Hemocompatibility of Albumin-Modified Magnetic Nanoparticles
Abstract
:1. Introduction
2. Results
2.1. Particle Size and Coating Thickness
2.2. Relative Mass of Albumin Coatings
2.3. Particle Surface Chemistry Analysis
2.4. Surface Charge Analysis
2.5. Total Adsorbed Protein
2.6. Plasma Clotting in the Presence of BSA-Coated Nanoparticles
2.7. Quantification of Plasma Protein Adsorption
2.7.1. Immune-Response-Related Proteins
2.7.2. Coagulation-Related Plasma Proteins
3. Materials and Methods
3.1. Materials
3.2. Synthesis of Magnetite (Fe3O4) Iron Oxide Nanoparticles
3.3. Amino-Silane Surface Treatment
3.4. Albumin Coating Formation
3.5. Particle Characterization
3.6. Immunoblot Techniques
3.7. MNP Incubation with Plasma
3.8. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lim, Y.J.; Sidor, N.A.; Tonial, N.C.; Che, A.; Urquhart, B.L. Uremic toxins in the progression of chronic kidney disease and cardiovascular disease: Mechanisms and therapeutic targets. Toxins 2021, 13, 142. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Sharaf, M.G.; Rowe, E.M.; Serrano, K.; Devine, D.V.; Unsworth, L.D. Hemocompatibility of β-Cyclodextrin-Modified (Methacryloyloxy) ethyl Phosphorylcholine Coated Magnetic Nanoparticles. Biomolecules 2023, 13, 1165. [Google Scholar] [CrossRef]
- Vanholder, R.; De Smet, R. Pathophysiologic effects of uremic retention solutes. J. Am. Soc. Nephrol. 1999, 10, 1815–1823. [Google Scholar] [CrossRef]
- Ma, Y.; Li, S.; Tonelli, M.; Unsworth, L.D. Adsorption-based strategies for removing uremic toxins from blood. Microporous Mesoporous Mater. 2021, 319, 111035. [Google Scholar] [CrossRef]
- Daneshamouz, S.; Eduok, U.; Abdelrasoul, A.; Shoker, A. Protein-bound uremic toxins (PBUTs) in chronic kidney disease (CKD) patients: Production pathway, challenges and recent advances in renal PBUTs clearance. NanoImpact 2021, 21, 100299. [Google Scholar] [CrossRef] [PubMed]
- Himmelfarb, J.; Vanholder, R.; Mehrotra, R.; Tonelli, M. The current and future landscape of dialysis. Nat. Rev. Nephrol. 2020, 16, 573–585. [Google Scholar] [CrossRef]
- Niestanak, V.D.; Unsworth, L.D. Detailing Protein-Bound Uremic Toxin Interaction Mechanisms with Human Serum Albumin in the Pursuit of Designing Competitive Binders. Int. J. Mol. Sci. 2023, 24, 7452. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Wang, X.; Zhang, C.; Lin, K.; Yang, J.; Zhang, Y.; Hao, J.; Tian, F. Folic acid-coupled bovine serum albumin-modified magnetic nanocomposites from quantum-sized Fe3O4 and layered double hydroxide for actively targeted delivery of 5-fluorouracil. Int. J. Biol. Macromol. 2024, 256, 128385. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, X.; Chen, X.; Cui, L.; Li, Z.; Bai, Z.; Lin, K.; Yang, J.; Tian, F. Construction of pH-responsive polydopamine coated magnetic layered hydroxide nanostructure for intracellular drug delivery. Eur. J. Pharm. Biopharm. 2023, 182, 12–20. [Google Scholar] [CrossRef]
- Wang, X.; Wang, Y.; Xue, Z.; Wan, W.; Li, Y.; Qin, H.; Zhu, Y.; Tian, F.; Yang, J. Magnetic liposome as a dual-targeting delivery system for idiopathic pulmonary fibrosis treatment. J. Colloid Interface Sci. 2023, 636, 388–400. [Google Scholar] [CrossRef]
