Scholar] [CrossRef]
- Choy, K.Y.C.; Louie, J.C.Y. The Effects of the Ketogenic Diet for the Management of Type 2 Diabetes Mellitus: A Systematic Review and Meta-Analysis of Recent Studies. Diabetes Metab. Syndr. 2023, 17, 102905. [Google Scholar] [CrossRef] [PubMed]
- Brownlow, M.L.; Benner, L.; D’Agostino, D.; Gordon, M.N.; Morgan, D. Ketogenic Diet Improves Motor Performance but Not Cognition in Two Mouse Models of Alzheimer’s Pathology. PLoS ONE 2013, 8, e75713. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Jiang, C.; Wu, J.; Liu, P.; Deng, X.; Zhang, Y.; Peng, B.; Zhu, Y. Ketogenic Diet Ameliorates Cognitive Impairment and Neuroinflammation in a Mouse Model of Alzheimer’s Disease. CNS Neurosci. Ther. 2022, 28, 580–592. [Google Scholar] [CrossRef] [PubMed]
- Jeong, E.A.; Jeon, B.T.; Shin, H.J.; Kim, N.; Lee, D.H.; Kim, H.J.; Kang, S.S.; Cho, G.J.; Choi, W.S.; Roh, G.S. Ketogenic Diet-Induced Peroxisome Proliferator-Activated Receptor-γ Activation Decreases Neuroinflammation in the Mouse Hippocampus after Kainic Acid-Induced Seizures. Exp. Neurol. 2011, 232, 195–202. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Lu, Y.; Jia, M.; Wang, X.; Zhang, Z.; Hou, Q.; Wang, B. Ketogenic Diet Attenuates Spatial and Item Memory Impairment in Pentylenetetrazol-Kindled Rats. Brain Res. 2016, 1646, 451–458. [Google Scholar] [CrossRef]
- Koh, S.; Dupuis, N.; Auvin, S. Ketogenic Diet and Neuroinflammation. Epilepsy Res. 2020, 167, 106454. [Google Scholar] [CrossRef]
- Yan, F.; Li, N.; Shi, J.; Li, H.; Yue, Y.; Jiao, W.; Wang, N.; Song, Y.; Huo, G.; Li, B. Lactobacillus Acidophilus Alleviates Type 2 Diabetes by Regulating Hepatic Glucose, Lipid Metabolism and Gut Microbiota in Mice. Food Funct. 2019, 10, 5804–5815. [Google Scholar] [CrossRef]
- Mason, S.A.; Parker, L.; van der Pligt, P.; Wadley, G.D. Vitamin C Supplementation for Diabetes Management: A Comprehensive Narrative Review. Free Radic. Biol. Med. 2023, 194, 255–283. [Google Scholar] [CrossRef]
- Hamid, M.; Mansoor, S.; Amber, S.; Zahid, S. A Quantitative Meta-Analysis of Vitamin C in the Pathophysiology of Alzheimer’s Disease. Front. Aging Neurosci. 2022, 14, 970263. [Google Scholar] [CrossRef]
- Basambombo, L.L.; Carmichael, P.-H.; Côté, S.; Laurin, D. Use of Vitamin E and C Supplements for the Prevention of Cognitive Decline. Ann. Pharmacother. 2017, 51, 118–124. [Google Scholar] [CrossRef]
- Brown, C.; Pemberton, S.; Babin, A.; Abdulhameed, N.; Noonan, C.; Brown, M.B.; Banks, W.A.; Rhea, E.M. Insulin Blood-Brain Barrier Transport and Interactions Are Greater Following Exercise in Mice. J. Appl. Physiol. 2022, 132, 824–834. [Google Scholar] [CrossRef] [PubMed]
- De Sousa, R.A.L.; Improta-Caria, A.C. Regulation of microRNAs in Alzheimer’s Disease, Type 2 Diabetes, and Aerobic Exercise Training. Metab. Brain Dis. 2022, 37, 559–580. [Google Scholar] [CrossRef] [PubMed]
- Yoo, J.E.; Han, K.; Kim, B.; Park, S.-H.; Kim, S.M.; Park, H.S.; Nam, G.E. Changes in Physical Activity and the Risk of Dementia in Patients With New-Onset Type 2 Diabetes: A Nationwide Cohort Study. Diabetes Care 2022, 45, 1091–1098. [Google Scholar] [CrossRef] [PubMed]
- Ghahfarrokhi, M.M.; Shirvani, H.; Rahimi, M.; Bazgir, B.; Shamsadini, A.; Sobhani, V. Feasibility and Preliminary Efficacy of Different Intensities of Functional Training in Elderly Type 2 Diabetes Patients with Cognitive Impairment: A Pilot Randomised Controlled Trial. BMC Geriatr. 2024, 24, 71. [Google Scholar] [CrossRef] [PubMed]
