Neuroprotective Effects of Ethanol Extract Polyscias guilfoylei (EEPG) Against Glutamate Induced Neurotoxicity in HT22 Cells
Abstract
:1. Introduction
2. Results
2.1. Protective Effects of Ethanol Extracts of Polyscias guilfoyei (EEPG) on Glutamate Induced HT22 Cells
2.2. EEPG Attenuated Cellular Ca2+ Concentration, ROS Generation, and MAPK Activation in Glutamate-Induced HT22 Cells
2.3. EEPG Blocks Caspase Independent Cell Death Pathway by Inhibiting AIF Translocation to Nucleus
2.4. EEPG Ameliorates Neuroprotection Capability in a Permanent Ischemic Brain Injury Rat Model
2.5. HPLC Analysis of EEPG
2.6. Stigmasterol (1) and Stigmasterol-3-O-β-D-glucopyranoside (2) Are the Most Active Neuroprotective Constituents Found in EEPG
3. Discussion
4. Material and Methods
4.1. Plant Materials and Extraction
4.2. Isolation of Single Compounds and Structure Identification
4.3. HPLC Profiling of EEPG
4.4. HT22 Cell Culture
4.5. Cell Viability Assay
4.6. Intracellular ROS and Ca2+ Influx Assay
4.7. Immunoblot Analysis
4.8. In Vivo Efficacy Test of Extracts
4.8.1. Experimental Animals
4.8.2. Pre-Treatment with EEPG
4.8.3. Permanent Focal Cerebral Ischemia
4.8.4. TTC Staining and Quantification of Ischemic Infarction
4.8.5. Tissue Processing and Staining
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dugger, B.; Dickson, D.W. Pathology of Neurodegenerative Diseases. Cold Spring Harb. Perspect. Biol. 2017, 9, a028035. [Google Scholar] [CrossRef] [PubMed]
- Pal, M.M. Glutamate: The Master Neurotransmitter and Its Implications in Chronic Stress and Mood Disorders. Front. Hum. Neurosci. 2021, 15, 722323. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Danbolt, N.C. Glutamate as a neurotransmitter in the healthy brain. J. Neural Transm. 2014, 121, 799–817. [Google Scholar] [CrossRef] [PubMed]
- Dong, X.X.; Wang, Y.; Qin, Z.H. Molecular mechanisms of excitotoxicity and their relevance to pathogenesis of neurodegenerative diseases. Acta Pharmacol. Sin. 2009, 30, 379–387. [Google Scholar] [CrossRef]
- Knopman, D.S.; Amieva, H.; Petersen, R.C.; Che’telat, G.; Holtzman, D.M.; Hyman, B.T.; Nixon, R.A.; Jones, D.T. Alzheimer disease. Nat. Rev. Dis. Primers 2021, 7, 33. [Google Scholar] [CrossRef]
- Long, J.M.; Holtzman, D.M. Alzheimer disease: An update on pathobiology and treatment strategies. Cell 2019, 179, 312–339. [Google Scholar] [CrossRef]
- Scheltens, P.; De Strooper, B.; Kivipelto, M.; Holstege, H.; Che’telat, G.; Teunissen, C.E.; Cummings, J.; van der Flier, W.M. Alzheimer’s disease. Lancet 2021, 397, 1577–1590. [Google Scholar] [CrossRef]
- Hardy, J.; Selkoe, D.J. The amyloid hypothesis of Alzheimer’s disease: Progress and problems on the road to therapeutics. Science 2002, 297, 353–356. [Google Scholar] [CrossRef]
- Poewe, W.; Seppi, K.; Tanner, C.M.; Halliday, G.M.; Brundin, P.; Volkmann, J.; Schrag, A.E.; Lang, A.E. Parkinson disease. Nat. Rev. Dis. Primers 2017, 3, 17013. [Google Scholar] [CrossRef]
- Przedborski, S. The two-century journey of Parkinson disease research. Nat. Rev. Neurosci. 2017, 18, 251–259. [Google Scholar] [CrossRef]
- Goedert, M. Alpha-synuclein and neurodegenerative diseases. Nat. Rev. Neurosci. 2001, 2, 492–501. [Google Scholar] [CrossRef] [PubMed]
- Bates, G.P.; Dorsey, R.; Gusella, J.F.; Hayden, M.R.; Kay, C.; Leavitt, B.R.; Nance, M.; Ross, C.A.; Scahill, R.I.; Wetzel, R.; et al. Huntington disease. Nat. Rev. Dis. Primers 2015, 1, 15005. [Google Scholar] [CrossRef] [PubMed]