- Malehmir, S.; Esmaili, M.A.; Mahabady, M.K.; Sobhani-Nasab, A.; Atapour, A.; Ganjali, M.R.; Ghasemi, A.; Hasan-Abad, A.M. A review: Hemocompatibility of magnetic nanoparticles and their regenerative medicine, cancer therapy, drug delivery, and bioimaging applications. Front. Chem. 2023, 11, 1249134. [Google Scholar] [CrossRef]
- Schneider, M.G.M.; Martín, M.J.; Otarola, J.; Vakarelska, E.; Simeonov, V.; Lassalle, V.; Nedyalkova, M. Biomedical applications of iron oxide nanoparticles: Current insights progress and perspectives. Pharmaceutics 2022, 14, 204. [Google Scholar] [CrossRef]
- Cedervall, T.; Lynch, I.; Lindman, S.; Berggård, T.; Thulin, E.; Nilsson, H.; Dawson, K.A.; Linse, S. Understanding the nanoparticle–protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proc. Natl. Acad. Sci. USA 2007, 104, 2050–2055. [Google Scholar] [CrossRef] [PubMed]
- Monopoli, M.P.; Aberg, C.; Salvati, A.; Dawson, K.A. Biomolecular coronas provide the biological identity of nanosized materials. In Nano-Enabled Medical Applications; Nature Publishing Group: London, UK, 2020; pp. 205–229. [Google Scholar]
- Cai, R.; Chen, C. The crown and the scepter: Roles of the protein corona in nanomedicine. Adv. Mater. 2019, 31, 1805740. [Google Scholar] [CrossRef]
- Tang, L.; Eaton, J.W. Inflammatory responses to biomaterials. Am. J. Clin. Pathol. 1995, 103, 466–471. [Google Scholar] [CrossRef] [PubMed]
- Zhou, G.; Groth, T. Host responses to biomaterials and anti-inflammatory design—A brief review. Macromol. Biosci. 2018, 18, 1800112. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.K.; Gupta, M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 2005, 26, 3995–4021. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Sharaf, M.G.; Zhang, L.; Wishart, D.S.; Tonelli, M.; Unsworth, L.D. Adsorption Dynamics of Uremic Toxins to Novel Modified Magnetic Nanoparticles. Macromol. Biosci. 2024, 24, 2300133. [Google Scholar] [CrossRef] [PubMed]
- Prabha, G.; Raj, V. Sodium alginate–polyvinyl alcohol–bovin serum albumin coated Fe3O4 nanoparticles as anticancer drug delivery vehicle: Doxorubicin loading and in vitro release study and cytotoxicity to HepG2 and L02 cells. Mater. Sci. Eng. C 2017, 79, 410–422. [Google Scholar] [CrossRef]
- Maltas, E.; Ozmen, M.; Yildirimer, B.; Kucukkolbasi, S.; Yildiz, S. Interaction between ketoconazole and human serum albumin on epoxy modified magnetic nanoparticles for drug delivery. J. Nanosci. Nanotechnol. 2013, 13, 6522–6528. [Google Scholar] [CrossRef]
- Peng, Q.; Zhang, S.; Yang, Q.; Zhang, T.; Wei, X.-Q.; Jiang, L.; Zhang, C.-L.; Chen, Q.-M.; Zhang, Z.-R.; Lin, Y.-F. Preformed albumin corona, a protective coating for nanoparticles based drug delivery system. Biomaterials 2013, 34, 8521–8530. [Google Scholar] [CrossRef] [PubMed]
- An, F.-F.; Zhang, X.-H. Strategies for preparing albumin-based nanoparticles for multifunctional bioimaging and drug delivery. Theranostics 2017, 7, 3667. [Google Scholar] [CrossRef] [PubMed]
- Vanholder, R.; Schepers, E.; Pletinck, A.; Nagler, E.V.; Glorieux, G. The uremic toxicity of indoxyl sulfate and p-cresyl sulfate: A systematic review. J. Am. Soc. Nephrol. 2014, 25, 1897–1907. [Google Scholar] [CrossRef] [PubMed]
- Cunha, R.S.D.; Azevedo, C.A.B.; Falconi, C.A.; Ruiz, F.F.; Liabeuf, S.; Carneiro-Ramos, M.S.; Stinghen, A.E.M. The interplay between uremic toxins and albumin, membrane transporters and drug interaction. Toxins 2022, 14, 177. [Google Scholar] [CrossRef] [PubMed]
