SOCS1 Inhibits IL-6-Induced CD155 Overexpression in Lung Adenocarcinoma
Abstract
:1. Introduction
2. Results
2.1. Expression of IL-6 and CD155 in Lung Adenocarcinoma
2.2. IL-6-Induced CD155 Expression in Lung Adenocarcinoma Cell Lines
2.3. SOCS1 Negatively Regulates CD155 Expression in Lung Adenocarcinoma Cell Lines
2.4. Correlation Between IL-6 and CD155 in Lung Adenocarcinoma Patients
3. Discussion
4. Materials and Methods
4.1. Dataset Preparation
4.2. Lung Adenocarcinoma Cell Lines
4.3. Cell Culture and IL-6 Stimulation
4.4. Quantitative RT-PCR Analysis
4.5. SDS-PAGE and Western Blot Analysis
4.6. Quantification of CD155 in Supernatants of Culture Cell Lines by ELISA
4.7. SOCS1 Knockdown
4.8. Immunofluorescence for CD155 Induced by IL-6
4.9. Biopsy Collection
4.10. Quantification of IL-6 and CD155 Expression in Tumor Cells and Infiltrating CD8+ T Lymphocytes in Lung Adenocarcinoma Biopsies
4.11. Quantification of IL-6 and CD55 in Plasma from Lung Adenocarcinoma Patients
4.12. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Schabath, M.B.; Cote, M.L. Cancer Progress and Priorities: Lung Cancer. Cancer Epidemiol. Biomarkers Prev. 2019, 28, 1563–1579. [Google Scholar] [CrossRef] [PubMed]
- Moreira, A.L.; Ocampo, P.S.S.; Xia, Y.; Zhong, H.; Russell, P.A.; Minami, Y.; Cooper, W.A.; Yoshida, A.; Bubendorf, L.; Papotti, M.; et al. A Grading System for Invasive Pulmonary Adenocarcinoma: A Proposal From the International Association for the Study of Lung Cancer Pathology Committee. J. Thorac. Oncol. 2020, 15, 1599–1610. [Google Scholar] [CrossRef]
- Lemberg, K.M.; Gori, S.S.; Tsukamoto, T.; Rais, R.; Slusher, B.S. Clinical Development of Metabolic Inhibitors for Oncology. J. Clin. Investig. 2022, 132, e148550. [Google Scholar] [CrossRef]
- Wang, M.; Herbst, R.S.; Boshoff, C. Toward Personalized Treatment Approaches for Non-Small-Cell Lung Cancer. Nat. Med. 2021, 27, 1345–1356. [Google Scholar] [CrossRef]
- Morad, G.; Helmink, B.A.; Sharma, P.; Wargo, J.A. Hallmarks of response, resistance, and toxicity to immune checkpoint blockade. Cell 2021, 184, 5309–5337. [Google Scholar] [CrossRef]
- He, X.; Xu, C. Immune Checkpoint Signaling and Cancer Immunotherapy. Cell Res. 2020, 30, 660–669. [Google Scholar] [CrossRef]
- Mishra, A.K.; Ali, A.; Dutta, S.; Banday, S.; Malonia, S.K. Emerging Trends in Immunotherapy for Cancer. Diseases 2022, 10, 60. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Zhou, Y.; Tang, L.; Peng, X.; Jiang, H.; Wang, G.; Zhuang, W. Immune-Checkpoint Inhibitors as the First Line Treatment of Advanced Non-Small Cell Lung Cancer: A Meta-Analysis of Randomized Controlled Trials. J. Cancer 2019, 10, 6261–6268. [Google Scholar] [CrossRef]
- Barrueto, L.; Caminero, F.; Cash, L.; Makris, C.; Lamichhane, P.; Deshmukh, R.R. Resistance to Checkpoint Inhibition in Cancer Immunotherapy. Transl. Oncol. 2020, 13, 100738. [Google Scholar] [CrossRef]
- Vesely, M.D.; Zhang, T.; Chen, L. Resistance Mechanisms to Anti-PD Cancer Immunotherapy. Annu. Rev. Immunol. 2022, 40, 45–74. [Google Scholar] [CrossRef] [PubMed]
- Abiko, K.; Matsumura, N.; Hamanishi, J.; Horikawa, N.; Murakami, R.; Yamaguchi, K.; Yoshioka, Y.; Baba, T.; Konishi, I.; Mandai, M. IFN-γ from Lymphocytes Induces PD-L1 Expression and Promotes Progression of Ovarian Cancer. Br. J. Cancer 2015, 112, 1501–1509. [Google Scholar] [CrossRef] [PubMed]