- Shabab, S.; Mahmoudabady, M.; Hosseini, M.; Gholamnezhad, Z.; Fouladi, M.; Asghari, A.A. The Effects of Endurance Exercise and Metformin on Memory Impairment Caused by Diabetes. Horm. Mol. Biol. Clin. Investig. 2023, 44, 187–197. [Google Scholar] [CrossRef]
- Zhong, S.; Zhao, B.; Ma, Y.-H.; Sun, Y.; Zhao, Y.-L.; Liu, W.-H.; Ou, Y.-N.; Dong, Q.; Tan, L.; Yu, J.-T. Associations of Physical Activity with Alzheimer’s Disease Pathologies and Cognition: The CABLE Study. J. Alzheimers Dis. 2022, 89, 483–492. [Google Scholar] [CrossRef]
- López-Ortiz, S.; Lista, S.; Valenzuela, P.L.; Pinto-Fraga, J.; Carmona, R.; Caraci, F.; Caruso, G.; Toschi, N.; Emanuele, E.; Gabelle, A.; et al. Effects of Physical Activity and Exercise Interventions on Alzheimer’s Disease: An Umbrella Review of Existing Meta-Analyses. J. Neurol. 2023, 270, 711–725. [Google Scholar] [CrossRef]
- Lautenschlager, N.T.; Cox, K.L.; Flicker, L.; Foster, J.K.; van Bockxmeer, F.M.; Xiao, J.; Greenop, K.R.; Almeida, O.P. Effect of Physical Activity on Cognitive Function in Older Adults at Risk for Alzheimer Disease: A Randomized Trial. JAMA 2008, 300, 1027–1037. [Google Scholar] [CrossRef]
- Zhong, G.; Wang, Y.; Zhang, Y.; Guo, J.J.; Zhao, Y. Smoking Is Associated with an Increased Risk of Dementia: A Meta-Analysis of Prospective Cohort Studies with Investigation of Potential Effect Modifiers. PLoS ONE 2015, 10, e0118333. [Google Scholar] [CrossRef]
- Zhu, P.; Pan, X.-F.; Sheng, L.; Chen, H.; Pan, A. Cigarette Smoking, Diabetes, and Diabetes Complications: Call for Urgent Action. Curr. Diabetes Rep. 2017, 17, 78. [Google Scholar] [CrossRef]
- Restifo, D.; Zhao, C.; Kamel, H.; Iadecola, C.; Parikh, N.S. Impact of Cigarette Smoking and Its Interaction with Hypertension and Diabetes on Cognitive Function in Older Americans. J. Alzheimers Dis. 2022, 90, 1705–1712. [Google Scholar] [CrossRef] [PubMed]
- Durazzo, T.C.; Mattsson, N.; Weiner, M.W. Alzheimer’s Disease Neuroimaging Initiative Smoking and Increased Alzheimer’s Disease Risk: A Review of Potential Mechanisms. Alzheimers Dement. 2014, 10, S122–S145. [Google Scholar] [CrossRef] [PubMed]
- Benito-León, J.; Ghosh, R.; Lapeña-Motilva, J.; Martín-Arriscado, C.; Bermejo-Pareja, F. Association between Cumulative Smoking Exposure and Cognitive Decline in Non-Demented Older Adults: NEDICES Study. Sci. Rep. 2023, 13, 5754. [Google Scholar] [CrossRef] [PubMed]
- Anstey, K.J.; von Sanden, C.; Salim, A.; O’Kearney, R. Smoking as a Risk Factor for Dementia and Cognitive Decline: A Meta-Analysis of Prospective Studies. Am. J. Epidemiol. 2007, 166, 367–378. [Google Scholar] [CrossRef] [PubMed]
- Ohkuma, T.; Iwase, M.; Fujii, H.; Kaizu, S.; Ide, H.; Jodai, T.; Kikuchi, Y.; Idewaki, Y.; Hirakawa, Y.; Nakamura, U.; et al. Dose- and Time-Dependent Association of Smoking and Its Cessation with Glycemic Control and Insulin Resistance in Male Patients with Type 2 Diabetes Mellitus: The Fukuoka Diabetes Registry. PLoS ONE 2015, 10, e0122023. [Google Scholar] [CrossRef]
- Norouzzadeh, M.; Teymoori, F.; Farhadnejad, H.; Moslehi, N.; Mirmiran, P.; Rahideh, S.T.; Azizi, F. Cigarette Smoking and Cardiovascular Disease Incidence and All-Cause Mortality: The Modifying Role of Diet Quality. BMC Public Health 2024, 24, 1021. [Google Scholar] [CrossRef]
