Triple-Gene Overexpression of the AcrA-AcrB-TolC Transporter System in Synechocystis sp. PCC 6803 Contributes to a Higher Secretion of Free Fatty Acids in Response to Nitrogen Shortage and Salt Stress
Abstract
:1. Introduction
2. Results
2.1. Overexpressions of Native sll0180, slr2131, and slr1270 Genes in Synechocystis sp. PCC 6803
2.2. Cell Growth, Intracellular Pigment Contents, and O2 Evolution Rates Under Stress Conditions
2.3. Accumulation of Intracellular Lipids and Free Fatty Acid Secretion in Engineered Synechocystis sp. PCC 6803 Strains
2.4. Transcript Levels of Genes Under Nitrogen Deprivation and Salt Stress
3. Discussion
4. Materials and Methods
4.1. Construction of Recombinant Plasmids
4.2. Natural Transformation and Confirmation of the Engineered Strains
4.3. Determinations of Cell Growth, Pigment Contents and Oxygen Evolution Rate
4.4. Extraction and Determination of Intracellular Lipids and Extracellular FFAs
4.5. Quantitative Analysis of PHB Contents
4.6. Determination of Transcription Levels by Reverse Transcription Polymerase Chain Reaction (RT-PCR)
4.7. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AAS | acyl–acyl carrier protein synthetase |
ACP | acyl carrier protein |
Car | carotenoids |
Chl a | chlorophyll a |
CO2 | carbon dioxide |
DCW | dry cell weight |
DMF | N,N-dimethylformamide |
FFA | free fatty acid |
GGPP | geranylgeranyl pyrophosphate |
h | hour |
IM | inner membrane |
lipA | lipase A |
m | meter |
μg | microgram |
mL | milliliter |
min | minute |
nm | nanometer |
OD | optical density |
OM | outer membrane |
PCR | polymerase chain reaction |
plsX | putative acyltransferase |
PHB | polyhydroxybutyrate |
rpm | revolutions per minute |
s | seconds |
S-layer | surface layer protein |
WT | wild type |
References
- Sutherland, D.L.; McCauley, J.; Labeeuw, L.; Ray, P.; Kuzhiumparambil, U.; Hall, C.; Doblin, M.; Nguyen, L.N.; Ralph, P.J. How microalgal biotechnology can assist with the UN Sustainable Development Goals for natural resource management. Curr. Res. Environ. Sustain. 2021, 3, 100050. [Google Scholar] [CrossRef]
- Kaczmarzyk, D.; Fulda, M. Fatty acid activation in cyanobacteria mediated by acyl–acyl carrier protein synthetase enables fatty acid recycling. Plant Physiol. 2010, 152, 1598–1610. [Google Scholar] [CrossRef] [PubMed]
- Gao, Q.; Wang, W.; Zhao, H.; Lu, X. Effects of fatty acid activation on photosynthetic production of fatty acid-based biofuels in Synechocystis sp. PCC 6803. Biotechnol. Biofuels 2012, 5, 17. [Google Scholar] [CrossRef]
- Wang, W.; Liu, X.; Lu, X. Engineering cyanobacteria to improve photosynthetic production of alka(e)nes. Biotechnol. Biofuels 2013, 6, 69. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Pugh, S.; Nielsen, D.R.; Zhang, W.; Meldrum, D.R. Engineering cyanobacteria for photosynthetic production of 3-hydroxybutyrate directly from CO2. Metab. Eng. 2013, 16, 68–77. [Google Scholar] [CrossRef]
- Towijit, U.; Songruk, N.; Lindblad, P.; Incharoensakdi, A.; Jantaro, S. Co-overexpression of native phospholipid-biosynthetic genes plsX and plsC enhances lipid production in Synechocystis sp. PCC 6803. Sci. Rep. 2018, 8, 13510. [Google Scholar] [CrossRef]
- Eungrasamee, K.; Lindblad, P.; Jantaro, S. Improved lipid production and component of mycosporine-like amino acids by co-overexpression of amt1 and aroB genes in Synechocystis sp. PCC6803. Sci. Rep. 2023, 13, 19439. [Google Scholar] [CrossRef] [PubMed]
