Tuning the Electronic Properties of CumAgn Bimetallic Clusters for Enhanced CO2 Activation
Abstract
:1. Introduction
2. Results and Discussion
2.1. Cu4Ag1 and Cu1Ag4 Bimetallic Clusters
2.2. Cu3Ag2 and Cu2Ag3 Bimetallic Clusters
2.3. Adsorption of CO2 on Cu4Ag1 and Cu1Ag4 Clusters
2.4. Adsorption of CO2 on Cu3Ag2 and Cu2Ag3 Clusters
3. Computational Methodology
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Duan, Y.; Meng, F.; Liu, K.; Yi, S.; Li, S.; Yan, J.; Jiang, Q. Amorphizing of Cu Nanoparticles toward Highly Efficient and Robust Electrocatalyst for CO2 Reduction to Liquid Fuels with High Faradaic Efficiencies. Adv. Mater. 2018, 30, e1706194. [Google Scholar] [CrossRef] [PubMed]
- Lei, F.; Liu, W.; Sun, Y.; Xu, J.; Liu, K.; Liang, L.; Yao, T.; Pan, B.; Wei, S.; Xie, Y. Metallic tin quantum sheets confined in graphene toward high-efficiency carbon dioxide electroreduction. Nat. Commun. 2016, 7, 12697. [Google Scholar] [CrossRef] [PubMed]
- Rabiee, A.; Nematollahi, D. Electrochemical reduction of CO2 to formate ion using nanocubic mesoporous In(OH)3/carbon black system. Mater. Chem. Phys. 2017, 193, 109–116. [Google Scholar] [CrossRef]
- Wang, P.; Qiao, M.; Shao, Q.; Pi, Y.; Zhu, X.; Li, Y.; Huang, X. Phase and structure engineering of copper tin heterostructures for efficient electrochemical carbon dioxide reduction. Nat. Commun. 2018, 9, 4933. [Google Scholar] [CrossRef] [PubMed]
- Houghton, J. Global warming. Rep. Prog. Phys. 2005, 68, 1343–1403. [Google Scholar] [CrossRef]
- Zhang, W.; Hu, Y.; Ma, L.; Zhu, G.; Wang, Y.; Xue, X.; Chen, R.; Yang, S.; Jin, Z. Progress and Perspective of Electrocatalytic CO2 Reduction for Renewable Carbonaceous Fuels and Chemicals. Adv. Sci. 2017, 5, 1700275. [Google Scholar] [CrossRef]
- Xing, M.; Guo, L.; Hao, Z. Theoretical insight into the electrocatalytic reduction of CO2 with different metal ratios and reaction mechanisms on palladium–copper alloys. Dalton Trans. 2018, 48, 1504–1515. [Google Scholar] [CrossRef]
- Zhu, D.D.; Liu, J.L.; Qiao, S.Z. Recent Advances in Inorganic Heterogeneous Electrocatalysts for Reduction of Carbon Dioxide. Adv. Mater. 2016, 28, 3423–3452. [Google Scholar] [CrossRef]
- Costentin, C.; Robert, M.; Savéant, J.-M. Catalysis of the electrochemical reduction of carbon dioxide. Chem. Soc. Rev. 2012, 42, 2423–2436. [Google Scholar] [CrossRef]
- He, Z.; Qian, Q.; Ma, J.; Meng, Q.; Zhou, H.; Song, J.; Liu, Z.; Han, B. Water-Enhanced Synthesis of Higher Alcohols from CO2 Hydrogenation over a Pt/Co3O4 Catalyst under Milder Conditions. Angew. Chem. 2015, 128, 747–751. [Google Scholar] [CrossRef]
- Zhang, X.; Li, X.; Zhang, D.; Su, N.Q.; Yang, W.; Everitt, H.O.; Liu, J. Product selectivity in plasmonic photocatalysis for carbon dioxide hydrogenation. Nat. Commun. 2017, 8, 14542. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Bézier, D.; Brookhart, M. An Efficient Iridium Catalyst for Reduction of Carbon Dioxide to Methane with Trialkylsilanes. J. Am. Chem. Soc. 2012, 134, 11404–11407. [Google Scholar] [CrossRef] [PubMed]
