Influence of Secondary Metabolites According to Maturation of Perilla (Perilla frutescens) on Respiratory Protective Effect in Fine Particulate Matter (PM2.5)-Induced Human Nasal Cell
Abstract
:1. Introduction
2. Results and Discussion
2.1. Flowering Stage, Extraction Yield, Total Polyphenol, and Flavonoid Content
2.2. Individual Phenolic Acids and Flavones
2.3. Antioxidant Activities
2.4. Screening of Respiratory Improvement Activities
2.5. Correlation Analysis and Principal Component Analysis (PCA)
2.6. PM2.5-Induced Respiratory Protection Effects in RPMI 2650 Cells of Optimal Perilla Extracts
3. Materials and Methods
3.1. Materials
3.2. Preparation of Flavonoid-Rich Extracts
3.3. Functional Compounds Analysis in Perilla Seed and Flower of Different Growth Periods
3.4. Antioxidant Activities in Perilla Seed and Flower of Different Growth Periods
3.5. Screening Analysis for Improvement Effect of Respiratory Disease
3.6. Respiratory Protective Effect in PM2.5-Induced RPMI 2650 Cells of Optimized Perilla Extracts
3.7. Anti-Inflammatory Effect in PM2.5-Induced RPMI 2650 Cells of Optimized Perilla Extracts
3.8. Inhibition Effect of Mucus Hypersecretion and Fibrosis in PM2.5-Induced RPMI 2650 Cells of Selected Resources
3.9. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jiang, X.Q.; Mei, X.D.; Feng, D. Air pollution and chronic airway diseases: What should people know and do? J. Thorac. Dis. 2016, 8, E31–E40. [Google Scholar] [PubMed]
- Liu, C.; Chen, R.; Sera, F.; Vicedo-Cabrera, A.M.; Guo, Y.; Tong, S.; Coelho, M.S.Z.S.; Saldiva, P.H.N.; Lavigne, E.; Matus, P.; et al. Ambient particulate air pollution and daily mortality in 652 cities. N. Engl. J. Med. 2019, 381, 705–715. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Jiang, W.; Cao, J.; Li, Y. Changes in extractable and non-extractable polyphenols and their antioxidant properties during fruit on-tree ripening in five peach culti-vars. Hortic. Plant J. 2019, 5, 137–144. [Google Scholar] [CrossRef]
- de Miguel Díez, J.; Chancafe Morgan, J.; Jiménez García, R. The association between COPD and heart failure risk: A review. Int. J. Chronic Obstruct. Pulm. Dis. 2013, 8, 305–312. [Google Scholar] [CrossRef]
- Zhao, J.; Li, M.; Wang, Z.; Chen, J.; Zhao, J.; Xu, Y.; Wei, X.; Wang, J.; Xie, J.; Wang, J.; et al. Role of PM2.5 in the development and progression of COPD and its mechanisms. Respir. Res. 2019, 20, 120. [Google Scholar] [CrossRef]
- Watterson, T.L.; Hamilton, B.; Martin, R.S.; Coulombe, R.A. Urban particulate matter activates Akt in human lung cells. Arch. Toxicol. 2012, 86, 121–135. [Google Scholar] [CrossRef] [PubMed]
- Van Den Heuvel, R.; Den Hond, E.; Govarts, E.; Colles, A.; Koppen, G.; Staelens, J.; Mampaey, M.; Janssen, N.; Schoeters, G.; Janssen, N.; et al. Identification of PM10 characteristics involved in cellular responses in human bronchial epithelial cells (Beas-2B). Environ. Res. 2016, 149, 48–56. [Google Scholar] [CrossRef]