- Munukutla, S.; Pan, G.; Deshpande, M.; Thandavarayan, R.A.; Krishnamurthy, P.; Palaniyandi, S.S. Alcohol Toxicity in Diabetes and Its Complications: A Double Trouble? Alcohol. Clin. Exp. Res. 2016, 40, 686–697. [Google Scholar] [CrossRef]
- Howard, A.A.; Arnsten, J.H.; Gourevitch, M.N. Effect of Alcohol Consumption on Diabetes Mellitus: A Systematic Review. Ann. Intern. Med. 2004, 140, 211–219. [Google Scholar] [CrossRef]
- Wang, G.; Li, D.Y.; Vance, D.E.; Li, W. Alcohol Use Disorder as a Risk Factor for Cognitive Impairment. J. Alzheimers Dis. 2023, 94, 899–907. [Google Scholar] [CrossRef]
- Listabarth, S.; Groemer, M.; Waldhoer, T.; Vyssoki, B.; Pruckner, N.; Vyssoki, S.; Glahn, A.; König-Castillo, D.M.; König, D. Cognitive Decline and Alcohol Consumption in the Aging Population-A Longitudinal Analysis of the Survey of Health, Ageing and Retirement in Europe. Eur. Psychiatry 2022, 65, e83. [Google Scholar] [CrossRef]
- Oba-Yamamoto, C.; Takeuchi, J.; Nakamura, A.; Takikawa, R.; Ozaki, A.; Nomoto, H.; Kameda, H.; Cho, K.Y.; Atsumi, T.; Miyoshi, H. Combination of Alcohol and Glucose Consumption as a Risk to Induce Reactive Hypoglycemia. J. Diabetes Investig. 2021, 12, 651–657. [Google Scholar] [CrossRef] [PubMed]
- Koch, M.; Fitzpatrick, A.L.; Rapp, S.R.; Nahin, R.L.; Williamson, J.D.; Lopez, O.L.; DeKosky, S.T.; Kuller, L.H.; Mackey, R.H.; Mukamal, K.J.; et al. Alcohol Consumption and Risk of Dementia and Cognitive Decline Among Older Adults With or Without Mild Cognitive Impairment. JAMA Netw. Open 2019, 2, e1910319. [Google Scholar] [CrossRef] [PubMed]
- Yen, F.-S.; Wang, S.-I.; Lin, S.-Y.; Chao, Y.-H.; Wei, J.C.-C. The Impact of Heavy Alcohol Consumption on Cognitive Impairment in Young Old and Middle Old Persons. J. Transl. Med. 2022, 20, 155. [Google Scholar] [CrossRef] [PubMed]
- Devchand, P.R.; Liu, T.; Altman, R.B.; FitzGerald, G.A.; Schadt, E.E. The Pioglitazone Trek via Human PPAR Gamma: From Discovery to a Medicine at the FDA and Beyond. Front. Pharmacol. 2018, 9, 1093. [Google Scholar] [CrossRef] [PubMed]
- Ha, J.; Choi, D.-W.; Kim, K.J.; Kim, K.Y.; Nam, C.M.; Kim, E. Pioglitazone Use and Reduced Risk of Dementia in Patients With Diabetes Mellitus With a History of Ischemic Stroke. Neurology 2023, 100, e1799–e1811. [Google Scholar] [CrossRef]
- Saunders, A.M.; Burns, D.K.; Gottschalk, W.K. Reassessment of Pioglitazone for Alzheimer’s Disease. Front. Neurosci. 2021, 15, 666958. [Google Scholar] [CrossRef]
- Geldmacher, D.S.; Fritsch, T.; McClendon, M.J.; Landreth, G. A Randomized Pilot Clinical Trial of the Safety of Pioglitazone in Treatment of Patients with Alzheimer Disease. Arch. Neurol. 2011, 68, 45–50. [Google Scholar] [CrossRef]
- Lin, H.-C.; Chung, C.-H.; Chen, L.-C.; Wang, J.-Y.; Chen, C.-C.; Huang, K.-Y.; Tsai, M.-H.; Chien, W.-C.; Lin, H.-A. Pioglitazone Use Increases Risk of Alzheimer’s Disease in Patients with Type 2 Diabetes Receiving Insulin. Sci. Rep. 2023, 13, 6625. [Google Scholar] [CrossRef]
- Kubis-Kubiak, A.; Dyba, A.; Piwowar, A. The Interplay between Diabetes and Alzheimer’s Disease-In the Hunt for Biomarkers. Int. J. Mol. Sci. 2020, 21, 2744. [Google Scholar] [CrossRef]
- Markowicz-Piasecka, M.; Sikora, J.; Szydłowska, A.; Skupień, A.; Mikiciuk-Olasik, E.; Huttunen, K.M. Metformin—A Future Therapy for Neurodegenerative Diseases: Theme: Drug Discovery, Development and Delivery in Alzheimer’s Disease Guest Editor: Davide Brambilla. Pharm. Res. 2017, 34, 2614–2627. [Google Scholar] [CrossRef]
