Pathological Mechanisms of Particulate Matter-Mediated Ocular Disorders: A Review
Abstract
:1. Introduction
2. Methodology
3. Particulate Matter-Mediated Ocular Diseases
3.1. Ocular Surface Disease Caused by PM
3.1.1. PM-Mediated Dry Eye Disease (DED)
3.1.2. PM-Mediated Conjunctivitis
3.1.3. PM-Mediated Pterygium
3.2. Particulate Matter-Mediated Retinal Disorders
3.2.1. Experimental Studies of Particulate Matter-Mediated Retinal Disorders
3.2.2. Epidemiological Studies of Particulate Matter-Mediated Retinal Disorders
3.3. Particulate Matter-Associated Glaucoma
3.4. Particulate Matter-Associated Cataract
Subjects | Exposure Condition | Outcome | Major Findings | Ref. | |
---|---|---|---|---|---|
Materials | Dose and Time | ||||
5062 DED outpatients form China (Hangzhou) | PM2.5 PM10 | Continuous daily urban exposure | DED | Higher PM exposure linked to increased DED visits, especially in cold season | [17] |
78 volunteers from Argentina | PM2.5 PM10 | 17.1 ± 8.4 μg/m3 for a minimum of 14 h daily 41.4 ± 16.4 μg/m3 for a minimum of 14 h daily | DED | ↑ Bulbar redness by PM2.5 ↑ Eyelid redness by PM2.5 ↑ Degree of vital staining with fluorescein (SF) and lissamine green (SLG) by PM2.5 | [22] |
43 DED patients from Korea | PM2.5 PM10 | 1 μg/m3 for 1 day, 1 week, or 1 month | DED | ↑ Ocular surface disease index (OSDI) score and ocular discomfort by PM2.5 ↓ Tear film break-up time (TBUT) and tear film stability by PM10 | [23] |
387 DED patients from China | PM2.5 PM10 | 1 μg/m3 for 1 day, 1 week, or 1 month | DED | ↑ Schirmer’s I test (ST) by PM2.5 ↓ Tear meniscus height (TMH), TBUT, and meibomian gland (MG) function by PM2.5 and PM10 ↑ Tear cytokine levels by PM2.5 and PM10 | [24] |
53 DED patients from Korea | PM2.5 | 17.2 ± 7.7 μg/m3 for daily life | DED | ↑ SANDE score ↑ Tear osmolarity No changes in tear secretion and TBUT | [27] |
9737 conjunctivitis outpatients form China (Hangzhou) | PM2.5 PM10 | Continuous daily urban exposure | Conjunctivitis | ↑ Conjunctivitis outpatient visits by increased PM2.5 and PM10 levels Higher PM exposure linked to various impacts; stronger in cold season and in ages 2–5 | [18] |
77,439 emergency department (ED) visits for conjunctivitis in Canada | PM2.5 | Continuous daily urban exposure | Conjunctivitis | ↑ PM2.5 linked to higher ED visits for conjunctivitis | [19] |
23,276 adults in Korea | Ambient PM10 | Continuous daily exposure | Pterygium | ↑ Exposure to higher PM10 levels was associated with primary pterygium | [42] |
3017 outpatients with pterygium in China (Hangzhou) | PM2.5 PM10 | Continuous daily urban exposure | Pterygium | ↑ Significant associations between outpatient visits for pterygium and PM Younger patients were found to be more sensitive to PM2.5 exposure, especially females during the warm season | [43] |
4,284,128 adults aged 50–80 in Taiwan | PM2.5 | Annual mean PM2.5 exposure of 34.23 ± 7.17 μg/m3 over 11 years | AMD | 10 μg/m3 increase in PM2.5 led to a 19% higher AMD risk | [54] |
15,115 adults aged 40+ in Korea | PM10 | Annual mean PM10 exposure of 49.52 µg/m3 over 5 years | AMD | ↑ PM10 exposure was borderline significant with early AMD prevalence Higher PM10 levels may increase AMD risk | [55] |
Diabetic patients in Taiwan | PM2.5 PM10 | Average concentration of PM2.5 (28.9–38.0 μg/m3) and PM2.5–10 (21.7–29.4 μg/m3) over 5.6 years | DR | 10 μg/m3 increase in PM2.5 and PM2.5–10 was linked to 1.29 and 1.37 times higher DR risk, respectively | [56] |
631 elderly adults (average age 82) in France | PM2.5 | 10-year average exposure of PM2.5 (median: 21.9 μg/m3) | Neurodegeneration | Higher PM2.5 levels were linked to faster retinal nerve fiber layer (RNFL) thinning (−0.28 μm/year) | [57] |
51,710 adults aged 40–69 in UK | PM2.5 PM10 | Annual average concentration of PM2.5 (median 9.92 µg/m3) and PM10 (median 19.72 µg/m3), µg/m3 | Neurodegeneration | Higher PM2.5 levels were associated with thicker RNFL and thinner ganglion cell inner plexiform layer (GCIPL) and inner nuclear layer (INL) | [58] |
4607 adults aged 46–87 in U.S. | PM2.5 | Long-term average PM2.5 concentration over 2 years | Narrower retinal arteriolar diameter (CRAE) and wider venular diameter (CRVE) | Long-term PM2.5 exposure was linked to a 0.8 µm decrease in CRAE | [61] |
84 healthy adults aged 22–63 from Belgium | PM10 | Short-term PM10 exposure in 24 h | Changes in retinal arteriolar (CRAE) and venular (CRVE) diameters | 10 µg/m3 increase in PM10 was linked to a 0.93 µm decrease in CRAE and a 0.86 µm decrease in CRVE | [62] |
221 school-aged children, aged 8–12 in Belgium | PM2.5 | Same-day exposure measured at school (average 16.8 μg/m3) and chronic exposure modelled at residence (annual mean 15.4 μg/m3) | Changes in retinal arteriolar (CRAE) and venular (CRVE) diameters | 10 μg/m3 increase in same-day PM2.5 exposure decreased CRAE by 0.35 μm and increased CRVE by 0.35 μm Chronic PM2.5 exposure showed a trend toward wider venules | [63] |