- Li, F.; Dong, Y.; Ni, C.; Kan, H.; Yan, S. Fine particulate matter (PM2.5) is a Risk Factor for Dermatitis by Promoting the Expression of Thymic Stromal Lymphopoietin (TSLP) in Keratinocytes. Indian J. Dermatol. 2020, 65, 92–96. [Google Scholar]
- Li, Y.; Kong, D.; Fu, Y.; Sussman, M.R.; Wu, H. The effect of developmental and environmental factors on secondary metabolites in medicinal plants. Plant Physiol. Biochem. 2020, 148, 80–89. [Google Scholar] [CrossRef]
- Morales-Bárcenas, R.; Chirino, Y.I.; Sánchez-Pérez, Y.; Osornio-Vargas, Á.R.; Melendez-Zajgla, J.; Rosas, I.; García-Cuellar, C.M. Particulate matter (PM10) induces metalloprotease activity and invasion in airway epithelial cells. Toxicol. Lett. 2015, 237, 167–173. [Google Scholar] [CrossRef]
- He, X.; Zhang, L.; Xiong, A.; Ran, Q.; Wang, J.; Wu, D.; Niu, B.; Liu, S.; Li, G.; Liu, S.; et al. PM2.5 aggravates NQO1-induced mucus hyper-secretion through release of neutrophil extracellular traps in an asthma model. Ecotoxicol. Environ. Saf. 2021, 218, 112272. [Google Scholar] [CrossRef] [PubMed]
- Hou, T.; Netala, V.R.; Zhang, H.; Xing, Y.; Li, H.; Zhang, Z. Perilla frutescens: A rich source of pharmacological active compounds. Molecules 2022, 27, 3578. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Gao, Q.; Wan, S.; Hao, J.; Lian, X.; Ma, J.; Zhang, X.; Zheng, Z.; Li, Q.; Zheng, Z.; et al. Antiasthmatic compounds targeting β2-adrenergic receptor from Perilla frutescens improved lung inflammation by inhibiting the NF-κB signaling pathway. J. Nat. Prod. 2022, 85, 2656–2666. [Google Scholar] [CrossRef]
- Che, D.N.; Cho, B.O.; Kim, J.S.; Shin, J.Y.; Kang, H.J.; Jang, S.I. Effect of luteolin and apigenin on the production of IL-31 and IL-33 in lipopolysaccharides-activated microglia cells and their mechanism of action. Nutrients 2020, 12, 811. [Google Scholar] [CrossRef]
- Yan, H.; Ma, L.; Wang, H.; Wu, S.; Huang, H.; Gu, Z.; Jiang, J.; Li, Y.; Li, Y. Luteolin decreases the yield of influenza A virus in vitro by interfering with the coat protein I complex expression. J. Nat. Med. 2019, 73, 487–496. [Google Scholar] [CrossRef]
- Naghiloo, S.; Movafeghi, A.; Delazar, A.; Nazemiyeh, H.; Asnaashari, S.; Dadpour, M.R. Ontogenetic variation of volatiles and antioxidant activity in leaves of Astragalus compactus Lam. (Fabaceae). Excli J. 2012, 11, 436–443. [Google Scholar] [PubMed]
- Xie, P.J.; Huang, L.X.; Zhang, C.H.; Zhang, Y.L. Phenolic compositions and antioxidant performance of olive leaf and fruit (Olea europaea L.) extracts and their structure–activity relationships. J. Funct. Foods 2015, 16, 460–471. [Google Scholar]
- Trócsányi, E.; György, Z.; Zámboriné-Németh, É. New insights into rosmarinic acid biosynthesis based on molecular studies. Curr. Plant Biol. 2020, 23, 100162. [Google Scholar] [CrossRef]
- Bellumori, M.; Innocenti, M.; Congiu, F.; Cencetti, G.; Raio, A.; Menicucci, F.; Mulinacci, N.; Michelozzi, M.; Michelozzi, M. Within-plant variation in Rosmarinus officinalis L. terpenes and phenols and their antimicrobial activity against the rosemary phytopathogens Alternaria alternata and Pseudomonas viridiflava. Molecules 2021, 26, 3425. [Google Scholar] [CrossRef]
