Unveiling Biomarkers in Head and Neck Squamous Cell Carcinoma through Bioinformatics: The Role of SPP1 and KRT78
Abstract
:1. Introduction
2. Results
2.1. Identification of DEGs in Three HNSCC Datasets
2.2. GO and KEGG Pathway Analysis on Up-Regulated DEGs
2.3. GO and KEGG Pathway Analysis on Down-Regulated DEGs
2.4. Identification of co-DEGs and Their GO and KEGG Pathway Analysis
2.5. PPI Network Construction of co-DEGs and Identification of Hub Genes
2.6. Expression Level of Selected Hub Genes in Tumors of Patients with HNSCC
2.7. Survival Rate Related to Hub Genes Expression in Patients with Cancer
3. Discussion
4. Materials and Methods
4.1. Microarray Data
4.2. Identification of DEGs and Visualizing the Data
4.3. GO and KEGG Pathway Analysis of Up- and Down-Regulated DEGs
4.4. PPI Network Build Up on Up- and Down-Regulated DEGs for Hub Genes Identification
4.5. Analyzing the Hub Genes Expression and Their Impact on Survival Rate in Patients with Cancer
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bhat, G.R.; Hyole, R.G.; Li, J. Head and Neck Cancer: Current Challenges and Future Perspectives. In Advances in Cancer Research; Elsevier: Amsterdam, The Netherlands, 2021; Volume 152, pp. 67–102. [Google Scholar]
- Cui, J.; Zheng, L.; Zhang, Y.; Xue, M. Bioinformatics Analysis of DNMT1 Expression and Its Role in Head and Neck Squamous Cell Carcinoma Prognosis. Sci. Rep. 2021, 11, 2267. [Google Scholar] [CrossRef] [PubMed]
- Johnson, D.E.; Burtness, B.; Leemans, C.R.; Lui, V.W.Y.; Bauman, J.E.; Grandis, J.R. Head and Neck Squamous Cell Carcinoma. Nat. Rev. Dis. Prim. 2020, 6, 92. [Google Scholar] [CrossRef] [PubMed]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- MICHA, R. Checkpoint Immunotherapy in Head and Neck Cancers. Physiol. Behav. 2017, 176, 100–106. [Google Scholar] [CrossRef]
- Shibata, H.; Saito, S.; Uppaluri, R. Immunotherapy for Head and Neck Cancer: A Paradigm Shift from Induction Chemotherapy to Neoadjuvant Immunotherapy. Front. Oncol. 2021, 11, 727433. [Google Scholar] [CrossRef]
- Kaidar-Person, O.; Gil, Z.; Billan, S. Precision Medicine in Head and Neck Cancer. Drug Resist. Updat. 2018, 40, 13–16. [Google Scholar] [CrossRef]
- Javed, M.; Bukhari, R.S.; Rasool, R.; Alhomrani, M.; Alghamdi, S.A. Screening of Four Signature Genes for Clinical Testing through Bioinformatics and in Vitro Methods in Head and Neck Squamous Cell Carcinoma. Am. J. Cancer Res. 2023, 13, 1826–1844. [Google Scholar]
- Deng, J.L.; Xu, Y.H.; Wang, G. Identification of Potential Crucial Genes and Key Pathways in Breast Cancer Using Bioinformatic Analysis. Front. Genet. 2019, 10, 695. [Google Scholar] [CrossRef]
- Ling, B.; Liao, X.; Huang, Y.; Liang, L.; Jiang, Y.; Pang, Y.; Qi, G. Identification of Prognostic Markers of Lung Cancer through Bioinformatics Analysis and in Vitro Experiments. Int. J. Oncol. 2020, 56, 193–205. [Google Scholar] [CrossRef]
- Jafari, S.; Ravan, M.; Karimi-Sani, I.; Aria, H.; Hasan-Abad, A.M.; Banasaz, B.; Atapour, A.; Sarab, G.A. Screening and Identification of Potential Biomarkers for Pancreatic Cancer: An Integrated Bioinformatics Analysis. Pathol. Res. Pract. 2023, 249, 154726. [Google Scholar] [CrossRef]