- Adem, M.A.; Decourt, B.; Sabbagh, M.N. Pharmacological Approaches Using Diabetic Drugs Repurposed for Alzheimer’s Disease. Biomedicines 2024, 12, 99. [Google Scholar] [CrossRef] [PubMed]
- Ou, Z.; Kong, X.; Sun, X.; He, X.; Zhang, L.; Gong, Z.; Huang, J.; Xu, B.; Long, D.; Li, J.; et al. Metformin Treatment Prevents Amyloid Plaque Deposition and Memory Impairment in APP/PS1 Mice. Brain Behav. Immun. 2018, 69, 351–363. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhao, J.; Guo, F.-L.; Gao, X.; Xie, X.; Liu, S.; Yang, X.; Yang, X.; Zhang, L.; Ye, Y.; et al. Metformin Ameliorates Synaptic Defects in a Mouse Model of AD by Inhibiting Cdk5 Activity. Front. Cell. Neurosci. 2020, 14, 170. [Google Scholar] [CrossRef] [PubMed]
- Tran, K.L.; Park, Y.I.; Pandya, S.; Muliyil, N.J.; Jensen, B.D.; Huynh, K.; Nguyen, Q.T. Overview of Glucagon-Like Peptide-1 Receptor Agonists for the Treatment of Patients with Type 2 Diabetes. Am. Health Drug Benefits 2017, 10, 178–188. [Google Scholar] [PubMed]
- Gentilella, R.; Pechtner, V.; Corcos, A.; Consoli, A. Glucagon-like Peptide-1 Receptor Agonists in Type 2 Diabetes Treatment: Are They All the Same? Diabetes Metab. Res. Rev. 2019, 35, e3070. [Google Scholar] [CrossRef]
- Zago, A.M.; Carvalho, F.B.; Rahmeier, F.L.; Santin, M.; Guimarães, G.R.; Gutierres, J.M.; da C Fernandes, M. Exendin-4 Prevents Memory Loss and Neuronal Death in Rats with Sporadic Alzheimer-Like Disease. Mol. Neurobiol. 2024, 61, 2631–2652. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, L.; Li, L.; Hölscher, C. Neuroprotective Effects of the Novel GLP-1 Long Acting Analogue Semaglutide in the MPTP Parkinson’s Disease Mouse Model. Neuropeptides 2018, 71, 70–80. [Google Scholar] [CrossRef]
- Bao, Y.; Jiang, L.; Chen, H.; Zou, J.; Liu, Z.; Shi, Y. The Neuroprotective Effect of Liraglutide Is Mediated by Glucagon-Like Peptide 1 Receptor-Mediated Activation of cAMP/PKA/CREB Pathway. Cell Physiol. Biochem. 2015, 36, 2366–2378. [Google Scholar] [CrossRef]
- Li, Y.; Bader, M.; Tamargo, I.; Rubovitch, V.; Tweedie, D.; Pick, C.G.; Greig, N.H. Liraglutide Is Neurotrophic and Neuroprotective in Neuronal Cultures and Mitigates Mild Traumatic Brain Injury in Mice. J. Neurochem. 2015, 135, 1203–1217. [Google Scholar] [CrossRef]
- Wiciński, M.; Socha, M.; Malinowski, B.; Wódkiewicz, E.; Walczak, M.; Górski, K.; Słupski, M.; Pawlak-Osińska, K. Liraglutide and Its Neuroprotective Properties-Focus on Possible Biochemical Mechanisms in Alzheimer’s Disease and Cerebral Ischemic Events. Int. J. Mol. Sci. 2019, 20, 1050. [Google Scholar] [CrossRef]
- Cao, B.; Zhang, Y.; Chen, J.; Wu, P.; Dong, Y.; Wang, Y. Neuroprotective Effects of Liraglutide against Inflammation through the AMPK/NF-κB Pathway in a Mouse Model of Parkinson’s Disease. Metab. Brain Dis. 2022, 37, 451–462. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Zhang, L.; Li, L.; Hölscher, C. Semaglutide Is Neuroprotective and Reduces α-Synuclein Levels in the Chronic MPTP Mouse Model of Parkinson’s Disease. J. Parkinsons Dis. 2019, 9, 157–171. [Google Scholar] [CrossRef] [PubMed]