- Tharasirivat, V.; Jantaro, S. Increased biomass and polyhydroxybutyrate production by Synechocystis sp. PCC 6803 overexpressing RuBisCO genes. Int. J. Mol. Sci. 2023, 24, 6415. [Google Scholar] [CrossRef]
- Utharn, S.; Jantaro, S. The adc1 knockout with proC overexpression in Synechocystis sp. PCC 6803 induces a diversion of acetyl-CoA to produce more polyhydroxybutyrate. Biotechnol. Biofuels 2024, 17, 6. [Google Scholar] [CrossRef]
- Quintana, N.; Van der Kooy, F.; Van de Rhee, M.D.; Voshol, G.P.; Verpoorte, R. Renewable energy from cyanobacteria: Energy production optimization by metabolic pathway engineering. Appl. Microbiol. Biotechnol. 2011, 91, 471–490. [Google Scholar] [CrossRef]
- Javidialesaadi, A.; Raeissi, S. Biodiesel production from high free fatty acid-content oils: Experimental investigation of the pretreatment step. APCBEE Procedia 2013, 5, 474–478. [Google Scholar] [CrossRef]
- Chai, M.; Tu, Q.; Lu, M.; Yang, Y.J. Esterification pretreatment of free fatty acid in biodiesel production, from laboratory to industry. Fuel Process Technol. 2014, 125, 106–113. [Google Scholar] [CrossRef]
- Cerone, M.; Smith, T.K. A brief journey into the history of and future sources and uses of fatty acids. Front. Nutr. 2021, 8, 570401. [Google Scholar] [CrossRef]
- Veeresh Babu, S.V.; Veeresh, B.; Patil, A.A.; Warke, Y.B. Lauric acid and myristic acid prevent testosterone induced prostatic hyperplasia in rats. Eur. J. Pharmacol. 2010, 626, 262–265. [Google Scholar] [CrossRef] [PubMed]
- Gao, Q.; Tan, X.; Lü, X. Characterization of a key gene in membrane lipid cycle in Synechocystis sp. PCC6803. Chin. J. Biotechnol. 2012, 28, 1473–1481. [Google Scholar]
- Eungrasamee, K.; Incharoensakdi, A.; Lindblad, P.; Jantaro, S. Overexpression of lipA or glpD_RuBisCO in the Synechocystis sp. PCC 6803 mutant lacking the Aas gene enhances free fatty-acid secretion and intracellular lipid accumulation. Int. J. Mol. Sci. 2021, 22, 11468. [Google Scholar] [CrossRef]
- Eungrasamee, K.; Miao, R.; Incharoensakdi, A.; Lindblad, P.; Jantaro, S. Improved lipid production via fatty acid biosynthesis and free fatty acid recycling in engineered Synechocystis sp. PCC 6803. Biotechnol. Biofuels 2019, 12, 8. [Google Scholar] [CrossRef] [PubMed]
- Hamilton, J.A.; Kamp, F. How are free fatty acids transported in membranes? Is it by proteins or by free diffusion through the lipids? Diabetes 1999, 48, 2255–2269. [Google Scholar] [CrossRef] [PubMed]
- Eungrasamee, K.; Incharoensakdi, A.; Lindblad, P.; Jantaro, S. Synechocystis sp. PCC 6803 overexpressing genes involved in CBB cycle and free fatty acid cycling enhances the significant levels of intracellular lipids and secreted free fatty acids. Sci. Rep. 2020, 10, 4515. [Google Scholar] [CrossRef]
- Kato, A.; Use, K.; Takatani, N.; Ikeda, K.; Matsuura, M.; Kojima, K.; Aichi, M.; Maeda, S.; Omata, T. Modulation of the balance of fatty acid production and secretion is crucial for enhancement of growth and productivity of the engineered mutant of the cyanobacterium Synechococcus elongatus. Biotechnol. Biofuels 2016, 9, 91. [Google Scholar] [CrossRef]
- Kato, A.; Takatani, N.; Ikeda, K.; Maeda, S.; Omata, T. Removal of the product from the culture medium strongly enhances free fatty acid production by genetically engineered Synechococcus elongatus. Biotechnol. Biofuels 2017, 10, 141. [Google Scholar] [CrossRef] [PubMed]