- Vella, D.; Zoppis, I.; Mauri, G.; Mauri, P.; Di Silvestre, D. From Protein-Protein Interactions to Protein Co-Expression Networks: A New Perspective to Evaluate Large-Scale Proteomic Data. Eurasip J. Bioinforma. Syst. Biol. 2017, 2017, 6. [Google Scholar] [CrossRef] [PubMed]
- Cheon, J.; Jung, H.; Kang, B.Y.; Kim, M. Impact of Potential Biomarkers, SNRPE, COX7C, and RPS27, on Idiopathic Parkinson’s Disease. Genes Genom. 2024. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.; Zheng, A.; Li, F.; Wen, S.; Chen, S.; Tao, Z. Screening and Identification of Potential Target Genes in Head and Neck Cancer Using Bioinformatics Analysis. Oncol. Lett. 2019, 18, 2955–2966. [Google Scholar] [CrossRef]
- Ye, Y.; Wang, J.; Liang, F.; Song, P.; Yan, X.; Wu, S.; Huang, X.; Han, P. Identification of Key Genes for HNSCC from Public Databases Using Bioinformatics Analysis. Cancer Cell Int. 2021, 21, 549. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Wu, W.; Li, J.; Liu, C.; Xiao, Z.; Lai, Q.; Qin, R.; Shen, M.; Shi, S.; Kang, M. Bioinformatics Analysis of the Expression and Role of MicroRNA-221-3p in Head and Neck Squamous Cell Carcinoma. BMC Cancer 2021, 21, 395. [Google Scholar] [CrossRef]
- Fu, Y.; Ling, Z.; Arabnia, H.; Deng, Y. Current Trend and Development in Bioinformatics Research. BMC Bioinform. 2020, 21, 538. [Google Scholar] [CrossRef]
- Stetler-stevenson, W.G.; Aznavoorian, S.; Liotta, A. Tumor Cell Interactions with the Extracellular Matrix during Invasion and Metastasis. Annu. Rev. Cell Biol. 1993, 9, 541–573. [Google Scholar] [CrossRef]
- Mohan, V.; Das, A.; Sagi, I. Emerging Roles of ECM Remodeling Processes in Cancer. Semin. Cancer Biol. 2020, 62, 192–200. [Google Scholar] [CrossRef]
- Najafi, M.; Farhood, B.; Mortezaee, K. Extracellular Matrix (ECM) Stiffness and Degradation as Cancer Drivers. J. Cell. Biochem. 2019, 120, 2782–2790. [Google Scholar] [CrossRef]
- Li, Z.; Chen, C.; Wang, J.; Wei, M.; Liu, G.; Qin, Y.; She, L.; Liu, Y.; Huang, D.; Tian, Y.; et al. Overexpressed PLAU and Its Potential Prognostic Value in Head and Neck Squamous Cell Carcinoma. PeerJ 2021, 9, e10746. [Google Scholar] [CrossRef]
- Tanis, T.; Cincin, Z.B.; Gokcen-Rohlig, B.; Bireller, E.S.; Ulusan, M.; Tanyel, C.R.; Cakmakoglu, B. The Role of Components of the Extracellular Matrix and Inflammation on Oral Squamous Cell Carcinoma Metastasis. Arch. Oral Biol. 2014, 59, 1155–1163. [Google Scholar] [CrossRef] [PubMed]
- Köhrmann, A.; Kammerer, U.; Kapp, M.; Dietl, J.; Anacker, J. Expression of Matrix Metalloproteinases (MMPs) in Primary Human Breast Cancer and Breast Cancer Cell Lines: New Findings and Review of the Literature. BMC Cancer 2009, 9, 188. [Google Scholar] [CrossRef] [PubMed]
- El Badry, A.A.; El-Fadle, A.A.; El-Balshy, A.L. Tissue Inhibitor of Matrix Metalloproteinase-2 in Nasopharyngeal Carcinoma. MedGenMed 2007, 9, 3. [Google Scholar] [PubMed]
- Huang, J.; Zhang, L.; Wan, D.; Zhou, L.; Zheng, S.; Lin, S.; Qiao, Y. Extracellular Matrix and Its Therapeutic Potential for Cancer Treatment. Signal Transduct. Target. Ther. 2021, 6, 153. [Google Scholar] [CrossRef] [PubMed]
- Bo, M.; Niegowska, M.; Erre, G.L.; Piras, M.; Longu, M.G.; Manchia, P.; Manc, M.; Passiu, G.; Sechi, L.A. Rheumatoid Arthritis Patient Antibodies Highly Recognize IL-2 in the Immune Response Pathway Involving IRF5 and EBV Antigens. Sci. Rep. 2018, 8, 1789. [Google Scholar] [CrossRef]