- Karmali, P.P.; Simberg, D. Interactions of nanoparticles with plasma proteins: Implication on clearance and toxicity of drug delivery systems. Expert Opin. Drug Deliv. 2011, 8, 343–357. [Google Scholar] [CrossRef]
- Mahmoudi, M.; Landry, M.P.; Moore, A.; Coreas, R. The protein corona from nanomedicine to environmental science. Nat. Rev. Mater. 2023, 8, 422–438. [Google Scholar] [CrossRef]
- Kalidasan, V.; Liu, X.L.; Herng, T.S.; Yang, Y.; Ding, J. Bovine serum albumin-conjugated ferrimagnetic iron oxide nanoparticles to enhance the biocompatibility and magnetic hyperthermia performance. Nano-Micro Lett. 2016, 8, 80–93. [Google Scholar] [CrossRef]
- Zavisova, V.; Koneracka, M.; Gabelova, A.; Svitkova, B.; Ursinyova, M.; Kubovcikova, M.; Antal, I.; Khmara, I.; Jurikova, A.; Molcan, M. Effect of magnetic nanoparticles coating on cell proliferation and uptake. J. Magn. Magn. Mater. 2019, 472, 66–73. [Google Scholar] [CrossRef]
- Ashby, J.; Pan, S.; Zhong, W. Size and surface functionalization of iron oxide nanoparticles influence the composition and dynamic nature of their protein corona. ACS Appl. Mater. Interfaces 2014, 6, 15412–15419. [Google Scholar] [CrossRef]
- Mikhaylova, M.; Kim, D.K.; Berry, C.C.; Zagorodni, A.; Toprak, M.; Curtis, A.S.; Muhammed, M. BSA immobilization on amine-functionalized superparamagnetic iron oxide nanoparticles. Chem. Mater. 2004, 16, 2344–2354. [Google Scholar] [CrossRef]
- Wu, W.; He, Q.; Jiang, C. Magnetic iron oxide nanoparticles: Synthesis and surface functionalization strategies. Nanoscale Res. Lett. 2008, 3, 397–415. [Google Scholar] [CrossRef] [PubMed]
- Rahdar, S.; Rahdar, A.; Ahmadi, S.; Trant, J.F. Adsorption of bovine serum albumin (BSA) by bare magnetite nanoparticles with surface oxidative impurities that prevent aggregation. Can. J. Chem. 2019, 97, 577–583. [Google Scholar] [CrossRef]
- Wright, A.K.; Thompson, M. Hydrodynamic structure of bovine serum albumin determined by transient electric birefringence. Biophys. J. 1975, 15, 137–141. [Google Scholar] [CrossRef] [PubMed]
- Baki, A.; Remmo, A.; Löwa, N.; Wiekhorst, F.; Bleul, R. Albumin-coated single-core iron oxide nanoparticles for enhanced molecular magnetic imaging (Mri/mpi). Int. J. Mol. Sci. 2021, 22, 6235. [Google Scholar] [CrossRef]
- Santos, M.G.; de Carvalho, D.T.; Caminitti, L.B.; de Lima, B.B.A.; da Silva Cavalcanti, M.H.; Santos, D.F.R.D.; Virtuoso, L.S.; Hirata, D.B.; Figueiredo, E.C. Use of magnetic Fe3O4 nanoparticles coated with bovine serum albumin for the separation of lysozyme from chicken egg white. Food Chem. 2021, 353, 129442. [Google Scholar] [CrossRef]
- Csach, K.; Juríková, A.; Miškuf, J.; Koneracká, M.; Závišová, V.; Kubovčíková, M.; Kopčanský, P. Thermogravimetric study of the decomposition of BSA-coated magnetic nanoparticles. Acta Phys. Pol. A 2012, 121, 1293–1295. [Google Scholar] [CrossRef]
- Gebregeorgis, A.; Bhan, C.; Wilson, O.; Raghavan, D. Characterization of silver/bovine serum albumin (Ag/BSA) nanoparticles structure: Morphological, compositional, and interaction studies. J. Colloid Interface Sci. 2013, 389, 31–41. [Google Scholar] [CrossRef]