- Lennen, R.M.; Pfleger, B.F. Engineering Escherichia coli to synthesize free fatty acids. Trends Biotechnol. 2012, 30, 659–667. [Google Scholar] [CrossRef] [PubMed]
- Molina Grima, E.; Belarbi, E.-H.; Acién Fernández, F.G.; Robles Medina, A.; Chisti, Y. Recovery of microalgal biomass and metabolites: Process options and economics. Biotechnol. Adv. 2003, 20, 491–515. [Google Scholar] [CrossRef]
- Liu, X.; Sheng, J.; Curtiss III, R. Fatty acid production in genetically modified cyanobacteria. Proc. Natl. Acad. Sci. USA 2011, 108, 6899–6904. [Google Scholar] [CrossRef]
- Eungrasamee, K.; Lindblad, P.; Jantaro, S. Enhanced productivity of extracellular free fatty acids by gene disruptions of acyl-ACP synthetase and S-layer protein in Synechocystis sp. PCC 6803. Biotechnol. Biofuels 2022, 15, 99. [Google Scholar] [CrossRef] [PubMed]
- Šmarda, J.; Šmajs, D.; Komrska, J.; Krzyžánek, V. S-layers on cell walls of cyanobacteria. Micron 2002, 33, 257–277. [Google Scholar] [CrossRef]
- Agarwal, R.; Zakharov, S.; Hasan, S.S.; Ryan, C.M.; Whitelegge, J.P.; Cramer, W.A. Structure-function of cyanobacterial outer-membrane protein, Slr1270: Homolog of Escherichia coli drug export/colicin import protein, TolC. FEBS Lett. 2014, 588, 3793–3801. [Google Scholar] [CrossRef]
- Oliveira, P.; Martins, N.M.; Santos, M.; Pinto, F.; Büttel, Z.; Couto, N.A.; Wright, P.C.; Tamagnini, P. The versatile TolC-like Slr1270 in the cyanobacterium Synechocystis sp. PCC 6803. Environ. Microbiol. 2016, 18, 486–502. [Google Scholar] [CrossRef]
- Delepelaire, P. Type I secretion in gram-negative bacteria. Biochim. Biophys. Acta Mol. Cell Res. 2004, 1694, 149–161. [Google Scholar] [CrossRef]
- Agarwal, R.; Whitelegge, J.P.; Saini, S.; Shrivastav, A.P. The S-layer biogenesis system of Synechocystis 6803: Role of Sll1180 and Sll1181 (E. coli HlyB and HlyD analogs) as type-I secretion components for Sll1951 export. Biochim. Biophys. Acta Biomembr. 2018, 1860, 1436–1446. [Google Scholar] [CrossRef]
- de Zwaig, R.N.; Luria, S.E. Genetics and physiology of colicin-tolerant mutants of Escherichia coli. J. Bacteriol. 1967, 94, 1112–1123. [Google Scholar] [CrossRef] [PubMed]
- Ma, D.; Cook, D.N.; Alberti, M.; Pon, N.G.; Nikaido, H.; Hearst, J.E. Genes acrA and acrB encode a stress-induced efflux system of Escherichia coli. Mol Microbiol. 1995, 16, 45–55. [Google Scholar] [CrossRef] [PubMed]
- Ma, D.; Cook, D.N.; Alberti, M.; Pon, N.G.; Nikaido, H.; Hearst, J.E. Molecular cloning and characterization of acrA and acrE genes of Escherichia coli. J. Bacteriol. 1993, 175, 6299–6313. [Google Scholar] [CrossRef]
- Gonçalves, C.F.; Pacheco, C.C.; Tamagnini, P.; Oliveira, P. Identification of inner membrane translocase components of TolC-mediated secretion in the cyanobacterium Synechocystis sp. PCC 6803. Environ. Microbiol. 2018, 20, 2354–2369. [Google Scholar] [CrossRef]
- Bellefleur, M.P.; Wanda, S.Y.; Curtiss, R. Characterizing active transportation mechanisms for free fatty acids and antibiotics in Synechocystis sp. PCC 6803. BMC Biotechnol. 2019, 19, 5. [Google Scholar]
- Englund, E.; Andersen-Ranberg, J.; Miao, R.; Hamberger, B.; Lindberg, P. Metabolic engineering of Synechocystis sp. PCC 6803 for production of the plant diterpenoid manoyl oxide. ACS Synth. Biol. 2015, 4, 1270–1278. [Google Scholar] [CrossRef]