- Strzelczyk, J.K.; Świȩtek, A.; Biernacki, K.; Gołąbek, K.; Gaździcka, J.; Miśkiewicz-Orczyk, K.; Ścierski, W.; Strzelczyk, J.; Fiolka, R.; Misiołek, M. PCR Detection of Epstein-Barr Virus (EBV) DNA in Patients with Head and Neck Squamous Cell Carcinoma, in Patients with Chronic Tonsillitis, and in Healthy Individuals. BioMed Res. Int. 2022, 2022, 90–95. [Google Scholar] [CrossRef]
- Li, C.; Zhao, Y.; Zhang, W.; Zhang, W. Increased Prevalence of TH17 Cells in the Peripheral Blood of Patients with Head and Neck Squamous Cell Carcinoma. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endodontol. 2011, 112, 81–89. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, X.; Gupta, A.; Fang, X.; Wang, L.; Zhang, C. Expression of IL-17 with Tumor Budding as a Prognostic Marker in Oral Squamous Cell Carcinoma. Am. J. Transl. Res. 2019, 11, 1876–1883. [Google Scholar]
- Zhang, W.; Huang, X.; Huang, R.; Zhu, H.; Ye, P.; Lin, X.; Zhang, S.; Wu, M.; Jiang, F. MMP1 Overexpression Promotes Cancer Progression and Associates with Poor Outcome in Head and Neck Carcinoma. Comput. Math. Methods Med. 2022, 2022, 3058342. [Google Scholar] [CrossRef]
- Yu, J.; He, Z.; He, X.; Luo, Z.; Lian, L.; Wu, B.; Lan, P.; Chen, H. Comprehensive Analysis of the Expression and Prognosis for MMPs in Human Colorectal Cancer. Front. Oncol. 2021, 11, 771099. [Google Scholar] [CrossRef]
- Gobin, E.; Bagwell, K.; Wagner, J.; Mysona, D.; Sandirasegarane, S.; Smith, N.; Bai, S.; Sharma, A.; Schleifer, R.; She, J.X. A Pan-Cancer Perspective of Matrix Metalloproteases (MMP) Gene Expression Profile and Their Diagnostic/Prognostic Potential. BMC Cancer 2019, 19, 581. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.; Li, Y.; Dai, Y.; Li, J.; Qin, Y.; Zhu, Y.; Zeng, T.; Ban, X.; Fu, L.; Guan, X.Y. Characterization of Tumor Suppressive Function of Cornulin in Esophageal Squamous Cell Carcinoma. PLoS ONE 2013, 8, e68838. [Google Scholar] [CrossRef] [PubMed]
- Salahshourifar, I.; Vincent-Chong, V.K.; Chang, H.Y.; Ser, H.L.; Ramanathan, A.; Kallarakkal, T.G.; Rahman, Z.A.A.; Ismail, S.M.; Prepageran, N.; Mustafa, W.M.W.; et al. Downregulation of CRNN Gene and Genomic Instability at 1q21.3 in Oral Squamous Cell Carcinoma. Clin. Oral Investig. 2015, 19, 2273–2283. [Google Scholar] [CrossRef] [PubMed]
- Saleem, S.; Aleem, I.; Atiq, A.; Tariq, S.; Babar, A.; Bakar, M.A.; Syed, M.; Maruf, M.; Mahmood, M.T.; Zeshan, M.; et al. Expression of Cornulin in Tongue Squamous Cell Carcinoma. Ecancermedicalscience 2021, 15, 1. [Google Scholar] [CrossRef]
- Li, C.; Xiao, L.; Jia, J.; Li, F.; Wang, X.; Duan, Q.; Jing, H.; Yang, P.; Chen, C.; Wang, Q.; et al. Cornulin Is Induced in Psoriasis Lesions and Promotes Keratinocyte Proliferation via Phosphoinositide 3-Kinase/Akt Pathways. J. Investig. Dermatol. 2019, 139, 71–80. [Google Scholar] [CrossRef]
- Mamoor, S. Differential Expression of SCEL in Cancer of the Skin: Malignant Melanoma. 2023. Available online: https://osf.io/preprints/osf/gzyna (accessed on 30 October 2023). [CrossRef]
- Li, Y.; Yuan, R.; Ren, T.; Yang, B.; Miao, H.; Liu, L.; Li, Y.; Cai, C.; Yang, Y.; Hu, Y.; et al. Role of Sciellin in Gallbladder Cancer Proliferation and Formation of Neutrophil Extracellular Traps. Cell Death Dis. 2021, 12, 30. [Google Scholar] [CrossRef]