- Anwar, F.; Hussain, A.I.; Sherazi, S.T.H.; Bhanger, M.I. Changes in composition and antioxidant and antimicrobial activities of essential oil of fennel (Foeniculum vulgare Mill.) fruit at different stages of maturity. J. Herbs Spices Med. Plants 2009, 15, 187–202. [Google Scholar] [CrossRef]
- Cho, J.L.; Kang, H.; Park, J.C. Effects of photoperiod and temperature on flowering of Perilla ocymcides LJ Inst. Agr. Res. Util. Gyeongsang N. Atl. Univ. 1984, 18, 27–32. [Google Scholar]
- Muhlemann, J.K.; Maeda, H.; Chang, C.Y.; San Miguel, P.; Baxter, I.; Cooper, B.; Perera, M.A.; Nikolau, B.J.; Vitek, O.; Morgan, J.A.; et al. Developmental changes in the metabolic network of snapdragon flowers. PLoS ONE 2012, 7, e40381. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, L.; Pereira, J.A.; Saraiva, J.A.; Ramalhosa, E.; Casal, S. Phytochemical characterization of Borago officinalis L. and Centaurea cyanus L. during flower development. Food Res. Int. 2019, 123, 771–778. [Google Scholar] [CrossRef] [PubMed]
- Jung, C.S.; Oh, K.W.; Kim, H.K.; Kwon, I.C.; Pae, S.B.; Park, C.B.; Kwack, Y.H. Flowering responses according to different Sowing dates and day-length treatment in perilla. Korean J. Crop Sci. 2003, 48, 490–494. [Google Scholar]
- Kim, J.I.; Lee, M.H.; Kim, S.; Oh, E.; Ha, T.J.; Oh, K.W.; Jung, C.S. Quality Characteristics of Perilla frutescens Cultivars According to Different Sowing Dates. Korean J. Crop Sci. 2021, 66, 403–410. [Google Scholar]
- Gai, F.; Janiak, M.A.; Sulewska, K.; Peiretti, P.G.; Karamać, M. Phenolic compound profile and antioxidant capacity of flax (Linum usitatissimum L.) harvested at different growth stages. Molecules 2023, 28, 1807. [Google Scholar] [CrossRef]
- André, A.; Leupin, M.; Kneubühl, M.; Pedan, V.; Chetschik, I. Evolution of the polyphenol and terpene content, antioxidant activity and plant morphology of eight different fiber-type cultivars of Cannabis sativa L. cultivated at three sowing densities. Plants 2020, 9, 1740. [Google Scholar] [CrossRef]
- Pourcel, L.; Routaboul, J.-M.; Cheynier, V.; Lepiniec, L.; Debeaujon, I. Flavonoid oxidation in plants: From biochemical properties to physiological functions. Trends Plant Sci. 2007, 12, 29–36. [Google Scholar] [CrossRef]
- Marchev, A.S.; Vasileva, L.V.; Amirova, K.M.; Savova, M.S.; Koycheva, I.K.; Balcheva-Sivenova, Z.P.; Vasileva, S.M.; Georgiev, M.I.; Georgiev, M.I. Rosmarinic acid–From bench to valuable applications in food industry. Trends Food Sci. Technol. 2021, 117, 182–193. [Google Scholar] [CrossRef]
- Lu, X.; Hao, L.; Wang, F.; Huang, C. Molecular cloning, characterization and expression analysis of a gene encoding hydroxyphenylpyruvate reductase involved in rosmarinic acid biosynthesis pathway from Perilla frutescens. In Proceedings of the 2012 International Conference on Applied Biotechnology (ICab 2012), Tianjin, China, 18–19 October 2012; Springer: Berlin/Heidelberg, Germany, 2014; Volume 3, pp. 1807–1820. [Google Scholar]