- Elloumi, W.; Jebali, A.; Maalej, A.; Chamkha, M.; Sayadi, S. Effect of mind salinity stress on the growth, fatty acid and carotenoid compositions, and biological activities of the thermal freshwater microalgae Scenedesmus sp. Biomolecules 2020, 10, 1515. [Google Scholar] [CrossRef] [PubMed]
- Ruffing, A.M.; Jones, H.D. Physiological effects of free fatty acid production in genetically engineered Synechococcus elongatus PCC 7942. Biotechnol. Bioeng. 2012, 109, 2190–2199. [Google Scholar] [CrossRef] [PubMed]
- Ruffing, A.M. Improved free fatty acid production in cyanobacteria with Synechococcus sp. PCC 7002 as host. Front. Bioeng. Biotechnol. 2014, 2, 17. [Google Scholar] [CrossRef]
- Costa, T.R.D.; Felisberto-Rodrigues, C.; Meir, A.; Prevost, M.S.; Redzej, A.; Trokter, M.; Waksman, G. Secretion systems in Gram-negative bacteria: Structural and mechanistic insights. Nat. Rev. Microbiol. 2015, 13, 343–359. [Google Scholar] [CrossRef]
- Lennen, R.M.; Politz, M.G.; Kruziki, M.A.; Pfleger, B.F. Identification of transport proteins involved in free fatty acid efflux in Escherichia coli. J. Bacteriol. 2013, 195, 135–144. [Google Scholar] [CrossRef]
- Touzé, T.; Eswaran, J.; Bokma, E.; Koronakis, E.; Hughes, C.; Koronakis, V. Interactions underlying assembly of the Escherichia coli AcrAB–TolC multidrug efflux system. Mol. Microbiol. 2004, 53, 697–706. [Google Scholar] [CrossRef] [PubMed]
- Allen, M.M.; Smith, A.J. Nitrogen chlorosis in blue-green algae. Archiv. Mikrobiol. 1969, 69, 114–120. [Google Scholar] [CrossRef] [PubMed]
- Lau, R.H.; MacKenzie, M.M.; Doolittle, W.F. Phycocyanin synthesis and degradation in the blue-green bacterium Anacystis nidulans. J. Bacteriol. 1977, 132, 771–778. [Google Scholar] [CrossRef] [PubMed]
- Collier, J.L.; Grossman, A. Chlorosis induced by nutrient deprivation in Synechococcus sp. strain PCC 7942: Not all bleaching is the same. J. Bacteriol. 1992, 174, 4718–4726. [Google Scholar] [CrossRef]
- Jürgens, U.J.; Weckesser, J. Carotenoid-containing outer membrane of Synechocystis sp. strain PCC6714. J. Bacteriol. 1985, 164, 384–389. [Google Scholar] [CrossRef]
- Mishra, N.N.; Liu, G.Y.; Yeaman, M.R.; Nast, C.C.; Proctor, R.A.; McKinnell, J.; Bayer, A.S. Carotenoid-related alteration of cell membrane fluidity impacts Staphylococcus aureus susceptibility to host defense peptides. Antimicrob. Agents Chemother. 2011, 55, 526–531. [Google Scholar] [CrossRef]
- Kumar, S.V.; Abraham, P.E.; Hurst, G.B.; Chourey, K.; Bible, A.N.; Hettich, R.L.; Doktycz, M.J.; Morrell-Falvey, J.L. A carotenoid-deficient mutant of the plant-associated microbe Pantoea sp. YR343 displays an altered membrane proteome. Sci. Rep. 2020, 10, 14985. [Google Scholar]
- Görl, M.; Sauer, J.; Baier, T.; Forchhammer, K. Nitrogen-starvation-induced chlorosis in Synechococcus PCC 7942: Adaptation to long-term survival. Microbiology 1998, 144, 2449–2458. [Google Scholar] [CrossRef]
- Krasikov, V.; Aguirre von Wobeser, E.; Dekker, H.L.; Huisman, J.; Matthijs, H.C.P. Time-series resolution of gradual nitrogen starvation and its impact on photosynthesis in the cyanobacterium Synechocystis PCC 6803. Physiol. Plant. 2012, 145, 426–439. [Google Scholar] [CrossRef]
- Koch, M.; Bruckmoser, J.; Scholl, J.; Hauf, W.; Rieger, B.; Forchhammer, K. Maximizing PHB content in Synechocystis sp. PCC 6803: A new metabolic engineering strategy based on the regulator PirC. Microb. Cell Fact. 2020, 19, 231. [Google Scholar] [CrossRef] [PubMed]