- Gao, D.; Zhou, H.; Cai, F.; Wang, J.-G.; Wang, G.; Bao, X. Pd-Containing Nanostructures for Electrochemical CO2 Reduction Reaction. ACS Catal. 2018, 8, 1510–1519. [Google Scholar] [CrossRef]
- Klinkova, A.; De Luna, P.; Dinh, C.-T.; Voznyy, O.; Larin, E.M.; Kumacheva, E.; Sargent, E.H. Rational Design of Efficient Palladium Catalysts for Electroreduction of Carbon Dioxide to Formate. ACS Catal. 2016, 6, 8115–8120. [Google Scholar] [CrossRef]
- Zhu, W.; Michalsky, R.; Metin, Ö.; Lv, H.; Guo, S.; Wright, C.J.; Sun, X.; Peterson, A.A.; Sun, S. Monodisperse Au Nanoparticles for Selective Electrocatalytic Reduction of CO2 to CO. J. Am. Chem. Soc. 2013, 135, 16833–16836. [Google Scholar] [CrossRef]
- Knurr, B.J.; Weber, J.M. Solvent-Mediated Reduction of Carbon Dioxide in Anionic Complexes with Silver Atoms. J. Phys. Chem. A 2013, 117, 10764–10771. [Google Scholar] [CrossRef]
- Knurr, B.J.; Weber, J.M. Structural Diversity of Copper–CO2 Complexes: Infrared Spectra and Structures of [Cu(CO2)n]− Clusters. J. Phys. Chem. A 2014, 118, 10246–10251. [Google Scholar] [CrossRef]
- Knurr, B.J.; Weber, J.M. Solvent-Driven Reductive Activation of Carbon Dioxide by Gold Anions. J. Am. Chem. Soc. 2012, 134, 18804–18808. [Google Scholar] [CrossRef]
- Xie, H.; Wang, T.; Liang, J.; Li, Q.; Sun, S. Cu-based nanocatalysts for electrochemical reduction of CO2. Nano Today 2018, 21, 41–54. [Google Scholar] [CrossRef]
- Dong, H.; Li, Y.; Jiang, D.-E. First-Principles Insight into Electrocatalytic Reduction of CO2 to CH4 on a Copper Nanoparticle. J. Phys. Chem. C 2018, 122, 11392–11398. [Google Scholar] [CrossRef]
- Shen, H.M.; Li, Y.W.; Sun, Q. Cu atomic chains supported on β-borophene sheets for effective CO2; electroreduction. Nanoscale 2018, 10, 11064–11071. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Yang, B.; Tyo, E.; Seifert, S.; DeBartolo, J.; von Issendorff, B.; Zapol, P.; Vajda, S.; Curtiss, L.A. Carbon Dioxide Conversion to Methanol over Size-Selected Cu4 Clusters at Low Pressures. J. Am. Chem. Soc. 2015, 137, 8676–8679. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Evans, J.; Rodriguez, J.A.; White, M.G.; Liu, P. Fundamental studies of methanol synthesis from CO2 hydrogenation on Cu(111), Cu clusters, and Cu/ZnO(). Phys. Chem. Chem. Phys. 2010, 12, 9909–9917. [Google Scholar] [CrossRef] [PubMed]
- Du, D.; Zhu, H.; Guo, Y.; Hong, X.; Zhang, Q.; Suo, B.; Zou, W.; Li, Y. Anchoring Cu Clusters over Defective Graphene for Electrocatalytic Reduction of CO2. J. Phys. Chem. C 2022, 126, 11611–11618. [Google Scholar] [CrossRef]
- Saputro, A.G.; Agusta, M.K.; Wungu, T.D.K.; Suprijadi; Rusydi, F.; Dipojono, H.K. DFT study of adsorption of CO2on palladium cluster doped by transition metal. J. Physics: Conf. Ser. 2016, 739, 012083. [Google Scholar] [CrossRef]