- Tipa, R.O.; Balan, D.-G.; Georgescu, M.-T.; Ignat, L.A.; Vacaroiu, I.A.; Georgescu, D.E.; Raducu, L.; Mihai, D.A.; Chiperi, L.-V.; Balcangiu-Stroescu, A.-E. A Systematic Review of Semaglutide’s Influence on Cognitive Function in Preclinical Animal Models and Cell-Line Studies. Int. J. Mol. Sci. 2024, 25, 4972. [Google Scholar] [CrossRef] [PubMed]
- Mahapatra, M.K.; Karuppasamy, M.; Sahoo, B.M. Therapeutic Potential of Semaglutide, a Newer GLP-1 Receptor Agonist, in Abating Obesity, Non-Alcoholic Steatohepatitis and Neurodegenerative Diseases: A Narrative Review. Pharm. Res. 2022, 39, 1233–1248. [Google Scholar] [CrossRef] [PubMed]
- Meca, A.D.; Boboc, I.K.S.; Mititelu-Tartau, L.; Bogdan, M. Unlocking the Potential: Semaglutide’s Impact on Alzheimer’s and Parkinson’s Disease in Animal Models. Curr. Issues Mol. Biol. 2024, 46, 5929–5949. [Google Scholar] [CrossRef]
- Mullins, R.J.; Mustapic, M.; Chia, C.W.; Carlson, O.; Gulyani, S.; Tran, J.; Li, Y.; Mattson, M.P.; Resnick, S.; Egan, J.M.; et al. A Pilot Study of Exenatide Actions in Alzheimer’s Disease. Curr. Alzheimer Res. 2019, 16, 741–752. [Google Scholar] [CrossRef]
- Femminella, G.D.; Frangou, E.; Love, S.B.; Busza, G.; Holmes, C.; Ritchie, C.; Lawrence, R.; McFarlane, B.; Tadros, G.; Ridha, B.H.; et al. Evaluating the Effects of the Novel GLP-1 Analogue Liraglutide in Alzheimer’s Disease: Study Protocol for a Randomised Controlled Trial (ELAD Study). Trials 2019, 20, 191. [Google Scholar] [CrossRef]
- Koychev, I.; Reid, G.; Nguyen, M.; Mentz, R.J.; Joyce, D.; Shah, S.H.; Holman, R.R. Inflammatory Proteins Associated with Alzheimer’s Disease Reduced by a GLP1 Receptor Agonist: A Post Hoc Analysis of the EXSCEL Randomized Placebo Controlled Trial. Alzheimers Res. Ther. 2024, 16, 212. [Google Scholar] [CrossRef]
- Davidy, T.; Yore, I.; Cukierman-Yaffe, T.; Ravona-Springer, R.; Livny, A.; Lesman-Segev, O.H.; Azuri, Y.; Carmichael, O.; Kapogiannis, D.; Zetterberg, H.; et al. A Feasibility Study of the Combination of Intranasal Insulin with Oral Semaglutide for Cognition in Older Adults with Metabolic Syndrome at High Dementia Risk- Study Rationale and Design. Mech. Ageing Dev. 2024, 218, 111898. [Google Scholar] [CrossRef]
- Gejl, M.; Brock, B.; Egefjord, L.; Vang, K.; Rungby, J.; Gjedde, A. Blood-Brain Glucose Transfer in Alzheimer’s Disease: Effect of GLP-1 Analog Treatment. Sci. Rep. 2017, 7, 17490. [Google Scholar] [CrossRef]
- Egefjord, L.; Gejl, M.; Møller, A.; Brændgaard, H.; Gottrup, H.; Antropova, O.; Møller, N.; Poulsen, H.E.; Gjedde, A.; Brock, B.; et al. Effects of Liraglutide on Neurodegeneration, Blood Flow and Cognition in Alzheimer’s Disease—Protocol for a Controlled, Randomized Double-Blinded Trial. Dan. Med. J. 2012, 59, A4519. [Google Scholar] [PubMed]
- Frampton, J.E. Empagliflozin: A Review in Type 2 Diabetes. Drugs 2018, 78, 1037–1048. [Google Scholar] [CrossRef] [PubMed]
- Liakos, A.; Karagiannis, T.; Athanasiadou, E.; Sarigianni, M.; Mainou, M.; Papatheodorou, K.; Bekiari, E.; Tsapas, A. Efficacy and Safety of Empagliflozin for Type 2 Diabetes: A Systematic Review and Meta-Analysis. Diabetes Obes. Metab. 2014, 16, 984–993. [Google Scholar] [CrossRef] [PubMed]
- Dailey, G. Empagliflozin for the Treatment of Type 2 Diabetes Mellitus: An Overview of Safety and Efficacy Based on Phase 3 Trials. J. Diabetes 2015, 7, 448–461. [Google Scholar] [CrossRef]
- Dhillon, S. Dapagliflozin: A Review in Type 2 Diabetes. Drugs 2019, 79, 1135–1146. [Google Scholar] [CrossRef]