432 patients with central retinal artery occlusion (CRAO) in Germany | PM2.5 | PM2.5 concentrations analyzed over 15 years, with higher exposure in winter months | CRAO | Higher PM2.5 concentrations were linked to increased CRAO cases, peaking in winter, especially in February | [64] |
Pregnant women | PM2.5 | PM2.5 exposure during pregnancy | Increased risks of low birth weight (LBW), preterm birth (PTB), and stillbirth | ↑ PM2.5 exposure was linked to a 9% increase in LBW risk for each 10 μg/m3 increment PTB risk increased, especially during the third trimester, due to oxidative stress and inflammation Higher PM2.5 levels correlated with an increased risk of stillbirth | [65] |
9004 infants in Korea (Seoul) | PM10 | Annual average: 65.1 μg/m3 and 54.7 μg/m3 11-year follow-up study | Glaucoma | Glaucoma occurred in 85 patients (0.94%) Increases of 1 μg/m3 of long-term PM10 were significantly associated with increased hazard ratios (HRs) for childhood glaucoma | [68] |
281 patients with acute primary angle closure (APAC) in China | PM2.5 PM10 | Annual average of PM2.5 and PM10: 37.25 µg/m3 and 51.91 µg/m3 | Glaucoma | Long-term exposure to ambient air pollutants increased the risk of APAC | [69] |
33,701 adults in China | PM2.5 | Annual average: 62 μg/m3 | Glaucoma | Increased odds of glaucoma and primary angle-closure glaucoma (PAGG) were associated with high PM2.5 pollution | [70] |
1320 patients diagnosed with primary open-angle glaucoma (POAG) in Taiwan | PM2.5 | Normal level: <25 μg/m3/month WHO level 1: ≥1 to <1.5 × 25 μg/m3/month WHO level 1.5: ≥1 to <1.5 × 25 μg/m3/month WHO level 2: ≥ 2 × 25 μg/m3/month | Glaucoma | As the PM2.5 level rises, POAG risk increases, and it is significant at the WHO 2.0 level | [72] |
Cells | Exposure Condition | Major Findings | Ref. | ||
---|---|---|---|---|---|
Materials | Concentration | Exposure Time | |||
Human corneal epithelial cells (Human CECs) | PM < 4 μm (SRM 2786) | 0–200 μg/mL | 12 h and 24 h | ↑ Apoptosis ↑ Intracellular reactive oxygen species (ROS) | [28] |
Human CECs | Collected PM < 2.5 μm | 0–20–50–100 μg/mL | 0–24 h | ↓ Cellular mobility ↓ Actin reorganization formation via ROS ↓ Interaction of cytoskeleton proteins | [30] |
Human CECs | Collected atmospheric PM2.5 | 500 μg/mL | 0–48 h | ↓ Proliferation ↑ Latex bead-positive phagocytic cells | [31] |
Human CECs | Collected diesel exhaust particles (DEPs) | 0–500 μg/mL | 24 h | ↓ Viability and proliferation ↑ Pro-inflammatory cytokine IL-6 ↓ MUC1 and MUC16 | [34] |
Human CECs | Collected PM2.5 | 0–800 μg/mL | 0–48 h | ↓ Proliferation ↑ Mitochondrial ROS (mtROS) ↓ Mitochondrial membrane potential (∆Ψm) and ATP production ↑ Inflammation ↑ Nrf2 degradation and NF-κB activation | [76] |
Human CECs | Collected atmospheric PM2.5 | 0–100 μg/mL | 0–48 h | ↓ Cell viability and proliferation ↑ Apoptosis ↓ Autophagy in the early stage ↑ Autophagy in the late stage | [77] |
Human CECs | Collected atmospheric PM2.5 | 0–100 μg/mL | 0–48 h | ↑ Autophagy via overexpression of plasminogen activator inhibitor type-2 (PAI-2) ↑ Inflammatory genes ↑ Aryl-hydrocarbon stimulatory genes | [78] |
Human CECs and primary bovine CECs | Collected PM < 2.5 μm | 20, 50, 100 and 200 μg/mL | 24 h | ↑ Cytotoxicity ↑ DNA damage (DNA double-stand breaks and DNA repair-related protein γH2AX) ↑ Intracellular ROS ↑ Cell senescence | [79] |
Primary human CECs | Collected indoor dust < 100 μm | 5–320 μg/100 μL | 24 h | ↑ Cytotoxicity ↑ Intracellular ROS ↑ Oxidative stress markers (malondialdehyde and 8-hydroxy-2-deoxyguanosine) ↓ Antioxidant capacity ↑ Inflammatory mediators (IL-1β, IL-6, IL-8, TNF-α, and MCP-1) ↑ Oxidative DNA damage ↑ Mitochondrial dysfunction | [80] |
Primary rat CECs | Diesel PM2.5 (SRM1650b) | 0–300 μg/100 μL | 24 h | ↑ Cytotoxicity ↑ Inflammatory mediators ↑ Intracellular ROS ↑ Oxidative DNA damage ↑ Mitochondrial dysfunction ↑ p38MAPK/NF-κB signal activation via ROS | [81] |
Human conjunctival epithelial cells | Diesel exhaust particles | 100 μg/mL | 24 h | ↑ Inflammatory mediators (intercellular adhesion molecule 1, IL- 6, and IL-8) | [39] |
Cells | Exposure Condition | Major Findings | Ref. | ||
---|---|---|---|---|---|
PM | Concentration | Exposure Time | |||
Human retinal pigment epithelial ARPE-19 cells | Diesel PM2.5 (SRM1650b) | 0–50 μg/mL | 24 h | ↑ Morphology alteration ↑ Cell migration ↓ Epithelium markers ↑ Mesenchymal markers ↑TGF-β/Smad/ERK/p38 MAPK signaling pathway ↑Epithelial–mesenchymal transition (EMT) via ROS-dependent mechanism | [82] |
ARPE-19 cells | PM10-like (ERM-CZ120) | 0–500 μg/mL and 200 mg/mL | 0–8 h | ↑ Inflammatory mediators ↑Endoplasmic reticulum (ER) stress markers ↑Endoplasmic reticulum stress markers ↑Cytosolic [Ca2+]i level ↑ Phosphorylation of MAPK/NF-κB axis via ER-related unfolded protein response (UPR) pathways | [83] |