- Zhang, N.; Zeng, Y.; Du, W.; Zhu, J.; Shen, D.; Liu, Z.; Huang, J. The EGFR Pathway Is Involved in the Regulation of PD-L1 Expression via the IL-6/JAK/STAT3 Signaling Pathway in EGFR-Mutated Non-Small Cell Lung Cancer. Int. J. Oncol. 2016, 49, 1360–1368. [Google Scholar] [CrossRef] [PubMed]
- Ju, X.; Zhang, H.; Zhou, Z.; Chen, M.; Wang, Q. Tumor-Associated Macrophages Induce PD-L1 Expression in Gastric Cancer Cells through IL-6 and TNF-ɑ Signaling. Exp. Cell Res. 2020, 396, 112315. [Google Scholar] [CrossRef]
- Samanta, D.; Almo, S.C. Nectin family of cell-adhesion molecules: Structural and molecular aspects of function and specificity. Cell Mol. Life Sci. 2015, 72, 645–658. [Google Scholar] [CrossRef] [PubMed]
- O’Donnell, J.S.; Madore, J.; Li, X.-Y.; Smyth, M.J. Tumor Intrinsic and Extrinsic Immune Functions of CD155. Semin. Cancer Biol. 2020, 65, 189–196. [Google Scholar] [CrossRef]
- Brlić, P.K.; Roviš, T.L.; Cinamon, G.; Tsukerman, P.; Mandelboim, O.; Jonjić, S. Targeting PVR (CD155) and Its Receptors in Anti-Tumor Therapy. Cell. Mol. Immunol. 2019, 16, 40–52. [Google Scholar] [CrossRef]
- Solecki, D.J.; Gromeier, M.; Mueller, S.; Bernhardt, G.; Wimmer, E. Expression of the Human Poliovirus Receptor/CD155 Gene Is Activated by Sonic Hedgehog. J. Biol. Chem. 2002, 277, 25697–25702. [Google Scholar] [CrossRef]
- Kamran, N.; Takai, Y.; Miyoshi, J.; Biswas, S.K.; Wong, J.S.B.; Gasser, S. Toll-Like Receptor Ligands Induce Expression of the Costimulatory Molecule CD155 on Antigen-Presenting Cells. PLoS ONE 2013, 8, e54406. [Google Scholar] [CrossRef]
- Soriani, A.; Zingoni, A.; Cerboni, C.; Iannitto, M.L.; Ricciardi, M.R.; Di Gialleonardo, V.; Cippitelli, M.; Fionda, C.; Petrucci, M.T.; Guarini, A.; et al. ATM-ATR–Dependent up-Regulation of DNAM-1 and NKG2D Ligands on Multiple Myeloma Cells by Therapeutic Agents Results in Enhanced NK-Cell Susceptibility and Is Associated with a Senescent Phenotype. Blood 2009, 113, 3503–3511. [Google Scholar] [CrossRef]
- Solecki, D.; Schwarz, S.; Wimmer, E.; Lipp, M.; Bernhardt, G. The Promoters for Human and Monkey Poliovirus Receptors. J. Biol. Chem. 1997, 272, 5579–5586. [Google Scholar] [CrossRef] [PubMed]
- Mekhloufi, A.; Kosta, A.; Stabile, H.; Molfetta, R.; Zingoni, A.; Soriani, A.; Cippitelli, M.; Paolini, R.; Gismondi, A.; Ricciardi, M.R.; et al. Bone Marrow Stromal Cell-Derived IL-8 Upregulates PVR Expression on Multiple Myeloma Cells via NF-kB Transcription Factor. Cancers 2020, 12, 440. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Sun, S.; Li, H.; Cai, X.; Wan, C. IL-22 Signaling Promotes Sorafenib Resistance in Hepatocellular Carcinoma via STAT3/CD155 Signaling Axis. Front. Immunol. 2024, 15, 1373321. [Google Scholar] [CrossRef]
- Lippitz, B.E.; Harris, R.A. Cytokine Patterns in Cancer Patients: A Review of the Correlation between Interleukin 6 and Prognosis. OncoImmunology 2016, 5, e1093722. [Google Scholar] [CrossRef]
- Jorcyk, C.; Tawara, K.; Jorcyk, C. Clinical Significance of Interleukin (IL)-6 in Cancer Metastasis to Bone: Potential of Anti-IL-6 Therapies. Cancer Manag. Res. 2011, 3, 177. [Google Scholar] [CrossRef]