- Wang, H.; Zhou, X.; Yu, T.; Lu, X.; Qian, L.; Liu, P.; Lei, P. Surface restructuring in AgCu single-atom alloy catalyst and self-enhanced selectivity toward CO2 reduction. Electrochim. Acta 2022, 426, 140774. [Google Scholar] [CrossRef]
- Zhang, M.; Zhang, Z.; Zhao, Z.; Huang, H.; Anjum, D.H.; Wang, D.; He, J.-H.; Huang, K.-W. Tunable Selectivity for Electrochemical CO2 Reduction by Bimetallic Cu–Sn Catalysts: Elucidating the Roles of Cu and Sn. ACS Catal. 2021, 11, 11103–11108. [Google Scholar] [CrossRef]
- Smith, J.H.C. Molecular equivalence of carbohydrates to carbon dioxide in photosynthesis. Plant Physiol. 1943, 18, 207–223. [Google Scholar] [CrossRef]
- Hong, Z.; Wang, C.; Zhang, X.; Wang, X.; Zhang, Y. Research Progress of Copper-Based Bimetallic Electrocatalytic Reduction of CO2. Catalysts 2023, 13, 376. [Google Scholar] [CrossRef]
- Skúlason, E.; Tripkovic, V.; Björketun, M.E.; Gudmundsdóttir, S.; Karlberg, G.; Rossmeisl, J.; Bligaard, T.; Jónsson, H.; Nørskov, J.K. Modeling the Electrochemical Hydrogen Oxidation and Evolution Reactions on the Basis of Density Functional Theory Calculations. J. Phys. Chem. C 2010, 114, 110913. [Google Scholar] [CrossRef]
- Nørskov, J.K.; Bligaard, T.; Logadottir, A.; Kitchin, J.R.; Chen, J.G.; Pandelov, S.; Stimming, U. Trends in the Exchange Current for Hydrogen Evolution. J. Electrochem. Soc. 2005, 152, J23. [Google Scholar] [CrossRef]
- Huang, J.; Mensi, M.; Oveisi, E.; Mantella, V.; Buonsanti, R. Structural Sensitivities in Bimetallic Catalysts for Electrochemical CO2 Reduction Revealed by Ag–Cu Nanodimers. J. Am. Chem. Soc. 2019, 141, 2490–2499. [Google Scholar] [CrossRef] [PubMed]
- Choi, C.; Cai, J.; Lee, C.; Lee, H.M.; Xu, M.; Huang, Y. Intimate atomic Cu-Ag interfaces for high CO2RR selectivity towards CH4 at low over potential. Nano Res. 2021, 14, 3497–3501. [Google Scholar] [CrossRef]
- Jeon, Y.E.; Ko, Y.N.; Kim, J.; Choi, H.; Lee, W.; Kim, Y.E.; Lee, D.; Kim, H.Y.; Park, K.T. Selective production of ethylene from CO2; over CuAg tandem electrocatalysts. J. Ind. Eng. Chem. 2022, 116, 191–198. [Google Scholar] [CrossRef]
- Kostecki, R.; Augustynski, J. Photon-driven reduction reactions on silver. J. Appl. Electrochem. 1993, 23, 567–572. [Google Scholar] [CrossRef]
- Ni, Z.; Liang, H.; Yi, Z.; Guo, R.; Liu, C.; Liu, Y.; Sun, H.; Liu, X. Research progress of electrochemical CO2 reduction for copper-based catalysts to multicarbon products. Coord. Chem. Rev. 2021, 441, 213983. [Google Scholar] [CrossRef]
- Wei-Yin, L.; Sha, Z.; Lian, H. Structural, optical, electronic, and magnetic properties of Ag-Cu bimetallic clusters: A density functional theory study. J. Nanoparticle Res. 2018, 20, 188. [Google Scholar] [CrossRef]
- Ferrando, R.; Fortunelli, A.; Johnston, R.L. Searching for the optimum structures of alloy nanoclusters. Phys. Chem. Chem. Phys. 2007, 10, 640–649. [Google Scholar] [CrossRef]