AREP-19 cells | Urban aerosols (CRM28) | 0–200 μg/mL | 24 h | ↑ Cytotoxicity ↑ Autophagy and mitophagy ↑ Necrosis ↑ G2/M phase cell cycle arrest ↑ DNA and mitochondrial damage ↑ ROS-mediated cellular dysfunction | [84] |
AREP-19 cells | Urban aerosols (CRM28) | 0–300 μg/mL | 48 h | ↑ Cellular senescence ↑ Intracellular ROS ↑ mtROS | [85] |
Human retinal microvascular endothelial cells | Collected ambient PM2.5 | 0–100 μg/mL | 24 and 36 h | ↑ Cytotoxicity ↑ Inflammasome formation ↓ Migration and angiogenesis ↑ Ferroptosis ↑ Iron overload and lipid peroxidation | [47] |
Human embryonic stem cell-derived retinal organoids (hEROs) | Urban PM2.5 (SRM 1648a) | 0–100 μg/mL | 3 weeks | ↓ Differentiation of hERO-derived neural retina ↓ Areas of hEROs ↓ Ki67-positive proliferative cells ↑ TUNEL-positive apoptotic cells ↑ Structural disorder of hERO-derived neural retina ↑ MAPK and PI3K/Akt signal activation ↓ Fibroblast growth factors (FGF8 and 10) | [51] |
Animals | Exposure Condition | Major Findings | Ref. | ||
---|---|---|---|---|---|
Materials | Concentration | Exposure Time | |||
Sprague–Dawley rats (Male, 8 weeks old) | Collected ambient PM2.5 | 1 mg/mL PM2.5, 10 μL per eye | 4 times/day for 3 days | ↓ Vascular permeability via dysfunction of the inner blood–retinal barrier ↑ Retinal inflammation | [47] |
Sprague–Dawley rats (Female, 8 weeks old) | Collected atmospheric PM2.5 samples | 10 μL of 1 mg/mL PM2.5 | Topical eye drops, 4 times/day for 21 days | ↓ Tear secretion ↑ Corneal surface damage ↑ PAI-2 ↑ Autophagy-related markers | [78] |
Sprague–Dawley rats (Female, 6 weeks old) | Diesel PM2.5 (SRM1650b) | 20 μL of 5 mg/mL PM2.5 | Topical eye drops, 4 times/day for 14 days | ↓ Tear secretion ↑ Corneal surface damages ↓ Conjunctival goblet cell population ↑ Inflammation of lacrimal gland ↑ Retinal ganglion cell loss ↓ Thickness of NFL/GCL/IPL in the retina | [32] |
BALB/c mice (Male, 18–21 g body weight) | Collected atmospheric PM2.5 | 5 mg/mL | Topical eye drops, 4 times/day for 14 days | ↓ Tear secretion ↑ Corneal surface damages ↑ Inflammatory index in ocular surface ↑ Epithelium edema and apoptosis in the cornea and conjunctiva ↓ Conjunctival goblet cell population ↑ Apoptosis of lacrimal glands | [31] |
C57BL/6J mice (Female, 6–8 weeks old) | PM < 4 μm (SRM 2786) | 0.5, 1.0, and 5.0 mg/mL | Topical eye drops, 4 times/day for 6 months | ↓ Tear secretion and tear break-up time ↑ Corneal surface damage ↓ Conjunctival goblet cell population ↑ inflammatory cytokines in corneal and conjunctival tissue | [28] |
C57BL/6J mice (Female, 6–8 weeks old) | Urban PM2.5 (SRM1648a) | 12 mg/mL | Topical eye drops, 4 times/day for 14 days | ↑ Meibomian gland (MG) dysfunction ↑ Corneal surface damage ↑ Apoptosis of MG cells ↑ Hyperkeratinization and ductal blockage ↑ Neutrophil recruitment to surrounding microenvironment of MG ↑ NLRP3-mediated pyroptosis via p38 MAPK/NF-κB signaling pathway | [33] |
C57BL/6J mice (Male, 6 weeks old) | Collected PM2.5 | N/A | PM free/PM room exposure 8 h/day for 3, 7, and 10 weeks | ↑ Corneal damage ↑ Corneal epithelium detachment ↑ Corneal inflammation ↑ NF-κB activation in cornea | [76] |
C57BL/6 wild type mice (Male, 8–12 weeks old) | Collected PM < 2.5 μm | 100 μg/mL | Topical administration every 4 h after corneal abrasion for 64 h | ↓ Cornea wound healing | [30] |
C57BL/6J mice (Female, 8 weeks old) | PM < 4 μm (SRM 2786) | 3.0 mg/mL | Topical eye drops, 3 times/day for 7 days | ↑ Eyelid edema ↑ Mast cell degranulation ↑ Inflammatory cytokines and serum IgE ↑ Apoptosis and reduced goblet cells | [38] |
ICR mice (Female, 6–8 weeks old) | Collected PM2.5 | 3.2, 6.4, and 12.8 mg/mL | Topical eye drops, 3 times/day for 19 days | ↑ Clinical scoring of allergic conjunctivitis ↑ Conjunctival goblet cell population ↑ Eosinophil infiltration | [36] |
4. Pathological Mechanisms of Ocular Damage Caused by PM
4.1. Oxidative Stress
4.2. Inflammation
4.3. Autophagy
4.4. Cell Death
5. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Atkinson, R.W.; Mills, I.C.; Walton, H.A.; Anderson, H.R. Fine particle components and health--a systematic review and meta-analysis of epidemiological time series studies of daily mortality and hospital admissions. J. Expo. Sci. Environ. Epidemiol. 2015, 25, 208–214. [Google Scholar] [CrossRef] [PubMed]
- Halonen, J.I.; Lanki, T.; Yli-Tuomi, T.; Tiittanen, P.; Kulmala, M.; Pekkanen, J. Particulate air pollution and acute cardiorespiratory hospital admissions and mortality among the elderly. Epidemiology 2009, 20, 143–153. [Google Scholar] [CrossRef] [PubMed]
- Jbaily, A.; Zhou, X.; Liu, J.; Lee, T.H.; Kamareddine, L.; Verguet, S.; Dominici, F. Air pollution exposure disparities across US population and income groups. Nature 2022, 601, 228–233. [Google Scholar] [CrossRef] [PubMed]
- Jung, S.J.; Mehta, J.S.; Tong, L. Effects of environment pollution on the ocular surface. Ocul. Surf. 2018, 16, 198–205. [Google Scholar] [CrossRef] [PubMed]