- Verma, E.; Singh, S.; Niveshika; Mishra, A.K. Salinity-induced oxidative stress-mediated change in fatty acids composition of cyanobacterium Synechococcus sp. PCC7942. Int. J. Environ. Sci. Technol. 2019, 16, 875–886. [Google Scholar] [CrossRef]
- Salama, E.-S.; Kim, H.-C.; Abou-Shanab, R.A.I.; Ji, M.-K.; Oh, Y.-K.; Kim, S.-H.; Jeon, B.-H. Biomass, lipid content, and fatty acid composition of freshwater Chlamydomonas mexicana and Scenedesmus obliquus grown under salt stress. Bioprocess Biosyst. Eng. 2013, 36, 827–833. [Google Scholar] [CrossRef]
- Takagi, M.; Yoshida, T. Effect of salt concentration on intracellular accumulation of lipids and triacylglyceride in marine microalgae Dunaliella cells. J. Biosci. Bioeng. 2006, 101, 223–226. [Google Scholar] [CrossRef] [PubMed]
- Fulda, S.; Huang, F.; Nilsson, F.; Hagemann, M.; Norling, B. Proteomics of Synechocystis sp. strain PCC 6803: Identification of periplasmic proteins in cells grown at low and high salt concentrations. Eur. J. Biochem. 2000, 267, 5900–5907. [Google Scholar] [CrossRef]
- Bina, X.R.; Weng, Y.; Budnick, J.; Van Allen, M.E.; Bina, J.E. Klebsiella pneumoniae TolC contributes to antimicrobial resistance, exopolysaccharide production, and virulence. Infect. Immun. 2023, 91, e0030323. [Google Scholar] [CrossRef]
- Matsudaira, A.; Hoshino, Y.; Uesaka, K.; Takatani, N.; Omata, T.; Usada, Y. Production of glutamate and stereospecific flavors, (S)-linalool and (+)-valencene, by Synechocystis sp. PCC6803. J. Biosci. Bioeng. 2020, 130, 464–470. [Google Scholar] [CrossRef]
- Moran, R. Formulae for determination of chlorophyllous pigments extracted with N,N-dimethylformamide. Plant Physiol. 1982, 69, 1376–1381. [Google Scholar] [CrossRef]
- Chamovitz, D.; Sandmann, G.; Hirschberg, J. Molecular and biochemical characterization of herbicide-resistant mutants of cyanobacteria reveals that phytoene desaturation is a rate-limiting step in carotenoid biosynthesis. J. Biol. Chem. 1993, 268, 17348–17353. [Google Scholar] [CrossRef]
- Natesungnoen, M.; Pongrakhananon, V.; Lindblad, P.; Jantaro, S. Overexpressing carotenoid biosynthetic genes in Synechocystis sp. PCC 6803 improved intracellular pigments and antioxidant activity, which can decrease the viability and proliferation of lung cancer cells in vitro. Int. J. Mol. Sci. 2023, 24, 9370. [Google Scholar] [CrossRef]
- Fales, M.F. Evaluation of a spectrophotometric method for determination of total fecal lipid. Clin. Chem. 1971, 17, 1103–1108. [Google Scholar] [CrossRef] [PubMed]
Name | Relevant Genotype | Reference |
---|---|---|
Cyanobacterial strains | ||
Synechocystis sp. PCC 6803 | Wild type | Pasteur culture collection |
WTc | Cmr integrated at the native psbA2 gene in Synechocystis WT genome | [16] |
OA | sll0180, and Cmr integrated at the native psbA2 gene in Synechocystis WT genome | This study |
OB | slr2131, and Cmr integrated at the native psbA2 gene in Synechocystis WT genome | This study |
OC | slr1270, and Cmr integrated at the native psbA2 gene in Synechocystis WT genome | This study |
OABC | sll0180, slr2131, slr1270 and Cmr integrated at the native psbA2 gene in Synechocystis WT genome | This study |
Plasmids | ||
pEERM | PpsbA2–Cmr; plasmid containing Cmr between the flanking region of upstream and downstream psbA2 sequences | [36] |
pECm_acrA | PpsbA2–sll0108-Cmr; plasmid containing sll0108 and Cmr between the flanking region of upstream and downstream psbA2 sequences | This study |
