Determinants of Photodynamic Therapy Resistance in Cancer Cells
Abstract
:1. Introduction
2. Mechanisms of PDT Resistance
2.1. ABC Transporters
2.1.1. P-gp
2.1.2. ABCG2
2.2. Apoptosis
2.3. Expression of Apoptotic and Anti-Apoptotic Proteins
2.4. Autophagy
2.5. The Role of Nitric Oxide
2.6. The Role of Heat-Shock Proteins
2.7. DNA Repair Mechanisms
2.8. Cytoskeleton, Cell Adhesion, and Cell Morphology
3. Recent Developments in PDT and Its Application Against Multidrug-Resistant Cancers
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Allison, R.R.; Moghissi, K. Photodynamic Therapy (PDT): PDT Mechanisms. Clin. Endosc. 2013, 46, 24. [Google Scholar] [CrossRef] [PubMed]
- Dabrowski, J.M.; Arnaut, L.G. Photodynamic Therapy (PDT) of Cancer: From Local to Systemic Treatment. Photochem. Photobiol. Sci. 2015, 14, 1765–1780. [Google Scholar] [CrossRef] [PubMed]
- Dobson, J.; de Queiroz, G.F.; Golding, J.P. Photodynamic Therapy and Diagnosis: Principles and Comparative Aspects. Vet. J. 2018, 233, 8–18. [Google Scholar] [CrossRef] [PubMed]
- Kiss, N.; Farkas, K.; Tosti, G.; De Gado, F.; Bergler-Czop, B.; Fazia, G.; Tammaro, A.; Cantisani, C. Photodynamic Therapy with 5-Aminolevulinic Acid Patch for the Treatment of Actinic Keratosis. J. Clin. Med. 2022, 11, 3164. [Google Scholar] [CrossRef]
- Bhattacharya, S.; Prajapati, B.G.; Singh, S.; Anjum, M.M. Nanoparticles Drug Delivery for 5-Aminolevulinic Acid (5-ALA) in Photodynamic Therapy (PDT) for Multiple Cancer Treatment: A Critical Review on Biosynthesis, Detection, and Therapeutic Applications. J. Cancer Res. Clin. Oncol. 2023, 149, 17607–17634. [Google Scholar] [CrossRef]
- Hlogyik, T.; Laczkó-Rigó, R.; Bakos, É.; Poór, M.; Kele, Z.; Özvegy-Laczka, C.; Mernyák, E. Synthesis and In Vitro Photodynamic Activity of Aza-BODIPY-Based Photosensitizers. Org. Biomol. Chem. 2023, 21, 6018–6027. [Google Scholar] [CrossRef]
- Liu, B.-K.; Zheng, J.; Wang, H.; Niu, L.-Y.; Yang, Q.-Z. BODIPY-Based Photosensitizers with Simultaneous Photodynamic Antitumor and Antibacterial Effects. Mater. Chem. Front. 2023, 7, 5879–5890. [Google Scholar] [CrossRef]
- Gurubasavaraj, P.M.; Sajjan, V.P.; Muñoz-Flores, B.M.; Jiménez Pérez, V.M.; Hosmane, N.S. Recent Advances in BODIPY Compounds: Synthetic Methods, Optical and Nonlinear Optical Properties, and Their Medical Applications. Molecules 2022, 27, 1877. [Google Scholar] [CrossRef]
- Yang, W.; Zhang, B. Porphyrin-Based Nanocomposites for Tumor Photodynamic Therapy. MRS Bull. 2019, 44, 189–194. [Google Scholar] [CrossRef]
- Seelig, A. P-Glycoprotein: One Mechanism, Many Tasks and the Consequences for Pharmacotherapy of Cancers. Front. Oncol. 2020, 10, 576559. [Google Scholar] [CrossRef]
- Eckford, P.D.W.; Sharom, F.J. The Reconstituted P-Glycoprotein Multidrug Transporter Is a Flippase for Glucosylceramide and Other Simple Glycosphingolipids. Biochem. J. 2005, 389, 517–526. [Google Scholar] [CrossRef] [PubMed]
- Wołuń-Cholewa, M.; Szymanowski, K.; Andrusiewicz, M.; Warchoł, W. Studies on Function of P-Glycoprotein in Photodynamic Therapy of Endometriosis. Photomed. Laser Surg. 2010, 28, 735–740. [Google Scholar] [CrossRef] [PubMed]