- Ramirez, C.A.; Pérez-Martinot, M.; Gil-Huayanay, D.; Urrunaga-Pastor, D.; Benites-Zapata, V.A. Ocular Exposure to Particulate Matter and Development of Pterygium: A Case-Control Study. Int. J. Occup. Environ. Med. 2018, 9, 163–169. [Google Scholar] [CrossRef]
- WHO’s global air-quality guidelines. Lancet 2006, 368, 1302. [CrossRef]
- World Health Organization. Ambient Air Pollution: A Global Assessment of Exposure and Burden of Disease; World Health Organization: Geneva, Switzerland, 2016. [Google Scholar]
- Cho, C.C.; Hsieh, W.Y.; Tsai, C.H.; Chen, C.Y.; Chang, H.F.; Lin, C.S. In Vitro and In Vivo Experimental Studies of PM(2.5) on Disease Progression. Int. J. Environ. Res. Public. Health 2018, 15, 1380. [Google Scholar] [CrossRef]
- Amoatey, P.; Omidvarborna, H.; Baawain, M.S.; Al-Mamun, A. Indoor air pollution and exposure assessment of the gulf cooperation council countries: A critical review. Environ. Int. 2018, 121, 491–506. [Google Scholar] [CrossRef]
- Cromar, K.R.; Gladson, L.A.; Ewart, G. Trends in Excess Morbidity and Mortality Associated with Air Pollution above American Thoracic Society-Recommended Standards, 2008-2017. Ann. Am. Thorac. Soc. 2019, 16, 836–845. [Google Scholar] [CrossRef]
- Wong, C.M.; Tsang, H.; Lai, H.K.; Thomas, G.N.; Lam, K.B.; Chan, K.P.; Zheng, Q.; Ayres, J.G.; Lee, S.Y.; Lam, T.H.; et al. Cancer Mortality Risks from Long-term Exposure to Ambient Fine Particle. Cancer Epidemiol. Biomarkers Prev. 2016, 25, 839–845. [Google Scholar] [CrossRef]
- Zhen, A.X.; Piao, M.J.; Hyun, Y.J.; Kang, K.A.; Madushan Fernando, P.D.S.; Cho, S.J.; Ahn, M.J.; Hyun, J.W. Diphlorethohydroxycarmalol Attenuates Fine Particulate Matter-Induced Subcellular Skin Dysfunction. Mar. Drugs 2019, 17, 95. [Google Scholar] [CrossRef] [PubMed]
- Kyung, S.Y.; Jeong, S.H. Particulate-Matter Related Respiratory Diseases. Tuberc. Respir. Dis. 2020, 83, 116–121. [Google Scholar] [CrossRef]
- Zhu, X.; Ji, X.; Shou, Y.; Huang, Y.; Hu, Y.; Wang, H. Recent advances in understanding the mechanisms of PM(2.5)-mediated neurodegenerative diseases. Toxicol. Lett. 2020, 329, 31–37. [Google Scholar] [CrossRef] [PubMed]
- Shah, A.S.; Lee, K.K.; McAllister, D.A.; Hunter, A.; Nair, H.; Whiteley, W.; Langrish, J.P.; Newby, D.E.; Mills, N.L. Short term exposure to air pollution and stroke: Systematic review and meta-analysis. BmjBMJ 2015, 350, h1295. [Google Scholar] [CrossRef] [PubMed]
- Franklin, B.A.; Brook, R.; Arden Pope, C., 3rd. Air pollution and cardiovascular disease. Curr. Probl. Cardiol. 2015, 40, 207–238. [Google Scholar] [CrossRef] [PubMed]
- Mo, Z.; Fu, Q.; Lyu, D.; Zhang, L.; Qin, Z.; Tang, Q.; Yin, H.; Xu, P.; Wu, L.; Wang, X.; et al. Impacts of air pollution on dry eye disease among residents in Hangzhou, China: A case-crossover study. Environ. Pollut. 2019, 246, 183–189. [Google Scholar] [CrossRef]
- Fu, Q.; Mo, Z.; Lyu, D.; Zhang, L.; Qin, Z.; Tang, Q.; Yin, H.; Xu, P.; Wu, L.; Lou, X.; et al. Air pollution and outpatient visits for conjunctivitis: A case-crossover study in Hangzhou, China. Environ. Pollut. 2017, 231, 1344–1350. [Google Scholar] [CrossRef]
- Szyszkowicz, M.; Kousha, T.; Castner, J. Air pollution and emergency department visits for conjunctivitis: A case-crossover study. Int. J. Occup. Med. Environ. Health 2016, 29, 381–393. [Google Scholar] [CrossRef]
- Hao, R.; Wan, Y.; Zhao, L.; Liu, Y.; Sun, M.; Dong, J.; Xu, Y.; Wu, F.; Wei, J.; Xin, X.; et al. The effects of short-term and long-term air pollution exposure on meibomian gland dysfunction. Sci. Rep. 2022, 12, 6710. [Google Scholar] [CrossRef]
- Holland, E.J.; Mannis, M.J.; Lee, W.B. Ocular Surface Disease: Cornea, Conjunctiva and Tear Film: Expert Consult-Online and Print; Elsevier Health Sciences: Amsterdam, The Netherlands, 2013. [Google Scholar]
- Gutiérrez, M.A.; Giuliani, D.; Porta, A.A.; Andrinolo, D. Relationship between Ocular Surface Alterations and Concentrations of Aerial Particulate Matter. J. Ophthalmic. Vis. Res. 2019, 14, 419–427. [Google Scholar] [CrossRef]
- Kim, Y.; Choi, Y.-H.; Kim, M.K.; Paik, H.J.; Kim, D.H. Different adverse effects of air pollutants on dry eye disease: Ozone, PM2.5, and PM10. Environ. Pollut. 2020, 265, 115039. [Google Scholar] [CrossRef] [PubMed]
- Hao, R.; Zhang, M.; Zhao, L.; Liu, Y.; Sun, M.; Dong, J.; Xu, Y.; Wu, F.; Wei, J.; Xin, X.; et al. Impact of Air Pollution on the Ocular Surface and Tear Cytokine Levels: A Multicenter Prospective Cohort Study. Front. Med. 2022, 9, 909330. [Google Scholar] [CrossRef] [PubMed]
- Craig, J.P.; Nichols, K.K.; Akpek, E.K.; Caffery, B.; Dua, H.S.; Joo, C.K.; Liu, Z.; Nelson, J.D.; Nichols, J.J.; Tsubota, K.; et al. TFOS DEWS II Definition and Classification Report. Ocul. Surf. 2017, 15, 276–283. [Google Scholar] [CrossRef] [PubMed]
- Klopfer, J. Effects of environmental air pollution on the eye. J. Am. Optom. Assoc. 1989, 60, 773–778. [Google Scholar]