- Michnik, A.; Michalik, K.; Kluczewska, A.; Drzazga, Z. Comparative DSC study of human and bovine serum albumin. J. Therm. Anal. Calorim. 2006, 84, 113–117. [Google Scholar] [CrossRef]
- Yamashita, T.; Hayes, P. Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials. Appl. Surf. Sci. 2008, 254, 2441–2449. [Google Scholar] [CrossRef]
- Hawn, D.D.; DeKoven, B.M. Deconvolution as a correction for photoelectron inelastic energy losses in the core level XPS spectra of iron oxides. Surf. Interface Anal. 1987, 10, 63–74. [Google Scholar] [CrossRef]
- Maity, D.; Kale, S.; Kaul-Ghanekar, R.; Xue, J.-M.; Ding, J. Studies of magnetite nanoparticles synthesized by thermal decom-position of iron (III) acetylacetonate in tri (ethylene glycol). J. Magn. Magn. Mater. 2009, 321, 3093–3098. [Google Scholar] [CrossRef]
- Gabal, R.A.; Shokeir, D.; Orabi, A. Cytotoxicity and hemostatic one step green synthesis of Iron nanoparticles coated with green tea for biomedical application. Trends Sci. 2022, 19, 2062. [Google Scholar] [CrossRef]
- Mazario, E.; Forget, A.; Belkahla, H.; Lomas, J.; Decorse, P.; Chevillot-Biraud, A.; Verbeke, P.; Wilhelm, C.; Ammar, S.; Chahine, J.E.H. Functionalization of iron oxide nanoparticles with HSA protein for thermal therapy. IEEE Trans. Magn. 2017, 53, 1–5. [Google Scholar] [CrossRef]
- Bondarenko, L.; Illés, E.; Tombácz, E.; Dzhardimalieva, G.; Golubeva, N.; Tushavina, O.; Adachi, Y.; Kydralieva, K. Fabrication, microstructure and colloidal stability of humic acids loaded Fe3O4/APTES nanosorbents for environmental applications. Nanomaterials 2021, 11, 1418. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.-M.; Laromaine, A.; Roig, A. Enhanced stability of superparamagnetic iron oxide nanoparticles in biological media using a pH adjusted-BSA adsorption protocol. J. Nanoparticle Res. 2014, 16, 2484. [Google Scholar] [CrossRef]
- Rohiwal, S.; Tiwari, A.; Verma, G.; Pawar, S. Preparation and evaluation of bovine serum albumin nanoparticles for ex vivo colloidal stability in biological media. Colloids Surf. A Physicochem. Eng. Asp. 2015, 480, 28–37. [Google Scholar] [CrossRef]
- Peters, T., Jr. All About Albumin: Biochemistry, Genetics, and Medical Applications; Academic Press: Cambridge, MA, USA, 1995. [Google Scholar]
- Chubarov, A.S. Serum albumin for magnetic nanoparticles coating. Magnetochemistry 2022, 8, 13. [Google Scholar] [CrossRef]
- Stamopoulos, D.; Gogola, V.; Manios, E.; Gourni, E.; Benaki, D.; Niarchos, D.; Pissas, M. Biocompatibility and solubility of Fe3O4-BSA conjugates with human blood. Curr. Nanosci. 2009, 5, 177–181. [Google Scholar] [CrossRef]
- Yan, Y.; Xu, L.-C.; Vogler, E.A.; Siedlecki, C. Contact activation by the intrinsic pathway of blood plasma coagulation. In Hemo-compatibility of Biomaterials for Clinical Applications; Elsevier: Amsterdam, The Netherlands, 2018; pp. 3–28. [Google Scholar]
- de la Harpe, K.M.; Kondiah, P.P.; Choonara, Y.E.; Marimuthu, T.; Toit, L.C.D.; Pillay, V. The hemocompatibility of nanoparticles: A review of cell–nanoparticle interactions and hemostasis. Cells 2019, 8, 1209. [Google Scholar] [CrossRef]
- Bahniuk, M.S.; Alshememry, A.K.; Unsworth, L.D. Human plasma protein adsorption to elastin-like polypeptide nanoparticles. Biointerphases 2020, 15, 021007. [Google Scholar] [CrossRef]