- Cheng, Y.; Wang, K.; Geng, L.; Sun, J.; Xu, W.; Liu, D.; Gong, S.; Zhu, Y. Identification of Candidate Diagnostic and Prognostic Biomarkers for Pancreatic Carcinoma. EBioMedicine 2019, 40, 382–393. [Google Scholar] [CrossRef]
- Xu, C.; Sun, L.; Jiang, C.; Zhou, H.; Gu, L.; Liu, Y.; Xu, Q. SPP1, Analyzed by Bioinformatics Methods, Promotes the Metastasis in Colorectal Cancer by Activating EMT Pathway. Biomed. Pharmacother. 2017, 91, 1167–1177. [Google Scholar] [CrossRef]
- Feng, S.; Yuan, W.; Sun, Z.; Guo, X.; Ling, J.; Chang, A.; Zhao, H.; Zhuo, X. SPP1 as a Key Gene in the Lymph Node Metastasis and a Potential Predictor of Poor Prognosis in Head and Neck Carcinoma. J. Oral Pathol. Med. 2022, 51, 620–629. [Google Scholar] [CrossRef]
- Cai, X.; Zhang, H.; Li, T. The Role of SPP1 as a Prognostic Biomarker and Therapeutic Target in Head and Neck Squamous Cell Carcinoma. Int. J. Oral Maxillofac. Surg. 2022, 51, 732–741. [Google Scholar] [CrossRef]
- Cho, W.Y.; Hong, S.H.; Singh, B.; Islam, M.A.; Lee, S.; Lee, A.Y.; Gankhuyag, N.; Kim, J.E.; Yu, K.N.; Kim, K.H.; et al. Suppression of Tumor Growth in Lung Cancer Xenograft Model Mice by Poly(Sorbitol-Co-PEI)-Mediated Delivery of Osteopontin SiRNA. Eur. J. Pharm. Biopharm. 2015, 94, 450–462. [Google Scholar] [CrossRef] [PubMed]
- Zhuo, C.; Li, X.; Zhuang, H.; Tian, S.; Cui, H.; Jiang, R.; Liu, C.; Tao, R.; Lin, X. Elevated THBS2, COL1A2, and SPP1 Expression Levels as Predictors of Gastric Cancer Prognosis. Cell. Physiol. Biochem. 2016, 40, 1316–1324. [Google Scholar] [CrossRef]
- Tang, H.; Chen, J.; Han, X.; Feng, Y.; Wang, F. Upregulation of SPP1 Is a Marker for Poor Lung Cancer Prognosis and Contributes to Cancer Progression and Cisplatin Resistance. Front. Cell Dev. Biol. 2021, 9, 646390. [Google Scholar] [CrossRef] [PubMed]
- Rogers, L.; Gilbert, M.; Vogelbaum, M.A. Intracranial Meningiomas of Atypical (WHO Grade II) Histology. J. Neurooncol. 2010, 99, 393–405. [Google Scholar] [CrossRef] [PubMed]
- Bosman, F.T.; Carneiro, F.; Hruban, R.H.; Theise, N.O. World Health Organization Classification of Tumours of the Digestive System 2010; World Health Organization: Geneva, Switzerland, 2010. [Google Scholar]
- Jacob, J.T.; Coulombe, P.A.; Kwan, R.; Omary, M.B. Types I and II Keratin Intermediate Filaments. Cold Spring Harb. Perspect. Biol. 2018, 10, a018275. [Google Scholar] [CrossRef] [PubMed]
- Karantza, V. Keratins in Health and Cancer: More than Mere Epithelial Cell Markers. Oncogene 2011, 30, 127–138. [Google Scholar] [CrossRef]
- Devpura, S.; Thakur, J.S.; Sethi, S.; Naik, V.M.; Naik, R. Diagnosis of Head and Neck Squamous Cell Carcinoma Using Raman Spectroscopy: Tongue Tissues. J. Raman Spectrosc. 2012, 43, 490–496. [Google Scholar] [CrossRef]
- Sakamoto, K.; Aragaki, T.; Morita, K.; Kawachi, H.; Kayamori, K.; Nakanishi, S.; Omura, K.; Miki, Y.; Okada, N.; Katsube, K.; et al. Down-Regulation of Keratin 4 and Keratin 13 Expression in Oral Squamous Cell Carcinoma and Epithelial Dysplasia: A Clue for Histopathogenesis. Histopathology 2011, 58, 531–542. [Google Scholar] [CrossRef]
- Langbein, L.; Eckhart, L.; Fischer, H.; Rogers, M.A.; Praetzel-Wunder, S.; Parry, D.A.D.; Kittstein, W.; Schweizer, J. Localisation of Keratin K78 in the Basal Layer and First Suprabasal Layers of Stratified Epithelia Completes Expression Catalogue of Type II Keratins and Provides New Insights into Sequential Keratin Expression. Cell Tissue Res. 2016, 363, 735–750. [Google Scholar] [CrossRef]