- Choi, Y.H.; Song, M.S.; Lee, Y.; Paik, H.J.; Song, J.S.; Choi, Y.H.; Kim, D.H. Adverse effects of meteorological factors and air pollutants on dry eye disease: A hospital-based retrospective cohort study. Sci. Rep. 2024, 14, 17776. [Google Scholar] [CrossRef]
- Yang, Q.; Li, K.; Li, D.; Zhang, Y.; Liu, X.; Wu, K. Effects of fine particulate matter on the ocular surface: An in vitro and in vivo study. Biomed. Pharmacother. 2019, 117, 109177. [Google Scholar] [CrossRef]
- Chang, A.Y.; Purt, B. Biochemistry, tear film. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2021. [Google Scholar]
- Cui, Y.H.; Hu, Z.X.; Gao, Z.X.; Song, X.L.; Feng, Q.Y.; Yang, G.; Li, Z.J.; Pan, H.W. Airborne particulate matter impairs corneal epithelial cells migration via disturbing FAK/RhoA signaling pathway and cytoskeleton organization. Nanotoxicology 2018, 12, 312–324. [Google Scholar] [CrossRef]
- Tan, G.; Li, J.; Yang, Q.; Wu, A.; Qu, D.-Y.; Wang, Y.; Ye, L.; Bao, J.; Shao, Y. Air pollutant particulate matter 2.5 induces dry eye syndrome in mice. Sci. Rep. 2018, 8, 17828. [Google Scholar] [CrossRef]
- Lee, H.; Kim, M.Y.; Ji, S.Y.; Kim, D.H.; Kim, S.Y.; Hwangbo, H.; Park, C.; Hong, S.H.; Kim, G.Y.; Choi, Y.H. The Protective Effect of Oral Application of Corni Fructus on the Disorders of the Cornea, Conjunctiva, Lacrimal Gland and Retina by Topical Particulate Matter 2.5. Nutrients 2021, 13, 2986. [Google Scholar] [CrossRef]
- Tu, M.; Liu, R.; Xue, J.; Xiao, B.; Li, J.; Liang, L. Urban Particulate Matter Triggers Meibomian Gland Dysfunction. Investig. Ophthalmol. Vis. Sci. 2024, 65, 8. [Google Scholar] [CrossRef]
- Tau, J.; Novaes, P.; Matsuda, M.; Tasat, D.R.; Saldiva, P.H.; Berra, A. Diesel exhaust particles selectively induce both proinflammatory cytokines and mucin production in cornea and conjunctiva human cell lines. Investig. Ophthalmol. Vis. Sci. 2013, 54, 4759–4765. [Google Scholar] [CrossRef] [PubMed]
- Eperon, S.; Berguiga, M.; Ballabeni, P.; Guex-Crosier, C.; Guex-Crosier, Y. Total IgE and eotaxin (CCL11) contents in tears of patients suffering from seasonal allergic conjunctivitis. Graefes Arch. Clin. Exp. Ophthalmol. 2014, 252, 1359–1367. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.J.; Chang, H.H.; Chiang, C.Y.; Lai, C.Y.; Hsu, M.Y.; Wang, K.R.; Han, H.H.; Chen, L.Y.; Lin, D.P. A Murine Model of Acute Allergic Conjunctivitis Induced by Continuous Exposure to Particulate Matter 2.5. Investig. Ophthalmol. Vis. Sci. 2019, 60, 2118–2126. [Google Scholar] [CrossRef]
- Alryalat, S.A.; Toubasi, A.A.; Patnaik, J.L.; Kahook, M.Y. The impact of air pollution and climate change on eye health: A global review. Rev. Environ. Health 2024, 39, 291–303. [Google Scholar] [CrossRef] [PubMed]
- Bhujel, B.; Oh, S.; Hur, W.; Lee, S.; Chung, H.S.; Lee, H.; Park, J.H.; Kim, J.Y. Effect of Exposure to Particulate Matter on the Ocular Surface in an Experimental Allergic Eye Disease Mouse Model. Bioengineering 2024, 11, 498. [Google Scholar] [CrossRef] [PubMed]
- Fujishima, H.; Satake, Y.; Okada, N.; Kawashima, S.; Matsumoto, K.; Saito, H. Effects of diesel exhaust particles on primary cultured healthy human conjunctival epithelium. Ann. Allergy Asthma Immunol. 2013, 110, 39–43. [Google Scholar] [CrossRef]
- Bradley, J.C.; Yang, W.; Bradley, R.H.; Reid, T.W.; Schwab, I.R. The science of pterygia. Br. J. Ophthalmol. 2010, 94, 815–820. [Google Scholar] [CrossRef]
- Livingston, P.M.; McCarty, C.A.; Taylor, H.R. Visual impairment and socioeconomic factors. Br. J. Ophthalmol. 1997, 81, 574–577. [Google Scholar] [CrossRef]
- Lee, K.W.; Choi, Y.H.; Hwang, S.H.; Paik, H.J.; Kim, M.K.; Wee, W.R.; Kim, D.H. Outdoor Air Pollution and Pterygium in Korea. J. Korean Med. Sci. 2017, 32, 143–150. [Google Scholar] [CrossRef]
- Fu, Q.; Mo, Z.; Gu, Y.; Lu, B.; Hao, S.; Lyu, D.; Xu, P.; Wu, L.; Lou, X.; Jin, H.; et al. Association between outpatient visits for pterygium and air pollution in Hangzhou, China. Environ. Pollut. 2021, 291, 118246. [Google Scholar] [CrossRef]
- Willermain, F.; Scifo, L.; Weber, C.; Caspers, L.; Perret, J.; Delporte, C. Potential Interplay between Hyperosmolarity and Inflammation on Retinal Pigmented Epithelium in Pathogenesis of Diabetic Retinopathy. Int. J. Mol. Sci. 2018, 19, 1056. [Google Scholar] [CrossRef] [PubMed]
- Boulton, M.; Dayhaw-Barker, P. The role of the retinal pigment epithelium: Topographical variation and ageing changes. Eye 2001, 15, 384–389. [Google Scholar] [CrossRef] [PubMed]
- Pavan, B.; Dalpiaz, A. Retinal pigment epithelial cells as a therapeutic tool and target against retinopathies. Drug. Discov. Today 2018, 23, 1672–1679. [Google Scholar] [CrossRef] [PubMed]
- Gu, Y.; Hao, S.; Liu, K.; Gao, M.; Lu, B.; Sheng, F.; Zhang, L.; Xu, Y.; Wu, D.; Han, Y.; et al. Airborne fine particulate matter (PM(2.5)) damages the inner blood-retinal barrier by inducing inflammation and ferroptosis in retinal vascular endothelial cells. Sci. Total Environ. 2022, 838, 156563. [Google Scholar] [CrossRef]