- Nicholson, M.K.; Ghazal Asswad, R.; Wilding, J.P. Dapagliflozin for the Treatment of Type 2 Diabetes Mellitus—An Update. Expert. Opin. Pharmacother. 2021, 22, 2303–2310. [Google Scholar] [CrossRef]
- Plosker, G.L. Dapagliflozin: A Review of Its Use in Patients with Type 2 Diabetes. Drugs 2014, 74, 2191–2209. [Google Scholar] [CrossRef]
- Jabbour, S.; Seufert, J.; Scheen, A.; Bailey, C.J.; Karup, C.; Langkilde, A.M. Dapagliflozin in Patients with Type 2 Diabetes Mellitus: A Pooled Analysis of Safety Data from Phase IIb/III Clinical Trials. Diabetes Obes. Metab. 2018, 20, 620–628. [Google Scholar] [CrossRef]
- Wu, C.-Y.; Iskander, C.; Wang, C.; Xiong, L.Y.; Shah, B.R.; Edwards, J.D.; Kapral, M.K.; Herrmann, N.; Lanctôt, K.L.; Masellis, M.; et al. Association of Sodium-Glucose Cotransporter 2 Inhibitors With Time to Dementia: A Population-Based Cohort Study. Diabetes Care 2023, 46, 297–304. [Google Scholar] [CrossRef]
- Koutentakis, M.; Kuciński, J.; Świeczkowski, D.; Surma, S.; Filipiak, K.J.; Gąsecka, A. The Ketogenic Effect of SGLT-2 Inhibitors—Beneficial or Harmful? J. Cardiovasc. Dev. Dis. 2023, 10, 465. [Google Scholar] [CrossRef]
- Esterline, R.; Oscarsson, J.; Burns, J. A Role for Sodium Glucose Cotransporter 2 Inhibitors (SGLT2is) in the Treatment of Alzheimer’s Disease? Int. Rev. Neurobiol. 2020, 155, 113–140. [Google Scholar] [CrossRef] [PubMed]
- Lardaro, A.; Quarta, L.; Pagnotta, S.; Sodero, G.; Mariani, S.; Del Ben, M.; Desideri, G.; Ettorre, E.; Baratta, F. Impact of Sodium Glucose Cotransporter 2 Inhibitors (SGLT2i) Therapy on Dementia and Cognitive Decline. Biomedicines 2024, 12, 1750. [Google Scholar] [CrossRef] [PubMed]
- Avgerinos, K.I.; Mullins, R.J.; Vreones, M.; Mustapic, M.; Chen, Q.; Melvin, D.; Kapogiannis, D.; Egan, J.M. Empagliflozin Induced Ketosis, Upregulated IGF-1/Insulin Receptors and the Canonical Insulin Signaling Pathway in Neurons, and Decreased the Excitatory Neurotransmitter Glutamate in the Brain of Non-Diabetics. Cells 2022, 11, 3372. [Google Scholar] [CrossRef] [PubMed]
- Grossberg, G.T. Cholinesterase Inhibitors for the Treatment of Alzheimer’s Disease: Getting On and Staying On. Curr. Ther. Res. Clin. Exp. 2003, 64, 216. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Chang, L.; Song, Y.; Li, H.; Wu, Y. The Role of NMDA Receptors in Alzheimer’s Disease. Front. Neurosci. 2019, 13, 43. [Google Scholar] [CrossRef]
- Robinson, D.M.; Keating, G.M. Memantine: A Review of Its Use in Alzheimer’s Disease. Drugs 2006, 66, 1515–1534. [Google Scholar] [CrossRef]
- Terao, I.; Kodama, W. Comparative Efficacy, Tolerability and Acceptability of Donanemab, Lecanemab, Aducanumab and Lithium on Cognitive Function in Mild Cognitive Impairment and Alzheimer’s Disease: A Systematic Review and Network Meta-Analysis. Ageing Res. Rev. 2024, 94, 102203. [Google Scholar] [CrossRef]
- Lee, D.; Slomkowski, M.; Hefting, N.; Chen, D.; Larsen, K.G.; Kohegyi, E.; Hobart, M.; Cummings, J.L.; Grossberg, G.T. Brexpiprazole for the Treatment of Agitation in Alzheimer Dementia: A Randomized Clinical Trial. JAMA Neurol. 2023, 80, 1307–1316. [Google Scholar] [CrossRef]
- Marinheiro, G.; Dantas, J.M.; Mutarelli, A.; Menegaz de Almeida, A.; Monteiro, G.d.A.; Zerlotto, D.S.; Telles, J.P.M. Efficacy and Safety of Brexpiprazole for the Treatment of Agitation in Alzheimer’s Disease: A Meta-Analysis of Randomized Controlled Trials. Neurol. Sci. 2024, 45, 4679–4686. [Google Scholar] [CrossRef]