- Aniogo, E.C.; George, B.P.; Abrahamse, H. Characterization of Resistant MCF-7 Breast Cancer Cells Developed by Repeated Cycles of Photodynamic Therapy. Front. Pharmacol. 2022, 13, 964141. [Google Scholar] [CrossRef] [PubMed]
- Chekwube, A.E.; George, B.; Abrahamse, H. Phototoxic Effectiveness of Zinc Phthalocyanine Tetrasulfonic Acid on MCF-7 Cells with Overexpressed P-Glycoprotein. J. Photochem. Photobiol. B 2020, 204, 111811. [Google Scholar] [CrossRef]
- Yoon, J.; Yoon, H.; Kim, O.; Kim, S.K.; Ahn, S.; Kang, K.W. The Enhanced Anti-cancer Effect of Hexenyl Ester of 5-aminolaevulinic Acid Photodynamic Therapy in Adriamycin-resistant Compared to Non-resistant Breast Cancer Cells. Lasers Surg. Med. 2012, 44, 76–86. [Google Scholar] [CrossRef]
- Wu, R.W.K.; Chu, E.S.M.; Huang, Z.; Xu, C.S.; Ip, C.W.; Yow, C.M.N. Effect of FosPeg® Mediated Photoactivation on P-Gp/ABCB1 Protein Expression in Human Nasopharyngeal Carcinoma Cells. J. Photochem. Photobiol. B 2015, 148, 82–87. [Google Scholar] [CrossRef]
- Paulíková, H.; Cisáriková, A.; Bačová, Z.; Janovec, L.; Imrich, J.; Šereš, M.; Hunáková, Ľ. Photodynamic Therapy of Multidrug Resistant Leukemic Murine Cells by 3,6-Bis(Alkylthiourea)Acridine Hydrochlorides. Neoplasma 2021, 68, 1169–1180. [Google Scholar] [CrossRef]
- Khot, M.I.; Downey, C.L.; Armstrong, G.; Svavarsdottir, H.S.; Jarral, F.; Andrew, H.; Jayne, D.G. The Role of ABCG2 in Modulating Responses to Anti-Cancer Photodynamic Therapy. Photodiagn. Photodyn. Ther. 2020, 29, 101579. [Google Scholar] [CrossRef]
- Pan, L.; Lin, H.; Tian, S.; Bai, D.; Kong, Y.; Yu, L. The Sensitivity of Glioma Cells to Pyropheophorbide-αmethyl Ester-mediated Photodynamic Therapy Is Enhanced by Inhibiting ABCG2. Lasers Surg. Med. 2017, 49, 719–726. [Google Scholar] [CrossRef]
- Kim, J.H.; Park, J.M.; Roh, Y.J.; Kim, I.-W.; Hasan, T.; Choi, M.-G. Enhanced Efficacy of Photodynamic Therapy by Inhibiting ABCG2 in Colon Cancers. BMC Cancer 2015, 15, 504. [Google Scholar] [CrossRef]
- Barron, G.A.; Moseley, H.; Woods, J.A. Differential Sensitivity in Cell Lines to Photodynamic Therapy in Combination with ABCG2 Inhibition. J. Photochem. Photobiol. B 2013, 126, 87–96. [Google Scholar] [CrossRef] [PubMed]
- Müller, P.; Abdel Gaber, S.A.; Zimmermann, W.; Wittig, R.; Stepp, H. ABCG2 Influence on the Efficiency of Photodynamic Therapy in Glioblastoma Cells. J. Photochem. Photobiol. B 2020, 210, 111963. [Google Scholar] [CrossRef] [PubMed]
- Ishikawa, T.; Kajimoto, Y.; Sun, W.; Nakagawa, H.; Inoue, Y.; Ikegami, Y.; Miyatake, S.-I.; Kuroiwa, T. Role of Nrf2 in Cancer Photodynamic Therapy: Regulation of Human ABC Transporter ABCG2. J. Pharm. Sci. 2013, 102, 3058–3069. [Google Scholar] [CrossRef] [PubMed]
- Voigtlaender, M.; Schneider-Merck, T.; Trepel, M. Lapatinib. In Small Molecules in Oncology; Martens, U., Ed.; Recent Results in Cancer Research; Springer: Cham, Switzerland, 2018; pp. 19–44. [Google Scholar] [CrossRef]