- Ghandadi, M.; Sahebkar, A. Interleukin-6: A Critical Cytokine in Cancer Multidrug Resistance. Curr. Pharm. Des. 2016, 22, 518–526. [Google Scholar] [CrossRef]
- Johnson, D.E.; O’Keefe, R.A.; Grandis, J.R. Targeting the IL-6/JAK/STAT3 Signalling Axis in Cancer. Nat. Rev. Clin. Oncol. 2018, 15, 234–248. [Google Scholar] [CrossRef] [PubMed]
- Inagaki-Ohara, K.; Kondo, T.; Ito, M.; Yoshimura, A. SOCS, Inflammation, and Cancer. JAK-STAT 2013, 2, e24053. [Google Scholar] [CrossRef]
- Starr, R.; Willson, T.A.; Viney, E.M.; Murray, L.J.L.; Rayner, J.R.; Jenkins, B.J.; Gonda, T.J.; Alexander, W.S.; Metcalf, D.; Nicola, N.A.; et al. A Family of Cytokine-Inducible Inhibitors of Signalling. Nature 1997, 387, 917–921. [Google Scholar] [CrossRef]
- Berzaghi, R.; Maia, V.S.C.; Pereira, F.V.; Melo, F.M.; Guedes, M.S.; Origassa, C.S.T.; Scutti, J.B.; Matsuo, A.L.; Câmara, N.O.S.; Rodrigues, E.G.; et al. SOCS1 Favors the Epithelial-Mesenchymal Transition in Melanoma, Promotes Tumor Progression and Prevents Antitumor Immunity by PD-L1 Expression. Sci. Rep. 2017, 7, 40585. [Google Scholar] [CrossRef]
- Nishizawa, N.; Shimajiri, S.; Oyama, R.; Manabe, T.; Nemoto, Y.; Matsumiya, H.; Honda, Y.; Taira, A.; Takenaka, M.; Kuroda, K.; et al. Prognostic Factors of Resected Pathological Stage I Lung Adenocarcinoma: Evaluating Subtypes and PD-L1/CD155 Expression. Sci. Rep. 2023, 13, 21687. [Google Scholar] [CrossRef] [PubMed]
- Müller, S.; Mayer, S.; Möller, P.; Barth, T.F.E.; Marienfeld, R. Spatial distribution of immune checkpoint proteins in histological subtypes of lung adenocarcinoma. Neoplasia 2021, 23, 584–593. [Google Scholar] [CrossRef] [PubMed]
- Jin, A.; Yang, Y.; Su, X.; Yang, W.; Liu, T.; Chen, W.; Li, T.; Ding, L.; Wang, H.; Wang, B.; et al. High Serum Soluble CD155 Level Predicts Poor Prognosis and Correlates with an Immunosuppressive Tumor Microenvironment in Hepatocellular Carcinoma. J. Clin. Lab. Anal. 2022, 36, e24259. [Google Scholar] [CrossRef] [PubMed]
- Braun, M.; Aguilera, A.R.; Sundarrajan, A.; Corvino, D.; Stannard, K.; Krumeich, S.; Das, I.; Lima, L.G.; Meza Guzman, L.G.; Li, K.; et al. CD155 on Tumor Cells Drives Resistance to Immunotherapy by Inducing the Degradation of the Activating Receptor CD226 in CD8+ T Cells. Immunity 2020, 53, 805–823.e15. [Google Scholar] [CrossRef] [PubMed]
- Lepletier, A.; Madore, J.; O’Donnell, J.S.; Johnston, R.L.; Li, X.-Y.; McDonald, E.; Ahern, E.; Kuchel, A.; Eastgate, M.; Pearson, S.-A.; et al. Tumor CD155 Expression Is Associated with Resistance to Anti-PD1 Immunotherapy in Metastatic Melanoma. Clin. Cancer Res. 2020, 26, 3671–3681. [Google Scholar] [CrossRef]
- Hirano, T. IL-6 in Inflammation, Autoimmunity and Cancer. Int. Immunol. 2021, 33, 127–148. [Google Scholar] [CrossRef]
- Orange, S.T.; Leslie, J.; Ross, M.; Mann, D.A.; Wackerhage, H. The Exercise IL-6 Enigma in Cancer. Trends Endocrinol. Metab. 2023, 34, 749–763. [Google Scholar] [CrossRef]
- Kumari, N.; Dwarakanath, B.S.; Das, A.; Bhatt, A.N. Role of Interleukin-6 in Cancer Progression and Therapeutic Resistance. Tumor Biol. 2016, 37, 11553–11572. [Google Scholar] [CrossRef]
- Li, J.; Xiao, Y.; Yu, H.; Jin, X.; Fan, S.; Liu, W. Mutual Connected IL-6, EGFR and LIN28/Let7-Related Mechanisms Modulate PD-L1 and IGF Upregulation in HNSCC Using Immunotherapy. Front. Oncol. 2023, 13, 1140133. [Google Scholar] [CrossRef]