- Yogasundaram, H.; Bahniuk, M.S.; Singh, H.-D.; Aliabadi, H.M.; Uludaǧ, H.; Unsworth, L.D. BSA nanoparticles for siRNA de-livery: Coating effects on nanoparticle properties, plasma protein adsorption, and in vitro siRNA delivery. Int. J. Biomater. 2012, 2012, 584060. [Google Scholar] [CrossRef] [PubMed]
- Xie, B.; Zhang, R.; Zhang, H.; Xu, A.; Deng, Y.; Lv, Y.; Deng, F.; Wei, S. Decoration of heparin and bovine serum albumin on polysulfone membrane assisted via polydopamine strategy for hemodialysis. J. Biomater. Sci. Polym. Ed. 2016, 27, 880–897. [Google Scholar] [CrossRef] [PubMed]
- Fang, B.; Ling, Q.; Zhao, W.; Ma, Y.; Bai, P.; Wei, Q.; Li, H.; Zhao, C. Modification of polyethersulfone membrane by grafting bovine serum albumin on the surface of polyethersulfone/poly (acrylonitrile-co-acrylic acid) blended membrane. J. Membr. Sci. 2009, 329, 46–55. [Google Scholar] [CrossRef]
- Liu, T.-Y.; Lin, W.-C.; Huang, L.-Y.; Chen, S.-Y.; Yang, M.-C. Hemocompatibility and anaphylatoxin formation of protein-immobilizing polyacrylonitrile hemodialysis membrane. Biomaterials 2005, 26, 1437–1444. [Google Scholar] [CrossRef]
- Bale, M.D.; Wohlfahrt, L.A.; Mosher, D.F.; Tomasini, B.; Sutton, R.C. Identification of vitronectin as a major plasma protein adsorbed on polymer surfaces of different copolymer composition. Blood 1989, 74, 2698–2706. [Google Scholar] [CrossRef]
- Jansch, M.; Stumpf, P.; Graf, C.; Rühl, E.; Müller, R. Adsorption kinetics of plasma proteins on ultrasmall superparamagnetic iron oxide (USPIO) nanoparticles. Int. J. Pharm. 2012, 428, 125–133. [Google Scholar] [CrossRef]
- Bahniuk, M.S.; Pirayesh, H.; Singh, H.D.; Nychka, J.A.; Unsworth, L.D. Bioactive glass 45S5 powders: Effect of synthesis route and resultant surface chemistry and crystallinity on protein adsorption from human plasma. Biointerphases 2012, 7, 41. [Google Scholar] [CrossRef]
- Borgognoni, C.F.; Mormann, M.; Qu, Y.; Schäfer, M.; Langer, K.; Öztürk, C.; Wagner, S.; Chen, C.; Zhao, Y.; Fuchs, H. Reaction of human macrophages on protein corona covered TiO2 nanoparticles, Nanomedicine: Nanotechnology. Biol. Med. 2015, 11, 275–282. [Google Scholar]
- García-Álvarez, R.; Hadjidemetriou, M.; Sánchez-Iglesias, A.; Liz-Marzán, L.M.; Kostarelos, K. In vivo formation of protein corona on gold nanoparticles. The effect of their size and shape. Nanoscale 2018, 10, 1256–1264. [Google Scholar] [CrossRef]
- Hadjidemetriou, M.; Al-Ahmady, Z.; Kostarelos, K. Time-evolution of in vivo protein corona onto blood-circulating PEGylated liposomal doxorubicin (DOXIL) nanoparticles. Nanoscale 2016, 8, 6948–6957. [Google Scholar] [CrossRef]
- Elechalawar, C.K.; Hossen, M.N.; McNally, L.; Bhattacharya, R.; Mukherjee, P. Analysing the nanoparticle-protein corona for potential molecular target identification. J. Control. Release 2020, 322, 122–136. [Google Scholar] [CrossRef] [PubMed]
- Caracciolo, G. Liposome–protein corona in a physiological environment: Challenges and opportunities for targeted delivery of nanomedicines, Nanomedicine: Nanotechnology. Biol. Med. 2015, 11, 543–557. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y. Contact pathway of coagulation and inflammation. Thromb. J. 2015, 13, 17. [Google Scholar] [CrossRef] [PubMed]
- McClung, W.; Clapper, D.; Hu, S.P.; Brash, J. Adsorption of plasminogen from human plasma to lysine-containing surfaces. J. Biomed. Mater. Res. Off. J. Soc. Biomater. Jpn. Soc. Bio-Mater. 2000, 49, 409–414. [Google Scholar] [CrossRef]