- Chagaleti, B.K.; Reddy, M.B.R.; Saravanan, V.; B., S.; D., P.; Senthil Kumar, P.; Kathiravan, M.K. An overview of mechanism and chemical inhibitors of shikimate kinase. J. Biomol. Struct. Dyn. 2023, 41, 14582–14598. [Google Scholar] [CrossRef]
- Sun, W.; Meng, X.; Liang, L.; Jiang, W.; Huang, Y.; He, J.; Hu, H.; Almqvist, J.; Gao, X.; Wang, L. Molecular and biochemical analysis of chalcone synthase from freesia hybrid in flavonoid biosynthetic pathway. PLoS ONE 2015, 10, e0119054. [Google Scholar] [CrossRef]
- Shoeva, O.Y.; Mock, H.-P.; Kukoeva, T.V.; Börner, A.; Khlestkina, E.K. Regulation of the flavonoid biosynthesis pathway genes in purple and black grains of Hordeum vulgare. PLoS ONE 2016, 11, e0163782. [Google Scholar] [CrossRef] [PubMed]
- Nakatsuka, T.; Nishihara, M.; Mishiba, K.; Yamamura, S. Temporal expression of flavonoid biosynthesis-related genes regulates flower pigmentation in gentian plants. Plant Sci. 2005, 168, 1309–1318. [Google Scholar] [CrossRef]
- Zuk, M.; Szperlik, J.; Hnitecka, A.; Szopa, J. Temporal biosynthesis of flavone constituents in flax growth stages. Plant Physiol. Biochem. 2019, 142, 234–245. [Google Scholar] [CrossRef] [PubMed]
- Sanz, L.; Albertos, P.; Mateos, I.; Sánchez-Vicente, I.; Lechón, T.; Fernández-Marcos, M.; Lorenzo, O. Nitric oxide (NO) and phytohormones crosstalk during early plant development. J. Exp. Bot. 2015, 66, 2857–2868. [Google Scholar] [CrossRef]
- Mardani, M.; Badakné, K.; Szedljak, I.; Sörös, C.; Farmani, J. Lipophilized rosmarinic acid: Impact of alkyl type and food matrix on antioxidant activity, and optimized enzymatic production. Food Chem. 2024, 452, 139518. [Google Scholar] [CrossRef]
- Vo, Q.V.; Hoa, N.T.; Flavel, M.; Thong, N.M.; Boulebd, H.; Nam, P.C.; Quang, D.T.; Mechler, A.; Mechler, A. A comprehensive study of the radical scavenging activity of rosmarinic acid. J. Org. Chem. 2023, 88, 17237–17248. [Google Scholar] [CrossRef]
- Zaręba, Ł.; Piszczatowska, K.; Dżaman, K.; Soroczynska, K.; Motamedi, P.; Szczepański, M.J.; Ludwig, N. The relationship between fine particle matter (PM2.5) exposure and upper respiratory tract diseases. J. Pers. Med. 2024, 14, 98. [Google Scholar] [CrossRef]
- Xian, M.; Ma, S.; Wang, K.; Lou, H.; Wang, Y.; Zhang, L.; Wang, C.; Akdis, C.A. Particulate matter 2.5 causes deficiency in barrier integrity in human nasal epithelial cells. Allergy Asthma Immunol. Res. 2020, 12, 56–71. [Google Scholar] [CrossRef]
- Mao, M.; Li, J.; Bi, A.; Jia, H.; Li, Q.; Liu, Y.; Jiang, X.; Huang, D.; Xia, S. Thymoquinone ameliorates the PM2.5-induced lung injury in rats. Exp. Lung Res. 2020, 46, 297–307. [Google Scholar] [CrossRef]
- Yu, H.; Qiu, J.F.; Ma, L.J.; Hu, Y.J.; Li, P.; Wan, J.B. Phytochemical and phytopharmacological review of Perilla frutescens L. (Labiatae), a traditional edible-medicinal herb in China. Food Chem. Toxicol. 2017, 108, 375–391. [Google Scholar] [CrossRef]