- Schaper, F.; Rose-John, S. Interleukin-6: Biology, Signaling and Strategies of Blockade. Cytokine Growth Factor Rev. 2015, 26, 475–487. [Google Scholar] [CrossRef]
- Jones, S.A.; Jenkins, B.J. Recent Insights into Targeting the IL-6 Cytokine Family in Inflammatory Diseases and Cancer. Nat. Rev. Immunol. 2018, 18, 773–789. [Google Scholar] [CrossRef]
- Islas-Vazquez, L.; Aguilar-Cazares, D.; Galicia-Velasco, M.; Rumbo-Nava, U.; Meneses-Flores, M.; Luna-Rivero, C.; Lopez-Gonzalez, J.S. IL-6, NLR, and SII Markers and Their Relation with Alterations in CD8+ T-Lymphocyte Subpopulations in Patients Treated for Lung Adenocarcinoma. Biology 2020, 9, 376. [Google Scholar] [CrossRef] [PubMed]
- Huseni, M.A.; Wang, L.; Klementowicz, J.E.; Yuen, K.; Breart, B.; Orr, C.; Liu, L.; Li, Y.; Gupta, V.; Li, C.; et al. CD8+ T cell-intrinsic IL-6 signaling promotes resistance to anti-PD-L1 immunotherapy. Cell Rep. Med. 2023, 4, 100878. [Google Scholar] [CrossRef] [PubMed]
- Nicholson, S.E. Mutational Analyses of the SOCS Proteins Suggest a Dual Domain Requirement but Distinct Mechanisms for Inhibition of LIF and IL-6 Signal Transduction. EMBO J. 1999, 18, 375–385. [Google Scholar] [CrossRef] [PubMed]
- Waiboci, L.W.; Ahmed, C.M.; Mujtaba, M.G.; Flowers, L.O.; Martin, J.P.; Haider, M.I.; Johnson, H.M. Both the Suppressor of Cytokine Signaling 1 (SOCS-1) Kinase Inhibitory Region and SOCS-1 Mimetic Bind to JAK2 Autophosphorylation Site: Implications for the Development of a SOCS-1 Antagonist. J. Immunol. 2007, 178, 5058–5068. [Google Scholar] [CrossRef] [PubMed]
- Flowers, L.O.; Subramaniam, P.S.; Johnson, H.M. A SOCS-1 Peptide Mimetic Inhibits Both Constitutive and IL-6 Induced Activation of STAT3 in Prostate Cancer Cells. Oncogene 2005, 24, 2114–2120. [Google Scholar] [CrossRef]
- Ilangumaran, S.; Gui, Y.; Shukla, A.; Ramanathan, S. SOCS1 Expression in Cancer Cells: Potential Roles in Promoting Antitumor Immunity. Front. Immunol. 2024, 15, 1362224. [Google Scholar] [CrossRef]
- Beaurivage, C.; Champagne, A.; Tobelaim, W.S.; Pomerleau, V.; Menendez, A.; Saucier, C. SOCS1 in Cancer: An Oncogene and a Tumor Suppressor. Cytokine 2016, 82, 87–94. [Google Scholar] [CrossRef]
- Tobelaim, W.S.; Beaurivage, C.; Champagne, A.; Pomerleau, V.; Simoneau, A.; Chababi, W.; Yeganeh, M.; Thibault, P.; Klinck, R.; Carrier, J.C.; et al. Tumour-Promoting Role of SOCS1 in Colorectal Cancer Cells. Sci. Rep. 2015, 5, 14301. [Google Scholar] [CrossRef]
- Ilangumaran, S.; Bobbala, D.; Ramanathan, S. SOCS1: Regulator of T Cells in Autoimmunity and Cancer. In Emerging Concepts Targeting Immune Checkpoints in Cancer and Autoimmunity; Yoshimura, A., Ed.; Current Topics in Microbiology and Immunology; Springer International Publishing: Cham, Switzerland, 2017; Volume 410, pp. 159–189. ISBN 978-3-319-68928-9. [Google Scholar]
- Morelli, M.; Madonna, S.; Albanesi, C. SOCS1 and SOCS3 as Key Checkpoint Molecules in the Immune Responses Associated to Skin Inflammation and Malignant Transformation. Front. Immunol. 2024, 15, 1393799. [Google Scholar] [CrossRef]
- Paolini, R.; Molfetta, R. CD155 and Its Receptors as Targets for Cancer Therapy. Int. J. Mol. Sci. 2023, 24, 12958. [Google Scholar] [CrossRef] [PubMed]