- Mansi, M.; Howley, R.; Chandratre, S.; Chen, B. Inhibition of ABCG2 Transporter by Lapatinib Enhances 5-Aminolevulinic Acid-Mediated Protoporphyrin IX Fluorescence and Photodynamic Therapy Response in Human Glioma Cell Lines. Biochem. Pharmacol. 2022, 200, 115031. [Google Scholar] [CrossRef]
- Baglo, Y.; Liang, B.J.; Robey, R.W.; Ambudkar, S.V.; Gottesman, M.M.; Huang, H.-C. Porphyrin-Lipid Assemblies and Nanovesicles Overcome ABC Transporter-Mediated Photodynamic Therapy Resistance in Cancer Cells. Cancer Lett. 2019, 457, 110–118. [Google Scholar] [CrossRef]
- Yoo, J.-O.; Ha, K.-S. New Insights into the Mechanisms for Photodynamic Therapy-Induced Cancer Cell Death. Int. Rev. Cell Mol. Biol. 2012, 295, 139–174. [Google Scholar] [CrossRef]
- Oleinick, N.L.; Morris, R.L.; Belichenko, I. The Role of Apoptosis in Response to Photodynamic Therapy: What, Where, Why, and How. Photochem. Photobiol. Sci. 2002, 1, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Moor, A.C.E. Signaling Pathways in Cell Death and Survival after Photodynamic Therapy. J. Photochem. Photobiol. B 2000, 57, 1–13. [Google Scholar] [CrossRef]
- Kessel, D.; Luo, Y.; Deng, Y.; Chang, C.K. The Role of Subcellular Localization in Initiation of Apoptosis by Photodynamic Therapy. Photochem. Photobiol. 1997, 65, 422–426. [Google Scholar] [CrossRef]
- Kessel, D. Relocalization of Cationic Porphyrins during Photodynamic Therapy. Photochem. Photobiol. Sci. 2002, 1, 837–840. [Google Scholar] [CrossRef]
- Kessel, D.; Reiners, J.J. Enhanced Efficacy of Photodynamic Therapy via a Sequential Targeting Protocol. Photochem. Photobiol. 2014, 90, 889–895. [Google Scholar] [CrossRef] [PubMed]
- Kessel, D.; Evans, C.L. Promotion of Proapoptotic Signals by Lysosomal Photodamage: Mechanistic Aspects and Influence of Autophagy. Photochem. Photobiol. 2016, 92, 620–623. [Google Scholar] [CrossRef]
- Olivo, M. PhotolonTM—Photosensitization Induces Apoptosis via ROS-Mediated Cross-Talk between Mitochondria and Lysosomes. Int. J. Oncol. 2011, 39, 821–831. [Google Scholar] [CrossRef]
- Chota, A.; George, B.P.; Abrahamse, H. Interactions of Multidomain Pro-Apoptotic and Anti-Apoptotic Proteins in Cancer Cell Death. Oncotarget 2021, 12, 1615–1626. [Google Scholar] [CrossRef]
- Granville, D.J.; Jiang, H.; An, M.T.; Levy, J.G.; McManus, B.M.; Hunt, D.W.C. Bcl-2 Overexpression Blocks Caspase Activation and Downstream Apoptotic Events Instigated by Photodynamic Therapy. Br. J. Cancer 1999, 79, 95–100. [Google Scholar] [CrossRef]
- Srivastava, M.; Ahmad, N.; Gupta, S.; Mukhtar, H. Involvement of Bcl-2 and Bax in Photodynamic Therapy-Mediated Apoptosis. J. Biol. Chem. 2001, 276, 15481–15488. [Google Scholar] [CrossRef]
- Golla, C.; Bilal, M.; Dwucet, A.; Bader, N.; Anthonymuthu, J.; Heiland, T.; Pruss, M.; Westhoff, M.-A.; Siegelin, M.D.; Capanni, F.; et al. Photodynamic Therapy Combined with Bcl-2/Bcl-XL Inhibition Increases the Noxa/Mcl-1 Ratio Independent of Usp9X and Synergistically Enhances Apoptosis in Glioblastoma. Cancers 2021, 13, 4123. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Fan, Z.; Zhang, L.; Jin, Z.; Yan, D.; Zhang, Y.; Li, X.; Tu, L.; Xue, B.; Chang, Y.; et al. Bcl-2 Inhibitor Uploaded Upconversion Nanophotosensitizers to Overcome the Photodynamic Therapy Resistance of Cancer through Adjuvant Intervention Strategy. Biomaterials 2017, 144, 73–83. [Google Scholar] [CrossRef]