- Gu, Y.; Sheng, F.; Gao, M.; Zhang, L.; Hao, S.; Chen, S.; Chen, R.; Xu, Y.; Wu, D.; Han, Y.; et al. Acute and continuous exposure of airborne fine particulate matter (PM2.5): Diverse outer blood–retinal barrier damages and disease susceptibilities. Part. Fibre Toxicol. 2023, 20, 50. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Park, H.; Park, H.; Joung, B.; Kim, E. The acute respiratory exposure by intratracheal instillation of Sprague-Dawley rats with diesel particulate matter induces retinal thickening. Cutan. Ocul. Toxicol. 2016, 35, 275–280. [Google Scholar] [CrossRef]
- Li, L.; Song, M.; Zhou, J.; Sun, X.; Lei, Y. Ambient particulate matter exposure causes visual dysfunction and retinal neuronal degeneration. Ecotoxicol. Environ. Saf. 2022, 247, 114231. [Google Scholar] [CrossRef]
- Zeng, Y.; Li, M.; Zou, T.; Chen, X.; Li, Q.; Li, Y.; Ge, L.; Chen, S.; Xu, H. The Impact of Particulate Matter (PM2.5) on Human Retinal Development in hESC-Derived Retinal Organoids. Front. Cell Dev. Biol. 2021, 9, 607341. [Google Scholar] [CrossRef]
- Priyadarshana, D.; Cheon, J.; Lee, Y.; Cha, S.H. Particulate Matter Induced Adverse Effects on Eye Development in Zebrafish (Danio rerio) Embryos. Toxics 2024, 12, 59. [Google Scholar] [CrossRef]
- Chang, K.H.; Hsu, P.Y.; Lin, C.J.; Lin, C.L.; Juo, S.H.; Liang, C.L. Traffic-related air pollutants increase the risk for age-related macular degeneration. J. Investig. Med. 2019, 67, 1076–1081. [Google Scholar] [CrossRef]
- Liang, C.-L.; Wang, C.-M.; Jung, C.-R.; Chang, Y.-C.; Lin, C.-J.; Lin, Y.-T.; Hwang, B.-F. Fine particulate matter measured by satellites predicts the risk of age-related macular degeneration in a longitudinal cohort study. Environ. Sci. Pollut. Res. Int. 2022, 29, 51942–51950. [Google Scholar] [CrossRef] [PubMed]
- Ju, M.J.; Kim, J.; Park, S.K.; Kim, D.H.; Choi, Y.-H. Long-term exposure to ambient air pollutants and age-related macular degeneration in middle-aged and older adults. Environ. Res. 2022, 204, 111953. [Google Scholar] [CrossRef] [PubMed]
- Pan, S.C.; Huang, C.C.; Chin, W.S.; Chen, B.Y.; Chan, C.C.; Guo, Y.L. Association between air pollution exposure and diabetic retinopathy among diabetics. Environ. Res. 2020, 181, 108960. [Google Scholar] [CrossRef] [PubMed]
- Gayraud, L.; Mortamais, M.; Schweitzer, C.; de Hoogh, K.; Cougnard-Grégoire, A.; Korobelnik, J.-F.; Delyfer, M.-N.; Rougier, M.-B.; Leffondré, K.; Helmer, C.; et al. Association of long-term exposure to ambient air pollution with retinal neurodegeneration: The prospective Alienor study. Environ. Res. 2023, 232, 116364. [Google Scholar] [CrossRef] [PubMed]
- Chua, S.Y.L.; Khawaja, A.P.; Dick, A.D.; Morgan, J.; Dhillon, B.; Lotery, A.J.; Strouthidis, N.G.; Reisman, C.; Peto, T.; Khaw, P.T.; et al. Ambient Air Pollution Associations with Retinal Morphology in the UK Biobank. Investig. Ophthalmol. Vis. Sci. 2020, 61, 32. [Google Scholar] [CrossRef]
- Ding, J.; Wai, K.L.; McGeechan, K.; Ikram, M.K.; Kawasaki, R.; Xie, J.; Klein, R.; Klein, B.B.; Cotch, M.F.; Wang, J.J.; et al. Retinal vascular caliber and the development of hypertension: A meta-analysis of individual participant data. J. Hypertens. 2014, 32, 207–215. [Google Scholar] [CrossRef]
- Liew, G.; Wang, J.J.; Mitchell, P.; Wong, T.Y. Retinal vascular imaging: A new tool in microvascular disease research. Circ. Cardiovasc. Imaging 2008, 1, 156–161. [Google Scholar] [CrossRef]
- Adar, S.D.; Klein, R.; Klein, B.E.; Szpiro, A.A.; Cotch, M.F.; Wong, T.Y.; O’Neill, M.S.; Shrager, S.; Barr, R.G.; Siscovick, D.S.; et al. Air Pollution and the microvasculature: A cross-sectional assessment of in vivo retinal images in the population-based multi-ethnic study of atherosclerosis (MESA). PLoS Med. 2010, 7, e1000372. [Google Scholar] [CrossRef]
- Louwies, T.; Panis, L.I.; Kicinski, M.; De Boever, P.; Nawrot, T.S. Retinal microvascular responses to short-term changes in particulate air pollution in healthy adults. Environ. Health Perspect. 2013, 121, 1011–1016. [Google Scholar] [CrossRef]
- Provost, E.B.; Int Panis, L.; Saenen, N.D.; Kicinski, M.; Louwies, T.; Vrijens, K.; De Boever, P.; Nawrot, T.S. Recent versus chronic fine particulate air pollution exposure as determinant of the retinal microvasculature in school children. Environ. Res. 2017, 159, 103–110. [Google Scholar] [CrossRef]
- Gassel, C.J.; Andris, W.; Poli, S.; Bartz-Schmidt, K.U.; Dimopoulos, S.; Wenzel, D.A. Incidence of central retinal artery occlusion peaks in winter season. Front. Neurol. 2024, 15, 1342491. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Tang, Y.; Song, X.; Lazar, L.; Li, Z.; Zhao, J. Impact of ambient PM(2.5) on adverse birth outcome and potential molecular mechanism. Ecotoxicol. Environ. Saf. 2019, 169, 248–254. [Google Scholar] [CrossRef] [PubMed]