- Al-Abboodi, A.; Alsaady, H.; Banoon, S.; Al-Saady, M. Conjugation strategies on functionalized iron oxide nanoparticles as a malaria vaccine delivery system. Rev. Bionatura 2021, 6, 2009–2015. [Google Scholar] [CrossRef]
- Liu, X.; Ma, Z.; Xing, J.; Liu, H. Preparation and characterization of amino–silane modified superparamagnetic silica nano-spheres. J. Magn. Magn. Mater. 2004, 270, 1–6. [Google Scholar] [CrossRef]
Plasma | Bare MNPs | BSA-0.2 | BSA-2 | ||
---|---|---|---|---|---|
0.005 mg/mL | Turbidity | 0.85 | 0.70 | 0.72 | 0.69 |
Clotting Starting point (min) | 18 | 6 | 9 | 6 | |
Plateau reach point (min) | 39 | 18 | 30 | 34 | |
0.01 mg/mL | Turbidity | 0.85 | 0.72 | 0.69 | 0.65 |
Clotting Starting point (min) | 18 | 7 | 17 | 14 | |
Plateau reach point (min) | 39 | 21 | 32 | 34 |
Plasma Proteins | Bare | BSA-0.2 | BSA-2 | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Fragment Size (kDa) | 0.005 (mg/mL) | 0.01 (mg/mL) | 0.005 (mg/mL) | 0.01 (mg/mL) | 0.005 (mg/mL) | 0.01 (mg/mL) | ||||
Albumin | 66 | 10 | 12 | 9 | 10 | 9 | 8 | 0 | ||
Immune response-related | C3 | Whole C3 | 187 | 4 | 2 | 3 | 1 | 5 | 3 | 1–3 |
α chain | 115 | 9 | 7 | 9 | 9 | 7 | 3 | 4–5 | ||
β chain | 70 | 11 | 11 | 10 | 10 | 9 | 8 | 6–7 | ||
Activation fragment | 42 | 0 | 0 | 1 | 0 | 1 | 0 | 8–9 | ||
IgG | Heavy chain | 55 | 10 | 10 | 7 | 7 | 8 | 6 | 10–11 | |
light chain | 27 | 10 | 11 | 9 | 11 | 7 | 8 | 12 | ||
Transferrin | 77 | 11 | 11 | 11 | 11 | 10 | 10 | |||
Vitronectin | 54 | 0 | 0 | 4 | 1 | 2 | 1 | |||
α 1 antitrypsin | 54 | 5 | 6 | 10 | 10 | 10 | 7 | |||
α 2 macroglobulin | 163 | 1 | 2 | 3 | 1 | 2 | 1 | |||
Protein S | 75 | 0 | 0 | 1 | 0 | 1 | 1 | |||
Coagulation related | Fibrinogen | α chain | 68 | 8 | 8 | 8 | 8 | 8 | 6 | |
β chain | 56 | 9 | 10 | 7 | 7 | 9 | 5 | |||
γ chain | 48 | 7 | 8 | 7 | 7 | 7 | 3 | |||
Cleavage fragments | <48 | 0 | 0 | 1 | 0 | 1 | 0 | |||
Prothrombin | 72 | 2 | 1 | 5 | 6 | 3 | 0 | |||
Antithrombin | 53 | 2 | 3 | 7 | 5 | 6 | 0 | |||
Factor XII | 80 | 0 | 0 | 0 | 0 | 0 | 0 | |||
Factor XI | 70 | 1 | 1 | 1 | 0 | 1 | 1 | |||
Prekallikrein | 85 | 0 | 0 | 0 | 0 | 0 | 0 | |||
Protein C | 62 | 0 | 0 | 0 | 0 | 0 | 0 | |||
Plasminogen | 91 | 4 | 1 | 3 | 4 | 3 | 3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sharma, I.; Sharaf, M.G.; Pawar, A.; Milley, A.; Unsworth, L.D. Hemocompatibility of Albumin-Modified Magnetic Nanoparticles. Int. J. Mol. Sci. 2024, 25, 11975. https://doi.org/10.3390/ijms252211975
Sharma I, Sharaf MG, Pawar A, Milley A, Unsworth LD. Hemocompatibility of Albumin-Modified Magnetic Nanoparticles. International Journal of Molecular Sciences. 2024; 25(22):11975. https://doi.org/10.3390/ijms252211975
Chicago/Turabian StyleSharma, Indu, Mehdi Gaffari Sharaf, Aishwarya Pawar, Agatha Milley, and Larry D. Unsworth. 2024. "Hemocompatibility of Albumin-Modified Magnetic Nanoparticles" International Journal of Molecular Sciences 25, no. 22: 11975. https://doi.org/10.3390/ijms252211975
APA StyleSharma, I., Sharaf, M. G., Pawar, A., Milley, A., & Unsworth, L. D. (2024). Hemocompatibility of Albumin-Modified Magnetic Nanoparticles. International Journal of Molecular Sciences, 25(22), 11975. https://doi.org/10.3390/ijms252211975