- Qiao, L.; Mei, Z.; Yang, Z.; Li, X.; Cai, H.; Liu, W. ALA-PDT Inhibits Proliferation and Promotes Apoptosis of SCC Cells through STAT3 Signal Pathway. Photodiagn. Photodyn. Ther. 2016, 14, 66–73. [Google Scholar] [CrossRef]
- Luo, M.; Li, H.; Han, D.; Yang, K.; Kang, L. Inhibition of Autophagy Enhances Apoptosis Induced by Ce6-Photodynamic Therapy in Human Colon Cancer Cells. Photodiagn. Photodyn. Ther. 2021, 36, 102605. [Google Scholar] [CrossRef]
- Luo, M.; Ji, J.; Yang, K.; Li, H.; Kang, L. The Role of Autophagy in the Treatment of Colon Cancer by Chlorin E6 Photodynamic Therapy Combined with Oxaliplatin. Photodiagn. Photodyn. Ther. 2022, 40, 103082. [Google Scholar] [CrossRef] [PubMed]
- Xue, Q.; Wang, X.; Wang, P.; Zhang, K.; Liu, Q. Role of P38MAPK in Apoptosis and Autophagy Responses to Photodynamic Therapy with Chlorin E6. Photodiagn. Photodyn. Ther. 2015, 12, 84–91. [Google Scholar] [CrossRef] [PubMed]
- Domagala, A.; Stachura, J.; Gabrysiak, M.; Muchowicz, A.; Zagozdzon, R.; Golab, J.; Firczuk, M. Inhibition of Autophagy Sensitizes Cancer Cells to Photofrin-Based Photodynamic Therapy. BMC Cancer 2018, 18, 210. [Google Scholar] [CrossRef]
- Taninaka, A.; Kurokawa, H.; Kamiyanagi, M.; Ochiai, T.; Arashida, Y.; Takeuchi, O.; Matsui, H.; Shigekawa, H. Polphylipoprotein-Induced Autophagy Mechanism with High Performance in Photodynamic Therapy. Commun. Biol. 2023, 6, 1212. [Google Scholar] [CrossRef]
- Lundberg, J.O.; Weitzberg, E. Nitric Oxide Signaling in Health and Disease. Cell 2022, 185, 2853–2878. [Google Scholar] [CrossRef]
- Forstermann, U.; Sessa, W.C. Nitric Oxide Synthases: Regulation and Function. Eur. Heart J. 2012, 33, 829–837. [Google Scholar] [CrossRef]
- Rapozzi, V.; Della Pietra, E.; Bonavida, B. Dual Roles of Nitric Oxide in the Regulation of Tumor Cell Response and Resistance to Photodynamic Therapy. Redox Biol. 2015, 6, 311–317. [Google Scholar] [CrossRef]
- Girotti, A.W.; Fahey, J.M.; Korbelik, M. Photodynamic Therapy as an Oxidative Anti-Tumor Modality: Negative Effects of Nitric Oxide on Treatment Efficacy. Pharmaceutics 2021, 13, 593. [Google Scholar] [CrossRef] [PubMed]
- Fahey, J.M.; Emmer, J.V.; Korytowski, W.; Hogg, N.; Girotti, A.W. Antagonistic Effects of Endogenous Nitric Oxide in a Glioblastoma Photodynamic Therapy Model. Photochem. Photobiol. 2016, 92, 842–853. [Google Scholar] [CrossRef]
- Girotti, A.W.; Fahey, J.M.; Korytowski, W. Nitric Oxide-Elicited Resistance to Anti-Glioblastoma Photodynamic Therapy. Cancer Drug Resist. 2020, 3, 401–414. [Google Scholar] [CrossRef]
- Fahey, J.M.; Stancill, J.S.; Smith, B.C.; Girotti, A.W. Nitric Oxide Antagonism to Glioblastoma Photodynamic Therapy and Mitigation Thereof by BET Bromodomain Inhibitor JQ1. J. Biol. Chem. 2018, 293, 5345–5359. [Google Scholar] [CrossRef] [PubMed]