- Leske, M.C.; Wu, S.Y.; Hennis, A.; Honkanen, R.; Nemesure, B. Risk factors for incident open-angle glaucoma: The Barbados Eye Studies. Ophthalmology 2008, 115, 85–93. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; He, M.; Li, Z.; Huang, W. Epidemiological variations and trends in health burden of glaucoma worldwide. Acta Ophthalmol. 2019, 97, e349–e355. [Google Scholar] [CrossRef] [PubMed]
- Min, K.B.; Min, J.Y. Association of Ambient Particulate Matter Exposure with the Incidence of Glaucoma in Childhood. Am. J. Ophthalmol. 2020, 211, 176–182. [Google Scholar] [CrossRef]
- Wu, N.; Shi, W.; Sun, X. Association of Long-Term Exposure to Ambient Air Pollution With the Risk of Acute Primary Angle Closure. Transl. Vis. Sci. Technol. 2024, 13, 7. [Google Scholar] [CrossRef]
- Yang, X.; Yang, Z.; Liu, Y.; Chen, X.; Yao, B.; Liang, F.; Shan, A.; Liu, F.; Chen, S.; Yan, X.; et al. The association between long-term exposure to ambient fine particulate matter and glaucoma: A nation-wide epidemiological study among Chinese adults. Int. J. Hyg. Environ. Health 2021, 238, 113858. [Google Scholar] [CrossRef]
- Chua, S.Y.L.; Khawaja, A.P.; Morgan, J.; Strouthidis, N.; Reisman, C.; Dick, A.D.; Khaw, P.T.; Patel, P.J.; Foster, P.J. The Relationship Between Ambient Atmospheric Fine Particulate Matter (PM2.5) and Glaucoma in a Large Community Cohort. Investig. Ophthalmol. Vis. Sci. 2019, 60, 4915–4923. [Google Scholar] [CrossRef]
- Sun, H.Y.; Luo, C.W.; Chiang, Y.W.; Yeh, K.L.; Li, Y.C.; Ho, Y.C.; Lee, S.S.; Chen, W.Y.; Chen, C.J.; Kuan, Y.H. Association Between PM(2.5) Exposure Level and Primary Open-Angle Glaucoma in Taiwanese Adults: A Nested Case-Control Study. Int. J. Environ. Res. Public. Health 2021, 18, 1714. [Google Scholar]
- Li, L.; Xing, C.; Zhou, J.; Niu, L.; Luo, B.; Song, M.; Niu, J.; Ruan, Y.; Sun, X.; Lei, Y. Airborne particulate matter (PM2.5) triggers ocular hypertension and glaucoma through pyroptosis. Part. Fibre Toxicol. 2021, 18, 10. [Google Scholar] [CrossRef]
- Thylefors, B.; Négrel, A.D.; Pararajasegaram, R.; Dadzie, K.Y. Global data on blindness. Bull. World Health Organ. 1995, 73, 115–121. [Google Scholar] [PubMed]
- Choi, Y.H.; Park, S.J.; Paik, H.J.; Kim, M.K.; Wee, W.R.; Kim, D.H. Unexpected potential protective associations between outdoor air pollution and cataracts. Environ. Sci. Pollut. Res. Int. 2018, 25, 10636–10643. [Google Scholar] [CrossRef] [PubMed]
- Yu, D.; Cai, W.; Shen, T.; Wu, Y.; Ren, C.; Li, T.; Hu, C.; Zhu, M.; Yu, J. PM2.5 exposure increases dry eye disease risks through corneal epithelial inflammation and mitochondrial dysfunctions. Cell Biol. and Toxicol. 2023, 39, 2615–2630. [Google Scholar] [CrossRef] [PubMed]
- Fu, Q.; Lyu, D.; Zhang, L.; Qin, Z.; Tang, Q.; Yin, H.; Lou, X.; Chen, Z.; Yao, K. Airborne particulate matter (PM2.5) triggers autophagy in human corneal epithelial cell line. Environ. Pollut. 2017, 227, 314–322. [Google Scholar] [CrossRef] [PubMed]
- Lyu, D.; Chen, Z.; Almansoob, S.; Chen, H.; Ye, Y.; Song, F.; Zhang, L.; Qin, Z.; Tang, Q.; Yin, H.; et al. Transcriptomic profiling of human corneal epithelial cells exposed to airborne fine particulate matter (PM2.5). Ocul. Surf. 2020, 18, 554–564. [Google Scholar] [CrossRef]
- Gao, Z.X.; Song, X.L.; Li, S.S.; Lai, X.R.; Yang, Y.L.; Yang, G.; Li, Z.J.; Cui, Y.H.; Pan, H.W. Assessment of DNA Damage and Cell Senescence in Corneal Epithelial Cells Exposed to Airborne Particulate Matter (PM2.5) Collected in Guangzhou, China. Investig. Ophthalmol. Vis. Sci. 2016, 57, 3093–3102. [Google Scholar] [CrossRef]
- Xiang, P.; He, R.W.; Han, Y.H.; Sun, H.J.; Cui, X.Y.; Ma, L.Q. Mechanisms of housedust-induced toxicity in primary human corneal epithelial cells: Oxidative stress, proinflammatory response and mitochondrial dysfunction. Environ. Int. 2016, 89–90, 30–37. [Google Scholar] [CrossRef]
- Kim, D.H.; Lee, H.; Hwangbo, H.; Kim, S.Y.; Ji, S.Y.; Kim, M.Y.; Park, S.K.; Park, S.H.; Kim, M.Y.; Kim, G.Y.; et al. Particulate matter 2.5 promotes inflammation and cellular dysfunction via reactive oxygen species/p38 MAPK pathway in primary rat corneal epithelial cells. Cutan. Ocul. Toxicol. 2022, 41, 273–284. [Google Scholar] [CrossRef]
- Lee, H.; Hwang-Bo, H.; Ji, S.Y.; Kim, M.Y.; Kim, S.Y.; Park, C.; Hong, S.H.; Kim, G.Y.; Song, K.S.; Hyun, J.W.; et al. Diesel particulate matter2.5 promotes epithelial-mesenchymal transition of human retinal pigment epithelial cells via generation of reactive oxygen species. Environ. Pollut. 2020, 262, 114301. [Google Scholar] [CrossRef]
- Jeong, S.; Shin, E.-C.; Lee, J.-H.; Ha, J.-H. Particulate Matter Elevates Ocular Inflammation and Endoplasmic Reticulum Stress in Human Retinal Pigmented Epithelium Cells. Int. J. Environ. Res. Public. Health 2023, 20, 4766. [Google Scholar] [CrossRef]
- Lee, H.; Kim, D.H.; Kim, J.H.; Park, S.K.; Jeong, J.W.; Kim, M.Y.; Hong, S.H.; Song, K.S.; Kim, G.Y.; Hyun, J.W.; et al. Urban Aerosol Particulate Matter Promotes Necrosis and Autophagy via Reactive Oxygen Species-Mediated Cellular Disorders that are Accompanied by Cell Cycle Arrest in Retinal Pigment Epithelial Cells. Antioxidants 2021, 10, 149. [Google Scholar] [CrossRef] [PubMed]