pECm_acrB | PpsbA2–slr2131-Cmr; plasmid containing slr2131 and Cmr between the flanking region of upstream and downstream psbA2 sequences | This study |
pECm_tolC | PpsbA2–slr1270-Cmr; plasmid containing slr1270 and Cmr between the flanking region of upstream and downstream psbA2 sequences | This study |
pECm_acrA/acrB/tolC | PpsbA2–sll0108-slr2131-slr1270-Cmr; plasmid containing sll0108, slr2131, slr1270, and Cmr between the flanking region of upstream and downstream psbA2 sequences | This study |
Strain(s) | Intracellular Lipid Yield (mg/L) | Extracellular Lipid Yield (mg/L) | ||
---|---|---|---|---|
Start | Start | |||
WTc | 17.1 ± 1.7 | n.d. | ||
OA | 17.7 ± 1.8 | n.d. | ||
OB | 16.3 ± 2.2 | n.d. | ||
OC | 16.5 ± 1.1 | n.d. | ||
OABC | 16.0 ± 0.1 | n.d. | ||
Normal BG11 | Day 5 | Day 10 | Day 5 | Day 10 |
WTc | 82.4 ± 4.1 | 171.4 ± 11.8 | 69.3 ± 9.1 | 84.3 ± 3.7 |
OA | 73.7 ± 2.0 * | 172.4 ± 12.5 | 107.7 ± 14.6 * | 69.5 ± 8.6 * |
OB | 77.0 ± 7.8 | 173.8 ± 11.3 | 112.6 ± 20.7 * | 68.3 ± 3.0 * |
OC | 78.2 ± 5.2 | 170.7 ± 13.0 | 126.2 ± 9.9 * | 83.6 ± 15.5 |
OABC | 94.1 ± 6.9 * | 170.7 ± 11.3 | 47.1 ± 12.7 * | 80.7 ± 2.5 |
BG11-N | Day 5 | Day 10 | Day 5 | Day 10 |
WTc | 30.1 ± 3.1 | 27.6 ± 1.0 | 27.6 ± 5.4 | 75.2 ± 6.5 |
OA | 22.7 ± 4.0 * | 28.4 ± 3.1 | 62.1 ± 8.1 * | 85.0 ± 10.7 |
OB | 32.1 ± 1.8 | 27.1 ± 2.1 | 82.6 ± 2.9 * | 90.0 ± 6.2 * |
OC | 27.1 ± 1.8 | 26.9 ± 3.6 | 101.9 ± 9.3 * | 103.1 ± 8.4 * |
OABC | 27.1 ± 2.0 | 28.3 ± 3.0 | 99.8 ± 8.5 * | 84.5 ± 6.2 * |
BG11+1.5% NaCl | Day 5 | Day 10 | Day 5 | Day 10 |
WTc | 76.2 ± 3.6 | 108.3 ± 11.4 | 215.5 ± 15.8 | 168.1 ± 6.4 |
OA | 91.0 ± 4.4 * | 126.4 ± 10.5 | 303.8 ± 4.4 * | 155.2 ± 16.9 |
OB | 81.9 ± 10.3 | 132.6 ± 12.2 * | 308.3 ± 31.3 * | 136.4 ± 19.6 * |
OC | 81.4 ± 7.4 | 139.1 ± 8.3 * | 268.6 ± 18.8 * | 153.8 ± 2.5 * |
OABC | 105.2 ± 5.8 * | 103.6 ± 5.0 | 269.3 ± 16.3 * | 138.8 ± 15.9 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Eungrasamee, K.; Lindblad, P.; Jantaro, S. Triple-Gene Overexpression of the AcrA-AcrB-TolC Transporter System in Synechocystis sp. PCC 6803 Contributes to a Higher Secretion of Free Fatty Acids in Response to Nitrogen Shortage and Salt Stress. Int. J. Mol. Sci. 2024, 25, 12131. https://doi.org/10.3390/ijms252212131
Eungrasamee K, Lindblad P, Jantaro S. Triple-Gene Overexpression of the AcrA-AcrB-TolC Transporter System in Synechocystis sp. PCC 6803 Contributes to a Higher Secretion of Free Fatty Acids in Response to Nitrogen Shortage and Salt Stress. International Journal of Molecular Sciences. 2024; 25(22):12131. https://doi.org/10.3390/ijms252212131
Chicago/Turabian StyleEungrasamee, Kamonchanock, Peter Lindblad, and Saowarath Jantaro. 2024. "Triple-Gene Overexpression of the AcrA-AcrB-TolC Transporter System in Synechocystis sp. PCC 6803 Contributes to a Higher Secretion of Free Fatty Acids in Response to Nitrogen Shortage and Salt Stress" International Journal of Molecular Sciences 25, no. 22: 12131. https://doi.org/10.3390/ijms252212131
APA StyleEungrasamee, K., Lindblad, P., & Jantaro, S. (2024). Triple-Gene Overexpression of the AcrA-AcrB-TolC Transporter System in Synechocystis sp. PCC 6803 Contributes to a Higher Secretion of Free Fatty Acids in Response to Nitrogen Shortage and Salt Stress. International Journal of Molecular Sciences, 25(22), 12131. https://doi.org/10.3390/ijms252212131