- Fahey, J.M.; Girotti, A.W. Accelerated Migration and Invasion of Prostate Cancer Cells after a Photodynamic Therapy-like Challenge: Role of Nitric Oxide. Nitric Oxide 2015, 49, 47–55. [Google Scholar] [CrossRef] [PubMed]
- Girotti, A.W.; Bazak, J.; Korytowski, W. Pro-Tumor Activity of Endogenous Nitric Oxide in Anti-Tumor Photodynamic Therapy: Recently Recognized Bystander Effects. Int. J. Mol. Sci. 2023, 24, 11559. [Google Scholar] [CrossRef]
- Bazak, J.; Fahey, J.M.; Wawak, K.; Korytowski, W.; Girotti, A.W. Enhanced Aggressiveness of Bystander Cells in an Anti-Tumor Photodynamic Therapy Model: Role of Nitric Oxide Produced by Targeted Cells. Free Radic. Biol. Med. 2017, 102, 111–121. [Google Scholar] [CrossRef]
- Rodríguez, M.E.; Cogno, I.S.; Sanabria, L.S.M.; Morán, Y.S.; Rivarola, V.A. Heat Shock Proteins in the Context of Photodynamic Therapy: Autophagy, Apoptosis and Immunogenic Cell Death. Photochem. Photobiol. Sci. 2016, 15, 1090–1102. [Google Scholar] [CrossRef] [PubMed]
- Casas, A.; Di Venosa, G.; Hasan, T.; Batlle, A. Mechanisms of Resistance to Photodynamic Therapy. Curr. Med. Chem. 2011, 18, 2486–2515. [Google Scholar] [CrossRef]
- Ziegler, S.A.; Loucks, C.; Madsen, S.J.; Carper, S.W. Heat Shock Protein 27 Protects against Aminolevulinic Acid-Mediated Photodynamic Therapy-Induced Apoptosis and Necrosis in Human Breast Cancer Cells. J. Environ. Pathol. Toxicol. Oncol. 2007, 26, 173–183. [Google Scholar] [CrossRef]
- Rodríguez, M.E.; Arévalo, D.E.; Sanabria, L.M.; Carrión, F.D.C.; Fanelli, M.A.; Rivarola, V.A. Heat Shock Protein 27 Modulates Autophagy and Promotes Cell Survival after Photodynamic Therapy. Photochem. Photobiol. Sci. 2019, 18, 546–554. [Google Scholar] [CrossRef]
- Kim, J.; Jung, H.; Lim, W.; Kim, S.; Ko, Y.; Karna, S.; Kim, O.; Choi, Y.; Choi, H.; Kim, O. Down-regulation of Heat-shock Protein 27–Induced Resistance to Photodynamic Therapy in Oral Cancer Cells. J. Oral. Pathol. Med. 2013, 42, 9–16. [Google Scholar] [CrossRef]
- Kim, J.; Lim, H.; Kim, S.; Cho, H.; Kim, Y.; Li, X.; Choi, H.; Kim, O. Effects of HSP27 Downregulation on PDT Resistance through PDT-Induced Autophagy in Head and Neck Cancer Cells. Oncol. Rep. 2016, 35, 2237–2245. [Google Scholar] [CrossRef]
- Pagliarone, A.C.; Castañeda, E.D.; Santana, J.P.P.; de Oliveira, C.A.B.; Robeldo, T.A.; Teixeira, F.R.; Borra, R.C. Mitochondrial Heat Shock Protein Mortalin as Potential Target for Therapies Based on Oxidative Stress. Photodiagn Photodyn. Ther. 2021, 34, 102256. [Google Scholar] [CrossRef] [PubMed]
- Premji, T.P.; Dash, B.S.; Das, S.; Chen, J.-P. Functionalized Nanomaterials for Inhibiting ATP-Dependent Heat Shock Proteins in Cancer Photothermal/Photodynamic Therapy and Combination Therapy. Nanomaterials 2024, 14, 112. [Google Scholar] [CrossRef] [PubMed]
- Aniogo, E.C.; George, B.P.; Abrahamse, H. Molecular Effectors of Photodynamic Therapy-Mediated Resistance to Cancer Cells. Int. J. Mol. Sci. 2021, 22, 13182. [Google Scholar] [CrossRef]