- Fortier, A.M.; Asselin, E.; Cadrin, M. Keratin 8 and 18 Loss in Epithelial Cancer Cells Increases Collective Cell Migration and Cisplatin Sensitivity through Claudin1 Up-Regulation. J. Biol. Chem. 2013, 288, 11555–11571. [Google Scholar] [CrossRef]
- Sean, D.; Meltzer, P.S. GEOquery: A Bridge between the Gene Expression Omnibus (GEO) and BioConductor. Bioinformatics 2007, 23, 1846–1847. [Google Scholar] [CrossRef]
- Li, J.; Miao, B.; Wang, S.; Dong, W.; Xu, H.; Si, C.; Wang, W.; Duan, S.; Lou, J.; Bao, Z.; et al. Hiplot: A Comprehensive and Easy-To-Use Web Service for Boosting Publication-Ready Biomedical Data Visualization. Brief. Bioinform. 2022, 23, bbac261. [Google Scholar] [CrossRef]
- Sherman, B.T.; Huang, D.W.; Tan, Q.; Guo, Y.; Bour, S.; Liu, D.; Stephens, R.; Baseler, M.W.; Lane, C.H.; Lempicki, R.A. DAVID Knowledgebase: A Gene-Centered Database Integrating Heterogeneous Gene Annotation Resources to Facilitate High-Throughput Gene Functional Analysis. BMC Bioinform. 2007, 8, 426. [Google Scholar] [CrossRef]
- Szklarczyk, D.; Gable, A.L.; Nastou, K.C.; Lyon, D.; Kirsch, R.; Pyysalo, S.; Doncheva, N.T.; Legeay, M.; Fang, T.; Bork, P.; et al. The STRING Database in 2021: Customizable Protein-Protein Networks, and Functional Characterization of User-Uploaded Gene/Measurement Sets. Nucleic Acids Res. 2021, 49, D605–D612. [Google Scholar] [CrossRef]
- Chandrashekar, D.S.; Bashel, B.; Balasubramanya, S.A.H.; Creighton, C.J.; Ponce-Rodriguez, I.; Chakravarthi, B.V.S.K.; Varambally, S. UALCAN: A Portal for Facilitating Tumor Subgroup Gene Expression and Survival Analyses. Neoplasia 2017, 19, 649–658. [Google Scholar] [CrossRef]
- Uhlén, M.; Fagerberg, L.; Hallström, B.M.; Lindskog, C.; Oksvold, P.; Mardinoglu, A.; Sivertsson, Å.; Kampf, C.; Sjöstedt, E.; Asplund, A.; et al. Tissue-Based Map of the Human Proteome. Science 2015, 347, 1260419. [Google Scholar] [CrossRef]
- Li, T.; Fu, J.; Zeng, Z.; Cohen, D.; Li, J.; Chen, Q.; Li, B.; Liu, X.S. TIMER2.0 for Analysis of Tumor-Infiltrating Immune Cells. Nucleic Acids Res. 2020, 48, W509–W514. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheon, J.; Kim, B.; Park, J.; Shin, J.; Kim, T.H. Unveiling Biomarkers in Head and Neck Squamous Cell Carcinoma through Bioinformatics: The Role of SPP1 and KRT78. Int. J. Mol. Sci. 2024, 25, 12062. https://doi.org/10.3390/ijms252212062
Cheon J, Kim B, Park J, Shin J, Kim TH. Unveiling Biomarkers in Head and Neck Squamous Cell Carcinoma through Bioinformatics: The Role of SPP1 and KRT78. International Journal of Molecular Sciences. 2024; 25(22):12062. https://doi.org/10.3390/ijms252212062
Chicago/Turabian StyleCheon, Jaehwan, Byoungjae Kim, Jaehyung Park, Jaemin Shin, and Tae Hoon Kim. 2024. "Unveiling Biomarkers in Head and Neck Squamous Cell Carcinoma through Bioinformatics: The Role of SPP1 and KRT78" International Journal of Molecular Sciences 25, no. 22: 12062. https://doi.org/10.3390/ijms252212062
APA StyleCheon, J., Kim, B., Park, J., Shin, J., & Kim, T. H. (2024). Unveiling Biomarkers in Head and Neck Squamous Cell Carcinoma through Bioinformatics: The Role of SPP1 and KRT78. International Journal of Molecular Sciences, 25(22), 12062. https://doi.org/10.3390/ijms252212062