- Bang, E.; Hwangbo, H.; Kim, M.Y.; Ji, S.Y.; Kim, D.H.; Shim, J.-H.; Moon, S.-K.; Kim, G.-Y.; Cheong, J.; Choi, Y.H. Urban aerosol particulate matter promotes mitochondrial oxidative stress-induced cellular senescence in human retinal pigment epithelial ARPE-19 cells. Environ. Toxicol. Pharmacol. 2023, 102, 104211. [Google Scholar] [CrossRef] [PubMed]
- Crobeddu, B.; Aragao-Santiago, L.; Bui, L.C.; Boland, S.; Baeza Squiban, A. Oxidative potential of particulate matter 2.5 as predictive indicator of cellular stress. Environ. Pollut. 2017, 230, 125–133. [Google Scholar] [CrossRef] [PubMed]
- Park, J.H.; Troxel, A.B.; Harvey, R.G.; Penning, T.M. Polycyclic aromatic hydrocarbon (PAH) o-quinones produced by the aldo-keto-reductases (AKRs) generate abasic sites, oxidized pyrimidines, and 8-oxo-dGuo via reactive oxygen species. Chem. Res. Toxicol. 2006, 19, 719–728. [Google Scholar] [CrossRef]
- Park, C.G.; Cho, H.K.; Shin, H.J.; Park, K.H.; Lim, H.B. Comparison of Mutagenic Activities of Various Ultra-Fine Particles. Toxicol. Res. 2018, 34, 163–172. [Google Scholar] [CrossRef]
- Somayajulu, M.; Ekanayaka, S.; McClellan, S.A.; Bessert, D.; Pitchaikannu, A.; Zhang, K.; Hazlett, L.D. Airborne Particulates Affect Corneal Homeostasis and Immunity. Investig. Ophthalmol. Vis. Sci. 2020, 61, 23. [Google Scholar] [CrossRef]
- Wu, J.; Chen, X.; Liu, X.; Huang, S.; He, C.; Chen, B.; Liu, Y. Autophagy regulates TGF-β2-induced epithelial-mesenchymal transition in human retinal pigment epithelium cells. Mol. Med. Rep. 2018, 17, 3607–3614. [Google Scholar] [CrossRef]
- Chi, Y.; Huang, Q.; Lin, Y.; Ye, G.; Zhu, H.; Dong, S. Epithelial-mesenchymal transition effect of fine particulate matter from the Yangtze River Delta region in China on human bronchial epithelial cells. J. Environ. Sci. 2018, 66, 155–164. [Google Scholar] [CrossRef]
- Wang, Y.; Zhong, Y.; Hou, T.; Liao, J.; Zhang, C.; Sun, C.; Wang, G. PM2.5 induces EMT and promotes CSC properties by activating Notch pathway in vivo and vitro. Ecotoxicol. Environ. Saf. 2019, 178, 159–167. [Google Scholar] [CrossRef]
- Hwang, M.; Han, S.; Seo, J.-W.; Jeon, K.-J.; Lee, H.S. Traffic-related particulate matter aggravates ocular allergic inflammation by mediating dendritic cell maturation. J. Toxicol. Environ. Health A 2021, 84, 661–673. [Google Scholar] [CrossRef]
- Parzych, K.R.; Klionsky, D.J. An overview of autophagy: Morphology, mechanism, and regulation. Antioxid. Redox. Signal. 2014, 20, 460–473. [Google Scholar] [CrossRef] [PubMed]
- Karnati, R.; Talla, V.; Peterson, K.; Laurie, G.W. Lacritin and other autophagy associated proteins in ocular surface health. Exp. Eye Res. 2016, 144, 4–13. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Zimmerman, K.; Raab, R.W.; McKown, R.L.; Hutnik, C.M.; Talla, V.; Tyler, M.F.; Lee, J.K.; Laurie, G.W. Lacritin rescues stressed epithelia via rapid forkhead box O3 (FOXO3)-associated autophagy that restores metabolism. J. Biol. Chem. 2013, 288, 18146–18161. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.H.; Wu, Y.F.; Wang, P.L.; Wu, Y.P.; Li, Z.Y.; Zhao, Y.; Zhou, J.S.; Zhu, C.; Cao, C.; Mao, Y.Y.; et al. Autophagy is essential for ultrafine particle-induced inflammation and mucus hyperproduction in airway epithelium. Autophagy 2016, 12, 297–311. [Google Scholar] [CrossRef] [PubMed]
- Deng, X.; Zhang, F.; Rui, W.; Long, F.; Wang, L.; Feng, Z.; Chen, D.; Ding, W. PM2.5-induced oxidative stress triggers autophagy in human lung epithelial A549 cells. Toxicol. Vitr. 2013, 27, 1762–1770. [Google Scholar] [CrossRef]
- Deng, X.; Zhang, F.; Wang, L.; Rui, W.; Long, F.; Zhao, Y.; Chen, D.; Ding, W. Airborne fine particulate matter induces multiple cell death pathways in human lung epithelial cells. Apoptosis 2014, 19, 1099–1112. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, J.-H.; Amri, C.; Lee, H.; Hur, J. Pathological Mechanisms of Particulate Matter-Mediated Ocular Disorders: A Review. Int. J. Mol. Sci. 2024, 25, 12107. https://doi.org/10.3390/ijms252212107
Han J-H, Amri C, Lee H, Hur J. Pathological Mechanisms of Particulate Matter-Mediated Ocular Disorders: A Review. International Journal of Molecular Sciences. 2024; 25(22):12107. https://doi.org/10.3390/ijms252212107
Chicago/Turabian StyleHan, Jung-Hwa, Chaima Amri, Hyesook Lee, and Jin Hur. 2024. "Pathological Mechanisms of Particulate Matter-Mediated Ocular Disorders: A Review" International Journal of Molecular Sciences 25, no. 22: 12107. https://doi.org/10.3390/ijms252212107
APA StyleHan, J. -H., Amri, C., Lee, H., & Hur, J. (2024). Pathological Mechanisms of Particulate Matter-Mediated Ocular Disorders: A Review. International Journal of Molecular Sciences, 25(22), 12107. https://doi.org/10.3390/ijms252212107