- Makino, T.; Furuta, Y.; Wakushima, H.; Fujii, H.; Saito, K.; Kano, Y. Anti-allergic effect of Perilla frutescens its active constituent. Phytother. Res. 2003, 17, 240–243. [Google Scholar] [CrossRef] [PubMed]
- Lee, E.; Hong, S.; Kim, Y.D.; Lee, D.I.; Eom, S.Y. Evaluating the impact of airborne fine particulate matter and heavy metals on oxidative stress via vitamin supplementation. Toxics 2024, 12, 465. [Google Scholar] [CrossRef]
- Farhadi, F.; Baradaran Rahimi, V.; Mohamadi, N.; Askari, V.R. Effects of rosmarinic acid, carnosic acid, rosmanol, carnosol, and ursolic acid on the pathogenesis of respiratory diseases. BioFactors 2023, 49, 478–501. [Google Scholar] [CrossRef]
- Xu, M.; Wang, X.; Xu, L.; Zhang, H.; Li, C.; Liu, Q.; Chen, Y.; Chung, K.F.; Adcock, I.M.; Li, F. Chronic lung inflammation and pulmonary fibrosis after multiple intranasal instillation of PM2.5 in mice. Environ. Toxicol. 2021, 36, 1434–1446. [Google Scholar] [CrossRef]
- Baumlin, N.; Silswal, N.; Dennis, J.S.; Niloy, A.J.; Kim, M.D.; Salathe, M. Nebulized menthol impairs mucociliary clearance via TRPM8 and MUC5AC/MUC5B in primary airway epithelial cells. Int. J. Mol. Sci. 2023, 24, 1694. [Google Scholar] [CrossRef] [PubMed]
- Sakashita, N.; Motooka, Y.; Suganuma, M.; Ohnishi, K.; Fujiwara, Y.; Nakagawa, T.; Ichiyasu, H.; Takeya, M. A case of pulmonary capillary hemangiomatosis with pulmonary fibrosis associated with MMP-9 related pulmonary remodeling. Pathol. Int. 2011, 61, 306–312. [Google Scholar] [CrossRef]
- Pintha, K.; Chaiwangyen, W.; Yodkeeree, S.; Suttajit, M.; Tantipaiboonwong, P. Suppressive effects of rosmarinic acid rich fraction from perilla on oxidative stress, inflammation and metastasis ability in A549 cells exposed to PM via c-Jun, P-65-Nf-Κb and Akt signaling pathways. Biomolecules 2021, 11, 1090. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.Y.; Kim, J.I.; Kim, S.W.; Kim, S.; Oh, E.; Lee, J.; Lee, E.; An, Y.J.; Lee, M.H.; Kim, C.-S. Antioxidant and anti-inflammatory effects on optimal extraction conditions of different edible parts of perilla (Perilla frutescens L.). Korean J. Food Nutr. 2023, 36, 551–560. [Google Scholar]
- Woo, K.S.; Ko, J.Y.; Jeong, H.S. Effect of milling time on antioxidant compounds and activities of methanol extracts of sorghum [Sorghum bicolor (L.) Moench]. Food Sci. Biotechnol. 2014, 23, 1741–1746. [Google Scholar] [CrossRef]
- An, Y.J.; Kim, J.I.; Kim, S.W.; Kim, S.; Oh, E.; Lee, J.; Lee, E.; Yoo, E.; Lee, M.H.; Kim, C.-S.; et al. Functional components and antioxidant activities of perilla leaf genetic resource. Korean J. Food Nutr. 2023, 36, 379–386. [Google Scholar]
- Park, J.E.; Kim, J.I.; Lee, M.H.; Kim, S.; Oh, E.; Cho, K.S.; Oh, K.W. Influence of roasting temperature on the functional components of perilla and sesame oils. J. Korean Soc. Food Sci. Nutr. 2021, 50, 149–154. [Google Scholar] [CrossRef]