- Li, W.; Chen, F. A density functional theory study of structural, electronic, optical and magnetic properties of small Ag–Cu nanoalloys. J. Nanoparticle Res. 2013, 15, 1809. [Google Scholar] [CrossRef]
- Kilimis, D.A.; Papageorgiou, D.G. Structural and electronic properties of small bimetallic Ag–Cu clusters. Eur. Phys. J. D 2009, 56, 189–197. [Google Scholar] [CrossRef]
- Ding, L.-P.; Kuang, X.-Y.; Shao, P.; Zhao, Y.-R.; Li, Y.-F. A comparative study on geometries, stabilities, and electronic properties between bimetallic AgnX(X= Au, Cu; n=1−8) and pure silver clusters. Chin. Phys. B 2012, 21, 043601. [Google Scholar] [CrossRef]
- Ma, W.; Chen, F. Optical and electronic properties of Cu doped Ag clusters. J. Alloy. Compd. 2012, 541, 79–83. [Google Scholar] [CrossRef]
- Rao, Y.; Lei, Y.; Cui, X.; Liu, Z.; Chen, F. Optical and magnetic properties of Cu-doped 13-atom Ag nanoclusters. J. Alloy. Compd. 2013, 565, 50–55. [Google Scholar] [CrossRef]
- Lei, X.L.; Wu, M.S.; Liu, G.; Xu, B.; Ouyang, C.Y. The Role of Cu in Degrading Adsorption of CO on the PtnCu Clusters. J. Phys. Chem. A 2013, 117, 8293–8297. [Google Scholar] [CrossRef] [PubMed]
- Austin, N.; Butina, B.; Mpourmpakis, G. CO2 activation on bimetallic CuNi nanoparticles. Prog. Nat. Sci. 2016, 26, 487–492. [Google Scholar] [CrossRef]
- Baraiya, B.A.; Mankad, V.; Jha, P.K. Uncovering the structural, electronic and vibrational properties of atomically precise PdmCun clusters and their interaction with CO2 molecule. Spectrochim. Acta Part A: Mol. Biomol. Spectrosc. 2019, 229, 117912. [Google Scholar] [CrossRef]
- Nabi, A.G.; Hussain, A.; Di Tommaso, D. Ab initio random structure searching and catalytic properties of copper-based nanocluster with Earth-abundant metals for the electrocatalytic CO2-to-CO conversion. Mol. Catal. 2022, 527, 112406. [Google Scholar] [CrossRef]
- Vogt, C.; Monai, M.; Sterk, E.B.; Palle, J.; Melcherts, A.E.M.; Zijlstra, B.; Groeneveld, E.; Berben, P.H.; Boereboom, J.M.; Hensen, E.J.M.; et al. Understanding carbon dioxide activation and carbon–carbon coupling over nickel. Nat. Commun. 2019, 10, 5330. [Google Scholar] [CrossRef]
- Alotaibi, M.; Alotaibi, T.; Alshammari, M.; Ismael, A.K. The Structural and Electronic Properties of the Ag5 Atomic Quantum Cluster Interacting with CO2, CH4, and H2O Molecules. Crystals 2023, 13, 1691. [Google Scholar] [CrossRef]
- Yang, Z.; Fu, Z.; Zhang, Y.; Wu, R. Direct CO Oxidation by Lattice Oxygen on Zr-Doped Ceria Surfaces. Catal. Lett. 2010, 141, 78–82. [Google Scholar] [CrossRef]
- Zhang, X.-G.; Liu, Y.; Zhan, C.; Jin, X.; Chi, Q.; Wu, D.-Y.; Zhao, Y.; Tian, Z.-Q. Reaction Selectivity for Plasmon-Driven Carbon Dioxide Reduction on Silver Clusters: A Theoretical Prediction. J. Phys. Chem. C 2019, 123, 11101–11108. [Google Scholar] [CrossRef]
- Chu, C.-H.; Leung, C.-W. The convolution equation of Choquet and Deny on [IN]-groups. Integral Equ. Oper. Theory 2001, 40, 391–402. [Google Scholar] [CrossRef]