- Jimenez-Sanchez, M.; Licitra, F.; Underwood, B.R.; Rubinsztein, D.C. Huntington’s disease: Mechanisms of pathogenesis and therapeutic strategies. Cold Spring Harb Perspect Med. 2017, 7, a024240. [Google Scholar] [CrossRef] [PubMed]
- Kang, Y.; Tiziani, S.; Park, G.; Kaul, M.; Paternostro, G. Cellular protection using Flt3 and PI3Kα inhibitors demonstrates multiple mechanisms of oxidative glutamate toxicity. Nat. Commun. 2014, 5, 3672. [Google Scholar] [CrossRef]
- Pihan, P.; Carreras-Sureda, A.; Hetz, C. Bcl-2 family: Integrating stress responses at the ER to control cell demise. Cell Death Differ. 2017, 24, 1478–1487. [Google Scholar] [CrossRef]
- Tobaben, S.; Grohm, J.; Seiler, A.; Conrad, M.; Plesnila, N.; Culmsee, C. Bid-mediated mitochondrial damage is a key mechanism in glutamate-induced oxidative stress and AIF-dependent cell death in immortalized HT-22 hippocampal neurons. Cell Death Differ. 2011, 18, 282–292. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, X.; Xiong, X.; Zhu, H.; Chen, R.; Zhang, S.; Chen, G.; Jian, Z. Nrf2 Regulates Oxidative Stress and Its Role in Cerebral Ischemic Stroke. Antioxidants 2022, 11, 2377. [Google Scholar] [CrossRef]
- Takata, T.; Araki, S.; Tsuchiya, Y.; Watanabe, Y. Oxidative Stress Orchestrates MAPK and Nitric-Oxide Synthase Signal. Int. J. Mol. Sci. 2020, 21, 8750. [Google Scholar] [CrossRef]
- Kim, E.K.; Choi, E.-J. Pathological roles of MAPK signaling pathways in human diseases. Biochim. Biophys. Acta 2010, 1802, 396–405. [Google Scholar] [CrossRef]
- Yue, J.; Lopez, J.M. Understanding MAPK signaling pathways in apoptosis. Int. J. Mol. Sci. 2020, 21, 2346. [Google Scholar] [CrossRef]
- Naglaa, S.A.; Haidy, A.G.; Nawal, A.M.; Sherweit, H.E.; Mohamed, L.A.; Abdel, N.B.S. Phytoconstituents from Polyscias guilfoylei leaves with histamine-release inhibition activity. Z. Naturforsch. C 2019, 74, 145–150. [Google Scholar]
- Tan, S.; Wood, M.; Maher, P. Oxidative stress induces a form of programmed cell death with characteristics of both apoptosis and necrosis in neuronal cells. J. Neurochem. 1998, 71, 95–105. [Google Scholar] [CrossRef] [PubMed]
- Fukui, M.; Song, J.H.; Choi, J.; Choi, H.J.; Zhu, B.T. Mechanism of glutamate-induced neurotoxicity in HT22 mouse hippocampal cells. Eur. J. Pharmacol. 2009, 617, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Landshamer, S.; Hoehn, M.; Barth, N.; Duvezin-Caubet, S.; Schwake, G.; Tobaben, S.; Kazhdan, I.; Becattini, B.; Zahler, S.; Vollmar, A.; et al. Bid-induced release of AIF from mitochondria causes immediate neuronal cell death. Cell Death Differ. 2008, 15, 1553–1563. [Google Scholar] [CrossRef]
- Anh, L.T.T.; Son, N.T.; Tuyen, N.V.; Thuy, P.T.; Quan, P.M.; Ha, N.T.T.; Tra, N.T. Antioxidative and alpha-glucosidase inhibitory constituents of Polyscias guilfoylei: Experimental and computational assessments. Mol. Divers. 2020, 26, 229–243. [Google Scholar] [CrossRef]
- Ciuffreda, P.; Casati, S.; Manzocchi, A. Complete 1H and 13C NMR spectral assignment of alpha- and beta-adenosine, 2′-deoxyadenosine and their acetate derivatives. Magn. Reson. Chem. 2007, 45, 781–784. [Google Scholar] [CrossRef]
- Alauddin, M.M.; Conti, P.S.; Fissekis, J.D.; Watanabe, K.A. Synthesis of 2-deoxy-2-fluoro-1-b-D-arabinofuranosyl uracil derivatives: A method suitable for preparation of [18F]-labeled nucleosides. Synth. Commun. 2006, 32, 1757–1764. [Google Scholar] [CrossRef]