- Lee, D.; Clark, E.D.; Antonsdottir, I.M.; Porsteinsson, A.P. Brexpiprazole for Agitation Associated With Dementia Due to Alzheimer’s Disease. J. Am. Med. Dir. Assoc. 2024, 25, 105173. [Google Scholar] [CrossRef]
- Parlak, M.M.; Bizbinar, Ö.; Köse, A. The Effect of Holistic Therapy in Alzheimer’s Disease. Altern. Ther. Health Med. 2023, 29, 52–59. [Google Scholar] [PubMed]
- Breijyeh, Z.; Karaman, R. Comprehensive Review on Alzheimer’s Disease: Causes and Treatment. Molecules 2020, 25, 5789. [Google Scholar] [CrossRef] [PubMed]
- Jayaraman, A.; Pike, C.J. Alzheimer’s Disease and Type 2 Diabetes: Multiple Mechanisms Contribute to Interactions. Curr. Diabetes Rep. 2014, 14, 476. [Google Scholar] [CrossRef] [PubMed]
- Rojas, M.; Chávez-Castillo, M.; Bautista, J.; Ortega, Á.; Nava, M.; Salazar, J.; Díaz-Camargo, E.; Medina, O.; Rojas-Quintero, J.; Bermúdez, V. Alzheimer’s Disease and Type 2 Diabetes Mellitus: Pathophysiologic and Pharmacotherapeutics Links. World J. Diabetes 2021, 12, 745. [Google Scholar] [CrossRef]
- Andrade, L.J.d.O.; de Oliveira, L.M.; Bittencourt, A.M.V.; Lourenço, L.G.d.C.; de Oliveira, G.C.M. Brain Insulin Resistance and Alzheimer’s Disease: A Systematic Review. Dement. Neuropsychol. 2024, 18, e20230032. [Google Scholar] [CrossRef] [PubMed]
- Hsu, J.-L.; Lee, W.-J.; Liao, Y.-C.; Wang, S.-J.; Fuh, J.-L. The Clinical Significance of Plasma Clusterin and Aβ in the Longitudinal Follow-up of Patients with Alzheimer’s Disease. Alzheimers Res. Ther. 2017, 9, 91. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.; Xie, B.; Xing, Y.; Tang, Y. Plasma Clusterin as a Potential Biomarker for Alzheimer’s Disease-A Systematic Review and Meta-Analysis. Curr. Alzheimer Res. 2019, 16, 1018–1027. [Google Scholar] [CrossRef]
- Zhu, Y.; Wang, H.; Guo, Y.; Cao, J.; Li, H. Advances in the Therapeutic Potential of Inhibitors Targeting Glycogen Synthase Kinase 3 in Inflammatory Diseases. Mini Rev. Med. Chem. 2023, 23, 1893–1904. [Google Scholar] [CrossRef]
- Lauretti, E.; Dincer, O.; Praticò, D. Glycogen Synthase Kinase-3 Signaling in Alzheimer’s Disease. Biochim. Biophys. Acta Mol. Cell Res. 2020, 1867, 118664. [Google Scholar] [CrossRef]
- Sirkis, D.W.; Bonham, L.W.; Johnson, T.P.; La Joie, R.; Yokoyama, J.S. Dissecting the Clinical Heterogeneity of Early-Onset Alzheimer’s Disease. Mol. Psychiatry 2022, 27, 2674–2688. [Google Scholar] [CrossRef]
Risk Factor | Description | Relevant Trial/Study |
---|---|---|
Genetic Predisposition | Specific gene variants (e.g., APOE ε4) increase the risk for AD, while others (e.g., TCF7L2) raise T2DM risk. Some genes affect both conditions through shared pathways. | Wang et al. identified 78 SNPs linked to AD, including TP53INP1, TOMM40, and NDUFAF6, involved in mitochondrial dysfunction and oxidative stress in both AD and T2DM (PMID: 28870582). |
Oxidative Stress | Excessive ROS production damages cellular components impairs insulin signaling in T2DM and contributes to neuronal death and Aβ aggregation in AD. | Liu et al. found AD triggers oxidative stress and decreased energy metabolism in APP/PS1 double-transgenic mice, mirroring metabolic dysfunction in T2DM (PMID: 31089202). |