- Lee, S.Y.; Luk, S.K.; Chuang, C.P.; Yip, S.P.; To, S.S.T.; Yung, Y.M.B. TP53 Regulates Human AlkB Homologue 2 Expression in Glioma Resistance to Photofrin-Mediated Photodynamic Therapy. Br. J. Cancer 2010, 103, 362–369. [Google Scholar] [CrossRef]
- Shahmoradi Ghahe, S.; Kosicki, K.; Wojewódzka, M.; Majchrzak, B.A.; Fogtman, A.; Iwanicka-Nowicka, R.; Ciuba, A.; Koblowska, M.; Kruszewski, M.; Tudek, B.; et al. Increased DNA Repair Capacity Augments Resistance of Glioblastoma Cells to Photodynamic Therapy. DNA Repair 2021, 104, 103136. [Google Scholar] [CrossRef]
- Franchi, L.P.; de Freitas Lima, J.E.B.; Piva, H.L.; Tedesco, A.C. The Redox Function of Apurinic/Apyrimidinic Endonuclease 1 as Key Modulator in Photodynamic Therapy. J. Photochem. Photobiol. B 2020, 211, 111992. [Google Scholar] [CrossRef]
- Laev, S.S.; Salakhutdinov, N.F.; Lavrik, O.I. Inhibitors of Nuclease and Redox Activity of Apurinic/Apyrimidinic Endonuclease 1/Redox Effector Factor 1 (APE1/Ref-1). Bioorg. Med. Chem. 2017, 25, 2531–2544. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Li, M.; Zhang, Y.; Xiang, D.; Dai, N.; Zeng, L.; Li, Z.; Wang, G.; Wang, D. Knock down of the Dual Functional Protein Apurinic/Apyrimidinic Endonuclease 1 Enhances the Killing Effect of Hematoporphrphyrin Derivative-mediated Photodynamic Therapy on Non-small Cell Lung Cancer Cells in Vitro and in a Xenograft Model. Cancer Sci. 2010, 101, 180–187. [Google Scholar] [CrossRef]
- Mossakowska, B.J.; Shahmoradi Ghahe, S.; Cysewski, D.; Fabisiewicz, A.; Tudek, B.; Siedlecki, J.A. Mechanisms of Resistance to Photodynamic Therapy (PDT) in Vulvar Cancer. Int. J. Mol. Sci. 2022, 23, 4117. [Google Scholar] [CrossRef]
- Ma, Q.-L.; Shen, M.-O.; Han, N.; Xu, H.-Z.; Peng, X.-C.; Li, Q.-R.; Yu, T.-T.; Li, L.-G.; Xu, X.; Liu, B.; et al. Chlorin E6 Mediated Photodynamic Therapy Triggers Resistance through ATM-Related DNA Damage Response in Lung Cancer Cells. Photodiagn. Photodyn. Ther. 2022, 37, 102645. [Google Scholar] [CrossRef]
- Kong, R.-J.; Li, X.-Y.; Huang, J.-Q.; Zhou, X.; Deng, F.-A.; Li, Y.-M.; Liu, L.-S.; Li, S.-Y.; Cheng, H. A Self-Delivery Photodynamic Sensitizer for Enhanced DNA Damage by PARP Inhibition. Biomater. Sci. 2023, 11, 162–169. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Tao, J.; Wang, B.; Jiang, T.; Zhao, X.; Yu, Y.; Meng, X. Reversing Resistance of Cancer Stem Cells and Enhancing Photodynamic Therapy Based on Hyaluronic Acid Nanomicelles for Preventing Cancer Recurrence and Metastasis. Adv. Healthc. Mater. 2024, 13, e2302597. [Google Scholar] [CrossRef] [PubMed]
- Shao, Y.; Chen, M.; Chen, W.; Wang, Z.; Sui, M.; Tian, M.; Wu, Y.; Song, J.; Ji, D.; Song, F. Integration of Activation by Hypoxia and Inhibition Resistance of Tumor Cells to Apoptosis for Precise and Augmented Photodynamic Therapy. Adv. Healthc. Mater. 2023, 12, e2300503. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Peng, L.; Wang, Z.; Liu, L.; Cao, M.; Cui, J.; Wu, F.; Yang, J. Roles of the Cytoskeleton in Human Diseases. Mol. Biol. Rep. 2023, 50, 2847–2856. [Google Scholar] [CrossRef] [PubMed]