- Oliveira, M.M.; Dare, R.G.; Barizao, E.O.; Visentainer, J.V.; Romagnolo, M.B.; Nakamura, C.V.; Truiti, M. Photodamage attenuating potential of Nectandra hihua against UVB-induced oxidative stress in L929 fibroblasts. J. Photochem. Photobiol. B 2018, 181, 127–133. [Google Scholar] [CrossRef]
- Wang, P.; Yang, A.M.; Zhang, F.L.; Ma, S.Y.; Lu, J.; Shi, J.T. Chemical Constituents of the Husk of Xanthoceras sorbifolium. Chem. Nat. Compd 2023, 59, 142–144. [Google Scholar] [CrossRef]
- Avvakumova, S.; Scari, G.; Porta, F. Au-thymine, thymidine and thymidine 5′-monophosphate nanoparticles: Chemical characterisation and cellular uptake studies into U87 cancer cells. RSC Adv. 2012, 2, 3658–3661. [Google Scholar] [CrossRef]
- Vo, D.H.; Yamamura, S.; Ohtani, K.; Kasai, R.; Yamasaki, K.; Nguyen, T.N.; Hoang, M.C. Oleanane saponins from Polyscias fruticose. Phytochemistry 1998, 47, 451–457. [Google Scholar] [PubMed]
- Ayeni, E.A.; Ma, C.; Zhang, Y.M.; Fan, W.Q.; Liao, X. Chemical components and monoamine oxidase B inhibition activities from the tubers of Sauromatum giganteum (Engl.) Cusimano & Hett. Nat. Prod. Res. 2023, 37, 2916–2923. [Google Scholar] [PubMed]
- Strawa, J.W.; Jakimiuk, K.; Kita, Z.; Tomczyk, M. In Vitro Screening for Anti-Acetylcholinesterase and Antioxidant Activities of L. Extracts and Their Unusual Flavonoids. Molecules 2022, 27, 8034. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.H.; Kim, D.W.; Jung, B.H.; Lee, J.H.; Lee, H.; Hwang, G.S.; Kang, K.S.; Lee, J.W. Ginsenoside Rb2 suppresses the glutamate-mediated oxidative stress and neuronal cell death in HT22 cells. J. Ginseng Res. 2019, 43, 326–334. [Google Scholar] [CrossRef]
- Kao, T.K.; Chang, C.Y.; Ou, Y.C.; Chen, W.Y.; Kuan, Y.H.; Pan, H.C.; Liao, S.L.; Li, G.-Z.; Chen, G.Z. Tetramethylpyrazine reduces cellular inflammatory response following permanent focal cerebral ischemia in rats. Exp. Neurol. 2013, 247, 188–201. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nguyen, Q.N.S.; Yoo, K.-Y.; Pham, T.T.T.; Selvaraj, B.; Vu, H.T.; Le, T.T.; Lee, H.; Tran, Q.L.; Thuong, P.T.; Pae, A.N.; et al. Neuroprotective Effects of Ethanol Extract Polyscias guilfoylei (EEPG) Against Glutamate Induced Neurotoxicity in HT22 Cells. Int. J. Mol. Sci. 2024, 25, 12153. https://doi.org/10.3390/ijms252212153
Nguyen QNS, Yoo K-Y, Pham TTT, Selvaraj B, Vu HT, Le TT, Lee H, Tran QL, Thuong PT, Pae AN, et al. Neuroprotective Effects of Ethanol Extract Polyscias guilfoylei (EEPG) Against Glutamate Induced Neurotoxicity in HT22 Cells. International Journal of Molecular Sciences. 2024; 25(22):12153. https://doi.org/10.3390/ijms252212153
Chicago/Turabian StyleNguyen, Qui Ngoc Sang, Ki-Yeon Yoo, Thi Thu Trang Pham, Baskar Selvaraj, Huong Thuy Vu, Tam Thi Le, Heesu Lee, Quang Luc Tran, Phuong Thien Thuong, Ae Nim Pae, and et al. 2024. "Neuroprotective Effects of Ethanol Extract Polyscias guilfoylei (EEPG) Against Glutamate Induced Neurotoxicity in HT22 Cells" International Journal of Molecular Sciences 25, no. 22: 12153. https://doi.org/10.3390/ijms252212153
APA StyleNguyen, Q. N. S., Yoo, K. -Y., Pham, T. T. T., Selvaraj, B., Vu, H. T., Le, T. T., Lee, H., Tran, Q. L., Thuong, P. T., Pae, A. N., Jung, S. H., & Lee, J. W. (2024). Neuroprotective Effects of Ethanol Extract Polyscias guilfoylei (EEPG) Against Glutamate Induced Neurotoxicity in HT22 Cells. International Journal of Molecular Sciences, 25(22), 12153. https://doi.org/10.3390/ijms252212153