- Giannozzi, P.; Baroni, S.; Bonini, N.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Chiarotti, G.L.; Cococcioni, M.; Dabo, I.; et al. QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 2009, 21, 395502. [Google Scholar] [CrossRef] [PubMed]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef]
- Blöchl, P.E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979. [Google Scholar] [CrossRef]
- Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775. [Google Scholar] [CrossRef]
- Henkelman, G.; Arnaldsson, A.; Jónsson, H. A fast and robust algorithm for Bader decomposition of charge density. Comput. Mater. Sci. 2005, 36, 354–360. [Google Scholar] [CrossRef]
- Momma, K.; Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 2011, 44, 1272–1276. [Google Scholar] [CrossRef]
System | Eads (eV) | dO=C=O (Å) | θOCO(o) |
---|---|---|---|
Cu4Ag1 | |||
Structure 1 | 0.95 | 1.29, 1.24 | 135.50 |
Structure 2 | 0.54 | 1.28, 1.24 | 136.59 |
Structure 3 | 0.27 | 1.27, 1.22 | 139.65 |
Cu1Ag4 | |||
Structure 1 | 0.87 | 1.18, 1.19 | 179.67 |
Structure 2 | 0.40 | 1.19, 1.19 | 179.65 |
Structure 3 | 0.81 | 1.19, 1.19 | 179.71 |
Structure 4 | 0.40 | 1.19, 1.19 | 179.50 |
System | Eads (eV) | dO=C=O (Å) | θOCO(o) |
---|---|---|---|
Cu3-Ag2 | |||
Structure 1 | 0.81 | 1.27, 1.26 | 137.65 |
Structure 2 | 0.13 | 1.18, 1.19 | 179.74 |
Structure 3 | 0.13 | 1.19, 1.19 | 179.68 |
Structure 4 | 0.27 | 1.19, 1.19 | 179.39 |
Structure 5 | 0.40 | 1.19, 1.18 | 179.89 |
Cu2-Ag3 | |||
Structure 1 | 0.81 | 1.24, 1.26 | 140.36 |
Structure 2 | 0.54 | 1.19. 1.19 | 179.65 |
Structure 3 | 0.54 | 1.19, 1.18 | 179.79 |
Structure 4 | 0.68 | 1.19, 1.18 | 179.78 |
Structure 5 | 0.27 | 1.18, 1.19 | 179.06 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alotaibi, T.; Alotaibi, M.; Alhawiti, F.; Aldosari, N.; Alsunaid, M.; Aldawas, L.; Qahtan, T.F.; Ismael, A.K. Tuning the Electronic Properties of CumAgn Bimetallic Clusters for Enhanced CO2 Activation. Int. J. Mol. Sci. 2024, 25, 12053. https://doi.org/10.3390/ijms252212053
Alotaibi T, Alotaibi M, Alhawiti F, Aldosari N, Alsunaid M, Aldawas L, Qahtan TF, Ismael AK. Tuning the Electronic Properties of CumAgn Bimetallic Clusters for Enhanced CO2 Activation. International Journal of Molecular Sciences. 2024; 25(22):12053. https://doi.org/10.3390/ijms252212053
Chicago/Turabian StyleAlotaibi, Turki, Moteb Alotaibi, Fatimah Alhawiti, Nawir Aldosari, Majd Alsunaid, Lama Aldawas, Talal F. Qahtan, and Ali K. Ismael. 2024. "Tuning the Electronic Properties of CumAgn Bimetallic Clusters for Enhanced CO2 Activation" International Journal of Molecular Sciences 25, no. 22: 12053. https://doi.org/10.3390/ijms252212053
APA StyleAlotaibi, T., Alotaibi, M., Alhawiti, F., Aldosari, N., Alsunaid, M., Aldawas, L., Qahtan, T. F., & Ismael, A. K. (2024). Tuning the Electronic Properties of CumAgn Bimetallic Clusters for Enhanced CO2 Activation. International Journal of Molecular Sciences, 25(22), 12053. https://doi.org/10.3390/ijms252212053