- Di Venosa, G.; Perotti, C.; Batlle, A.; Casas, A. The Role of Cytoskeleton and Adhesion Proteins in the Resistance to Photodynamic Therapy. Possible Therapeutic Interventions. Photochem. Photobiol. Sci. 2015, 14, 1451–1464. [Google Scholar] [CrossRef]
- Tsai, J.; Wu, C.; Chien, H.; Chen, C. Reorganization of Cytoskeleton Induced by 5-aminolevulinic Acid-mediated Photodynamic Therapy and Its Correlation with Mitochondrial Dysfunction. Lasers Surg. Med. 2005, 36, 398–408. [Google Scholar] [CrossRef]
- Di Venosa, G.; Rodriguez, L.; Mamone, L.; Gándara, L.; Rossetti, M.V.; Batlle, A.; Casas, A. Changes in Actin and E-Cadherin Expression Induced by 5-Aminolevulinic Acid Photodynamic Therapy in Normal and Ras-Transfected Human Mammary Cell Lines. J. Photochem. Photobiol. B 2012, 106, 47–52. [Google Scholar] [CrossRef]
- Rodriguez, L.; Di Venosa, G.; Rivas, M.A.; Juarranz, A.; Sanz-Rodriguez, F.; Casas, A. Ras-Transfected Human Mammary Tumour Cells Are Resistant to Photodynamic Therapy by Mechanisms Related to Cell Adhesion. Life Sci. 2023, 314, 121287. [Google Scholar] [CrossRef]
- Milla, L.N.; Cogno, I.S.; Rodríguez, M.E.; Sanz-Rodríguez, F.; Zamarrón, A.; Gilaberte, Y.; Carrasco, E.; Rivarola, V.A.; Juarranz, Á. Isolation and Characterization of Squamous Carcinoma Cells Resistant to Photodynamic Therapy. J. Cell Biochem. 2011, 112, 2266–2278. [Google Scholar] [CrossRef]
- Casas, A.; Sanz-Rodriguez, F.; Di Venosa, G.; Rodriguez, L.; Mamone, L.; Blázquez, A.; Jaén, P.; Batlle, A.; Stockert, J.C.; Juarranz, A. Disorganisation of Cytoskeleton in Cells Resistant to Photodynamic Treatment with Decreased Metastatic Phenotype. Cancer Lett. 2008, 270, 56–65. [Google Scholar] [CrossRef]
- Mossakowska, B.J.; Fabisiewicz, A.; Tudek, B.; Siedlecki, J.A. Possible Mechanisms of Resistance Development to Photodynamic Therapy (PDT) In Vulvar Cancer Cells. Int. J. Mol. Sci. 2022, 23, 14689. [Google Scholar] [CrossRef] [PubMed]
- Pramual, S.; Lirdprapamongkol, K.; Jouan-Hureaux, V.; Barberi-Heyob, M.; Frochot, C.; Svasti, J.; Niamsiri, N. Overcoming the Diverse Mechanisms of Multidrug Resistance in Lung Cancer Cells by Photodynamic Therapy Using PTHPP-Loaded PLGA-Lipid Hybrid Nanoparticles. Eur. J. Pharm. Biopharm. 2020, 149, 218–228. [Google Scholar] [CrossRef] [PubMed]
- Shanmugam, M.; Kuthala, N.; Vankayala, R.; Chiang, C.-S.; Kong, X.; Hwang, K.C. Multifunctional CuO/Cu2O Truncated Nanocubes as Trimodal Image-Guided Near-Infrared-III Photothermal Agents to Combat Multi-Drug-Resistant Lung Carcinoma. ACS Nano 2021, 15, 14404–14418. [Google Scholar] [CrossRef]
- Busa, P.; Kankala, R.; Deng, J.-P.; Liu, C.-L.; Lee, C.-H. Conquering Cancer Multi-Drug Resistance Using Curcumin and Cisplatin Prodrug-Encapsulated Mesoporous Silica Nanoparticles for Synergistic Chemo- and Photodynamic Therapies. Nanomaterials 2022, 12, 3693. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Zhang, P.; Heing-Becker, I.; Zhang, J.; Tang, P.; Bej, R.; Bhatia, S.; Zhong, Y.; Haag, R. Dual Tumor- and Subcellular-Targeted Photodynamic Therapy Using Glucose-Functionalized MoS2 Nanoflakes for Multidrug-Resistant Tumor Ablation. Biomaterials 2022, 290, 121844. [Google Scholar] [CrossRef]