Obesity | Adipose tissue releases inflammatory cytokines, promoting insulin resistance in T2DM and neuroinflammation in AD. Obesity also strains the cardiovascular system, affecting brain health. | A 2023 observational cohort study showed brain atrophy patterns in obese individuals that resembled those in AD, suggesting obesity accelerates brain aging (PMID: 36565111). |
Hypertension | Chronic high blood pressure damages blood vessels, impairing insulin delivery in T2DM and reducing cerebral blood flow in AD. It also increases the risk of vascular dementia. | A study found that middle-aged individuals with stage 1 or 2 hypertension have an 18% to 25% higher risk of developing AD later in life compared to those with normal blood pressure (PMID: 31381518). |
Sedentary Lifestyle | Lack of physical activity reduces insulin sensitivity in T2DM and is associated with increased Aβ deposition and reduced brain volume in AD. | A 2022 cohort study of patients with new-onset T2DM found that regular physical activity was associated with lower risks of all-cause dementia (29%), AD (32%), and vascular dementia (41%) (PMID: 35192690). |
Poor Diet | High-fat, high-sugar diets contribute to insulin resistance in T2DM and may increase inflammation and oxidative stress in the brain, promoting AD pathology. | Morris et al. demonstrated that high adherence to the MIND diet was associated with a 53% reduced rate of AD compared to those with low adherence (PMID: 25681666). |
Smoking | Tobacco use increases oxidative stress and inflammation, exacerbating insulin resistance in T2DM and promoting vascular damage and Aβ accumulation in AD. | A meta-analysis of 19 studies showed that current smokers had a 30% higher risk of developing AD and a 38% higher risk of developing vascular dementia compared to non-smokers. (PMID: 17573335). |
Excessive Alcohol Consumption | Heavy drinking impairs insulin sensitivity and glucose metabolism in T2DM, while in the brain, it can lead to neuroinflammation and an increased risk of cognitive decline. | A 2019 study found that in individuals with mild cognitive impairment, heavy drinking (>14 drinks/week) was associated with faster rates of cognitive decline compared to moderate drinkers (PMID: 31560382) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kciuk, M.; Kruczkowska, W.; Gałęziewska, J.; Wanke, K.; Kałuzińska-Kołat, Ż.; Aleksandrowicz, M.; Kontek, R. Alzheimer’s Disease as Type 3 Diabetes: Understanding the Link and Implications. Int. J. Mol. Sci. 2024, 25, 11955. https://doi.org/10.3390/ijms252211955
Kciuk M, Kruczkowska W, Gałęziewska J, Wanke K, Kałuzińska-Kołat Ż, Aleksandrowicz M, Kontek R. Alzheimer’s Disease as Type 3 Diabetes: Understanding the Link and Implications. International Journal of Molecular Sciences. 2024; 25(22):11955. https://doi.org/10.3390/ijms252211955
Chicago/Turabian StyleKciuk, Mateusz, Weronika Kruczkowska, Julia Gałęziewska, Katarzyna Wanke, Żaneta Kałuzińska-Kołat, Marta Aleksandrowicz, and Renata Kontek. 2024. "Alzheimer’s Disease as Type 3 Diabetes: Understanding the Link and Implications" International Journal of Molecular Sciences 25, no. 22: 11955. https://doi.org/10.3390/ijms252211955
APA StyleKciuk, M., Kruczkowska, W., Gałęziewska, J., Wanke, K., Kałuzińska-Kołat, Ż., Aleksandrowicz, M., & Kontek, R. (2024). Alzheimer’s Disease as Type 3 Diabetes: Understanding the Link and Implications. International Journal of Molecular Sciences, 25(22), 11955. https://doi.org/10.3390/ijms252211955