Genomic and Bioinformatics Analysis of Familial Partial Lipodystrophy Type 3 Identified in a Patient with Novel PPARγ Mutation and Robust Response to Pioglitazone
Abstract
:1. Introduction
2. Results
2.1. Whole Exome Sequencing and Variant Filtrations
2.2. Sanger Sequencing
2.3. Comprehensive Analysis of PPARγ Gene Variants
2.4. Prediction Analysis
2.5. Conserved Analysis
2.6. Molecular Docking Between PPARγ and Pioglitazone
3. Discussion
4. Materials and Methods
4.1. Case History
4.2. Molecular Genetic Tests
4.2.1. DNA Extraction
4.2.2. WES Analysis
4.2.3. Sanger Sequencing for Segregation and Validation Variant
4.3. Computational Analysis
4.3.1. Prediction Tools
4.3.2. Comparative Genomics and Phylogenetic Analysis
4.3.3. Protein Modelling and Stability
4.3.4. Molecular Docking
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Garg, A. Acquired and inherited lipodystrophies. N. Engl. J. Med. 2004, 350, 1220–1234. [Google Scholar] [CrossRef] [PubMed]
- Foss-Freitas, M.C.; Akinci, B.; Luo, Y.; Stratton, A.; Oral, E.A. Diagnostic strategies and clinical management of lipodystrophy. Expert Rev. Endocrinol. Metab. 2020, 15, 95–114. [Google Scholar] [CrossRef] [PubMed]
- Garg, A. Clinical review: Lipodystrophies: Genetic and acquired body fat disorders. J. Clin. Endocrinol. Metab. 2011, 96, 3313–3325. [Google Scholar] [CrossRef] [PubMed]
- Rutkowska, L.; Salachna, D.; Lewandowski, K.; Lewinski, A.; Gach, A. Familial Partial Lipodystrophy-Literature Review and Report of a Novel Variant in PPARG Expanding the Spectrum of Disease-Causing Alterations in FPLD3. Diagnostics 2022, 12, 1122. [Google Scholar] [CrossRef]
- Barroso, I.; Gurnell, M.; Crowley, V.E.; Agostini, M.; Schwabe, J.W.; Soos, M.A.; Maslen, G.L.; Williams, T.D.; Lewis, H.; Schafer, A.J.; et al. Dominant negative mutations in human PPARgamma associated with severe insulin resistance, diabetes mellitus and hypertension. Nature 1999, 402, 880–883. [Google Scholar] [CrossRef]
- Jeninga, E.H.; Gurnell, M.; Kalkhoven, E. Functional implications of genetic variation in human PPARγ. Trends Endocrinol. Metab. 2009, 20, 380–387. [Google Scholar] [CrossRef]
- Vasandani, C.; Li, X.; Sekizkardes, H.; Brown, R.; Garg, A. SUN-LB111 Comparison of Phenotype and Metabolic Abnormalities Among Familial Partial Lipodystrophy Due to LMNA or PPARG Variants. J. Endocr. Soc. 2020, 4, SUN-LB111. [Google Scholar] [CrossRef]
- Bagias, C.; Xiarchou, A.; Bargiota, A.; Tigas, S. Familial partial lipodystrophy (FPLD): Recent insights. Diabetes Metab. Syndr. Obes. 2020, 13, 1531–1544. [Google Scholar] [CrossRef]
- Abuzenadah, A.; Alganmi, N.; AlQurashi, R.; Hawsa, E.; AlOtibi, A.; Hummadi, A.; Nahari, A.A.; AlZelaye, S.; Aljuhani, N.R.; Al-Attas, M.; et al. Familial Screening for the Prevention of Rare Diseases: A Focus on Lipodystrophy in Southern Saudi Arabia. J. Epidemiol. Glob. Health 2024, 14, 162–168. [Google Scholar] [CrossRef]
- Hummadi, A.; Nahari, A.A.; Alhagawy, A.J.; Zakri, I.; Abutaleb, R.; Yafei, S. Congenital generalized lipodystrophy in two siblings from Saudi Arabia: A case report. Clin. Case Rep. 2022, 10, e05720. [Google Scholar] [CrossRef]
- Lehrke, M.; Lazar, M.A. The Many Faces of PPARγ. Cell 2005, 123, 993–999. [Google Scholar] [CrossRef] [PubMed]
- Richards, S.; Aziz, N.; Bale, S.; Bick, D.; Das, S.; Gastier-Foster, J.; Grody, W.W.; Hegde, M.; Lyon, E.; Spector, E.; et al. Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 2015, 17, 405–424. [Google Scholar] [CrossRef] [PubMed]
- Eberhardt, J.; Santos-Martins, D.; Tillack, A.F.; Forli, S. AutoDock Vina 1.2.0: New Docking Methods, Expanded Force Field, and Python Bindings. J. Chem. Inf. Model. 2021, 61, 3891–3898. [Google Scholar] [CrossRef] [PubMed]
- Broekema, M.F.; Savage, D.B.; Monajemi, H.; Kalkhoven, E. Gene-gene and gene-environment interactions in lipodystrophy: Lessons learned from natural PPARγ mutants. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2019, 1864, 715–732. [Google Scholar] [CrossRef]
- Chen, X.; Ma, Z.; Chen, P.; Song, X.; Li, W.; Yu, X.; Xie, J. Case Report: A New Peroxisome Proliferator-Activated Receptor Gamma Mutation Causes Familial Partial Lipodystrophy Type 3 in a Chinese Patient. Front Endocrinol. 2022, 13, 830708. [Google Scholar] [CrossRef]