- Shi, X.; Yang, X.; Liu, M.; Wang, R.; Qiu, N.; Liu, Y.; Yang, H.; Ji, J.; Zhai, G. Chondroitin Sulfate-Based Nanoparticles for Enhanced Chemo-Photodynamic Therapy Overcoming Multidrug Resistance and Lung Metastasis of Breast Cancer. Carbohydr. Polym. 2021, 254, 117459. [Google Scholar] [CrossRef]
- Rezaeivala, Z.; Imanparast, A.; Mohammadi, Z.; Najafabad, B.K.; Sazgarnia, A. The Multimodal Effect of Photothermal/Photodynamic/Chemo Therapies Mediated by Au-CoFe2O4 @Spiky Nanostructure Adjacent to Mitoxantrone on Breast Cancer Cells. Photodiagn. Photodyn. Ther. 2023, 41, 103269. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Cai, X.; Yi, T.; Zeng, Y.; Ma, J.; Li, L.; Pang, L.; Li, N.; Hu, H.; Zhan, Y. Tumor Microenvironment Responsive Mn3O4 Nanoplatform for in Vivo Real-Time Monitoring of Drug Resistance and Photothermal/Chemodynamic Synergistic Therapy of Gastric Cancer. J. Nanobiotechnol. 2022, 20, 240. [Google Scholar] [CrossRef]
- Licciardi, M.; Varvarà, P.; Tranchina, L.; Puleio, R.; Cicero, L.; Cassata, G.; Giammona, G. In Vivo Efficacy of Verteporfin Loaded Gold Nanorods for Combined Photothermal/Photodynamic Colon Cancer Therapy. Int. J. Pharm. 2022, 625, 122134. [Google Scholar] [CrossRef]
- Kadkhoda, J.; Tarighatnia, A.; Nader, N.D.; Aghanejad, A. Targeting Mitochondria in Cancer Therapy: Insight into Photodynamic and Photothermal Therapies. Life Sci. 2022, 307, 120898. [Google Scholar] [CrossRef]
- Lv, J.; Wang, S.; Qiao, D.; Lin, Y.; Hu, S.; Li, M. Mitochondria-Targeting Multifunctional Nanoplatform for Cascade Phototherapy and Hypoxia-Activated Chemotherapy. J. Nanobiotechnol. 2022, 20, 42. [Google Scholar] [CrossRef] [PubMed]
- Ikeda, T.; Kurokawa, H.; Ito, H.; Tsuchiya, K.; Matsui, H. Enhancement of Cytotoxic Effects with ALA-PDT on Treatment of Radioresistant Cancer Cells. J. Clin. Biochem. Nutr. 2024, 74, 23–79. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dąbrowska, A.; Mastalerz, J.; Wilczyński, B.; Osiecka, B.; Choromańska, A. Determinants of Photodynamic Therapy Resistance in Cancer Cells. Int. J. Mol. Sci. 2024, 25, 12069. https://doi.org/10.3390/ijms252212069
Dąbrowska A, Mastalerz J, Wilczyński B, Osiecka B, Choromańska A. Determinants of Photodynamic Therapy Resistance in Cancer Cells. International Journal of Molecular Sciences. 2024; 25(22):12069. https://doi.org/10.3390/ijms252212069
Chicago/Turabian StyleDąbrowska, Alicja, Jakub Mastalerz, Bartosz Wilczyński, Beata Osiecka, and Anna Choromańska. 2024. "Determinants of Photodynamic Therapy Resistance in Cancer Cells" International Journal of Molecular Sciences 25, no. 22: 12069. https://doi.org/10.3390/ijms252212069
APA StyleDąbrowska, A., Mastalerz, J., Wilczyński, B., Osiecka, B., & Choromańska, A. (2024). Determinants of Photodynamic Therapy Resistance in Cancer Cells. International Journal of Molecular Sciences, 25(22), 12069. https://doi.org/10.3390/ijms252212069