- Ishiyama, T.; Matsuda, N.; Murata, M.; Ozawa, F.; Suzuki, A.; Miyaura, N. Platinum (0)-catalyzed diboration of alkynes with tetrakis (Alkoxo) Diborons: An efficient and convenient approach to cis-bis (boryl) alkenes. Organometallics 1996, 15, 713–720. [Google Scholar] [CrossRef]
- Hong, Z.; Guo, Z.; Zhang, R.; Xu, J.; Dong, W.; Zhuang, G.; Deng, C. Airborne fine particulate matter induces oxidative stress and inflammation in human nasal epithelial cells. Tohoku J. Exp. Med. 2016, 239, 117–125. [Google Scholar] [CrossRef] [PubMed]
- Jin, X.; Xue, B.; Zhou, Q.; Su, R.; Li, Z. Mitochondrial damage mediated by ROS incurs bronchial epithelial cell apoptosis upon ambient PM2.5 exposure. J. Toxicol. Sci. 2018, 43, 101–111. [Google Scholar] [CrossRef]
- Han, W.; Dan, W.; Shuo, Y.; Fang, Z.; Wenjun, D. Oxidative stress induced by urban fine particles in cultured EA.hy926 cells. Hum. Exp. Toxicol. 2011, 30, 579–590. [Google Scholar] [CrossRef]
- Lyu, Y.; Zhou, J.; Li, J.; Li, J.; Hu, G.; Wang, L.; Wang, L.; Han, J.; Wang, D. Alterations of IL-1beta and TNF-alpha expression in RAW264.7 cell damage induced by two samples of PM2.5 with different compositions. Sci. Prog. 2022, 105, 368504221113709. [Google Scholar] [CrossRef]
- Song, Y.S.; Kim, M.S.; Lee, D.H.; Oh, D.K.; Yoon, D.Y. 15-hydroxyeicosatetraenoic acid inhibits phorbol-12-myristate-13-acetate-induced MUC5AC expression in NCI-H292 respiratory epithelial cells. J. Microbiol. Biotechnol. 2015, 25, 589–597. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, M.-Y.; Kim, J.-I.; Kim, S.-W.; Kim, S.; Oh, E.; Lee, J.; Lee, E.; An, Y.-J.; Han, C.-Y.; Lee, H.; et al. Influence of Secondary Metabolites According to Maturation of Perilla (Perilla frutescens) on Respiratory Protective Effect in Fine Particulate Matter (PM2.5)-Induced Human Nasal Cell. Int. J. Mol. Sci. 2024, 25, 12119. https://doi.org/10.3390/ijms252212119
Kim M-Y, Kim J-I, Kim S-W, Kim S, Oh E, Lee J, Lee E, An Y-J, Han C-Y, Lee H, et al. Influence of Secondary Metabolites According to Maturation of Perilla (Perilla frutescens) on Respiratory Protective Effect in Fine Particulate Matter (PM2.5)-Induced Human Nasal Cell. International Journal of Molecular Sciences. 2024; 25(22):12119. https://doi.org/10.3390/ijms252212119
Chicago/Turabian StyleKim, Min-Young, Jung-In Kim, Sang-Woo Kim, Sungup Kim, Eunyoung Oh, Jeongeun Lee, Eunsoo Lee, Yeon-Ju An, Chae-Yeon Han, Heungsu Lee, and et al. 2024. "Influence of Secondary Metabolites According to Maturation of Perilla (Perilla frutescens) on Respiratory Protective Effect in Fine Particulate Matter (PM2.5)-Induced Human Nasal Cell" International Journal of Molecular Sciences 25, no. 22: 12119. https://doi.org/10.3390/ijms252212119
APA StyleKim, M. -Y., Kim, J. -I., Kim, S. -W., Kim, S., Oh, E., Lee, J., Lee, E., An, Y. -J., Han, C. -Y., Lee, H., & Lee, M. -H. (2024). Influence of Secondary Metabolites According to Maturation of Perilla (Perilla frutescens) on Respiratory Protective Effect in Fine Particulate Matter (PM2.5)-Induced Human Nasal Cell. International Journal of Molecular Sciences, 25(22), 12119. https://doi.org/10.3390/ijms252212119