- Araujo-Vilar, D.; Santini, F. Diagnosis and treatment of lipodystrophy: A step-by-step approach. J. Endocrinol. Investig. 2019, 42, 61–73. [Google Scholar] [CrossRef]
- Tsai, Y.-S.; Tsai, P.-J.; Jiang, M.-J.; Chou, T.-Y.; Pendse, A.; Kim, H.-S.; Maeda, N. Decreased PPARγ Expression Compromises Perigonadal-Specific Fat Deposition and Insulin Sensitivity. Mol. Endocrinol. 2009, 23, 1787–1798. [Google Scholar] [CrossRef]
- Agostini, M.; Schoenmakers, E.; Beig, J.; Fairall, L.; Szatmari, I.; Rajanayagam, O.; Muskett, F.W.; Adams, C.; Marais, A.D.; O’Rahilly, S.; et al. A Pharmacogenetic Approach to the Treatment of Patients with PPARG Mutations. Diabetes 2018, 67, 1086–1092. [Google Scholar] [CrossRef]
- Iizaka, T.; Kodama, E.; Mikura, K.; Iida, T.; Imai, H.; Hashizume, M.; Kigawa, Y.; Sugisawa, C.; Tadokoro, R.; Endo, K.; et al. Clinical characteristics and efficacy of pioglitazone in a Japanese patient with familial partial lipodystrophy due to peroxisome proliferator-activated receptor γ gene mutation. Endocr. J. 2023, 70, 69–76. [Google Scholar] [CrossRef]
- Gudmundsson, S.; Singer-Berk, M.; Watts, N.A.; Phu, W.; Goodrich, J.K.; Solomonson, M.; Rehm, H.L.; MacArthur, D.G.; O’Donnell-Luria, A. Variant interpretation using population databases: Lessons from gnomAD. Hum. Mutat. 2022, 43, 1012–1030. [Google Scholar] [CrossRef]
- Kulkarni, S.; Roy, S. Clinical Genomics; Academic Press: Cambridge, MA, USA, 2014. [Google Scholar]
- Wong, L.-J.C. Next Generation Sequencing; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Laskowski, R.A. PDBsum: Summaries and analyses of PDB structures. Nucleic Acids Res. 2001, 29, 221–222. [Google Scholar] [CrossRef]
- Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010, 31, 455–461. [Google Scholar] [CrossRef]
Variables | Before Pioglitazone | After Pioglitazone | Reference Ranges |
---|---|---|---|
BMI kg/m2 | 28.5 | 27.4 | |
Fasting blood glucose, mg/dL | 325 | 102 | <100 |
HbA1c, % | >14 | 6.7 | <5.7 |
C-peptide, ng/mL | 2.3 | 1.6 | 1.1–4.4 |
Insulin, mIU/L | 27 | 14 | 0–25 |
Anti-GAD antibodies, U/mL | <5 | <5 | <10 |
Total cholesterol, mg/dL | 171 | 135 | <200 |
HDL cholesterol, mg/dL | 22 | 31 | >50 |
LDL cholesterol, mg/dL | 102 | 74 | <130 |
Triglycerides, mg/dL | >1000 | 198 | <150 |
Leptin, ng/mL | 4.7 | 2.9 | 3.7–11.1 |
Adiponectin, µg/mL | 9.3 | 6.1 | 8.2–19 |
ALT, U/L | 83 | 37 | <40 |
AST, U/L | 67 | 26 | <40 |
Creatinine, mg/dL | 0.5 | 0.65 | 0.6–1.2 |
Urea, mg/dL | 14 | 12 | 15–45 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hummadi, A.; Yafei, S.; Mutawwam, D.A.; Abutaleb, R.; Solan, Y.; Khawaji, A.; Alhagawy, A.J.; Algohani, T.; Khardali, M.; Hakami, M.; et al. Genomic and Bioinformatics Analysis of Familial Partial Lipodystrophy Type 3 Identified in a Patient with Novel PPARγ Mutation and Robust Response to Pioglitazone. Int. J. Mol. Sci. 2024, 25, 12060. https://doi.org/10.3390/ijms252212060
Hummadi A, Yafei S, Mutawwam DA, Abutaleb R, Solan Y, Khawaji A, Alhagawy AJ, Algohani T, Khardali M, Hakami M, et al. Genomic and Bioinformatics Analysis of Familial Partial Lipodystrophy Type 3 Identified in a Patient with Novel PPARγ Mutation and Robust Response to Pioglitazone. International Journal of Molecular Sciences. 2024; 25(22):12060. https://doi.org/10.3390/ijms252212060
Chicago/Turabian StyleHummadi, Abdulrahman, Saeed Yafei, Dhayf Alrahman Mutawwam, Raed Abutaleb, Yahia Solan, Abdullah Khawaji, Ali Jaber Alhagawy, Turki Algohani, Mamdouh Khardali, Mohammed Hakami, and et al. 2024. "Genomic and Bioinformatics Analysis of Familial Partial Lipodystrophy Type 3 Identified in a Patient with Novel PPARγ Mutation and Robust Response to Pioglitazone" International Journal of Molecular Sciences 25, no. 22: 12060. https://doi.org/10.3390/ijms252212060
APA StyleHummadi, A., Yafei, S., Mutawwam, D. A., Abutaleb, R., Solan, Y., Khawaji, A., Alhagawy, A. J., Algohani, T., Khardali, M., Hakami, M., Daghriri, A., Hezam, W., & Kariri, N. (2024). Genomic and Bioinformatics Analysis of Familial Partial Lipodystrophy Type 3 Identified in a Patient with Novel PPARγ Mutation and Robust Response to Pioglitazone. International Journal of Molecular Sciences, 25(22), 12060. https://doi.org/10.3390/ijms252212060