- Cho, B.C.; Abreu, D.R.; Hussein, M.; Cobo, M.; Patel, A.J.; Secen, N.; Lee, K.H.; Massuti, B.; Hiret, S.; Yang, J.C.H.; et al. Tiragolumab plus atezolizumab versus placebo plus atezolizumab as a first-line treatment for PD-L1-selected non-small-cell lung cancer (CITYSCAPE): Primary and follow-up analyses of a randomised, double-blind, phase 2 study. Lancet Oncol. 2022, 23, 781–792. [Google Scholar] [CrossRef] [PubMed]
- Chavez-Dominguez, R.; Aguilar-Cazares, D.; Perez-Medina, M.; Avila-Rios, S.; Soto-Nava, M.; Mendez-Tenorio, A.; Islas-Vazquez, L.; Benito-Lopez, J.J.; Galicia-Velasco, M.; Lopez-Gonzalez, J.S. Transcriptional Signature of Early Cisplatin Drug-Tolerant Persister Cells in Lung Adenocarcinoma. Front. Oncol. 2023, 13, 1208403. [Google Scholar] [CrossRef] [PubMed]
- Wienke, J.; Visser, L.L.; Kholosy, W.M.; Keller, K.M.; Barisa, M.; Poon, E.; Munnings-Tomes, S.; Himsworth, C.; Calton, E.; Rodriguez, A.; et al. Integrative analysis of neuroblastoma by single-cell RNA sequencing identifies the NECTIN2-TIGIT axis as a target for immunotherapy. Cancer Cell 2024, 42, 283–300.e8. [Google Scholar] [CrossRef]
- Reyes, A.; Muddasani, R.; Massarelli, E. Overcoming Resistance to Checkpoint Inhibitors with Combination Strategies in the Treatment of Non-Small Cell Lung Cancer. Cancers 2024, 16, 2919. [Google Scholar] [CrossRef]
- Avila-Moreno, F.; Lopez-Gonzalez, J.S.; Galindo-Rodríguez, G.; Prado-Garcia, H.; Bajaña, S.; Sánchez-Torres, C. Lung Squamous Cell Carcinoma and Adenocarcinoma Cell Lines Use Different Mediators to Induce Comparable Phenotypic and Functional Changes in Human Monocyte-Derived Dendritic Cells. Cancer Immunol. Immunother. 2006, 55, 598–611. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marroquin-Muciño, M.; Benito-Lopez, J.J.; Perez-Medina, M.; Aguilar-Cazares, D.; Galicia-Velasco, M.; Chavez-Dominguez, R.; Meza-Toledo, S.E.; Meneses-Flores, M.; Camarena, A.; Lopez-Gonzalez, J.S. SOCS1 Inhibits IL-6-Induced CD155 Overexpression in Lung Adenocarcinoma. Int. J. Mol. Sci. 2024, 25, 12141. https://doi.org/10.3390/ijms252212141
Marroquin-Muciño M, Benito-Lopez JJ, Perez-Medina M, Aguilar-Cazares D, Galicia-Velasco M, Chavez-Dominguez R, Meza-Toledo SE, Meneses-Flores M, Camarena A, Lopez-Gonzalez JS. SOCS1 Inhibits IL-6-Induced CD155 Overexpression in Lung Adenocarcinoma. International Journal of Molecular Sciences. 2024; 25(22):12141. https://doi.org/10.3390/ijms252212141
Chicago/Turabian StyleMarroquin-Muciño, Mario, Jesus J. Benito-Lopez, Mario Perez-Medina, Dolores Aguilar-Cazares, Miriam Galicia-Velasco, Rodolfo Chavez-Dominguez, Sergio E. Meza-Toledo, Manuel Meneses-Flores, Angel Camarena, and Jose S. Lopez-Gonzalez. 2024. "SOCS1 Inhibits IL-6-Induced CD155 Overexpression in Lung Adenocarcinoma" International Journal of Molecular Sciences 25, no. 22: 12141. https://doi.org/10.3390/ijms252212141
APA StyleMarroquin-Muciño, M., Benito-Lopez, J. J., Perez-Medina, M., Aguilar-Cazares, D., Galicia-Velasco, M., Chavez-Dominguez, R., Meza-Toledo, S. E., Meneses-Flores, M., Camarena, A., & Lopez-Gonzalez, J. S. (2024). SOCS1 Inhibits IL-6-Induced CD155 Overexpression in Lung Adenocarcinoma. International Journal of Molecular Sciences, 25(22), 12141. https://doi.org/10.3390/ijms252212141