Functional Food Nutrients, Redox Resilience Signaling and Neurosteroids for Brain Health
Abstract
:1. Introduction
2. Neurohormesis and Food Nutrients for Brain Resilience
3. Neurosteroidogenesis
4. The Interplay Between Functional Food Nutrients and Neurosteroids in Health and/or Disease
4.1. Resveratrol
4.2. Curcumin
4.3. Sulforaphane
4.4. Hidrox®
4.5. Camellia sinensis
4.6. Vitamin D
4.7. Omega-3 Fatty Acids
5. Polyphenol–Nanoparticle Delivery Systems and Neurosteroid Signaling
5.1. Preclinical Studies
5.2. Clinical Studies
6. Neurosteroids as Modulators of Neuroinflammation
6.1. In Vitro Studies
6.2. In Vivo Studies
7. The Role of Neurosteroids in Nervous System Disorders: Focus on Nutrients
7.1. Alzheimer’s Disease
7.1.1. Preclinical Studies
7.1.2. Clinical Studies
7.2. Parkinson’s Disease
7.2.1. Preclinical Studies
7.2.2. Clinical Studies
7.3. Depression
7.3.1. Preclinical Studies
7.3.2. Clinical Studies
7.4. Autism Spectrum Disorder
7.4.1. Preclinical Studies
7.4.2. Clinical Studies
8. The Interaction of Food Nutrients and Neurosteroids via GABARs
8.1. Flavonoids
8.1.1. Quercetin, Apigenin and Genistein
8.1.2. Chrysin
8.2. Tannins
8.3. Terpenoids
8.4. Neurosteroids
8.4.1. Allopregnenolone, THDOC and Androstanediol
8.4.2. Pregnenolone Sulfate, DHEA and DHEAS
8.4.3. Pregnanolone Glutamate, 17-Hydroxypre Gnanolone and Ganaxolone
9. Food Nutrients and Neurosteroid Hormones in the Gut–Brain Axis
9.1. Potential Crosstalk Between Food Nutrients and Neurosteroids for Gut and Brain Health via GABARs
9.1.1. Progesterone
9.1.2. Allopregnanolone
9.1.3. DHEAS
9.1.4. Probiotics and Medicinal Plants
10. Innovative Technology in the Study of Polyphenols and Neurosteroids in Neurodegeneration and Psychiatric Diseases
10.1. Neurodegenerative Disorders: AD and PD
10.2. Autism
10.3. Food Nutrients and Organoid Platforms for Modeling Neurological Disorders
10.3.1. Curcumin
10.3.2. Epigallocathechin-3-Gallate
10.3.3. Resveratrol
10.3.4. Hidrox®
10.3.5. Sulforaphane
11. Conclusions and Future Perspectives
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lüscher, B.; Möhler, H. Brexanolone, a neurosteroid antidepressant, vindicates the GABAergic deficit hypothesis of depression and may foster resilience. F1000Research 2019, 8, 751. [Google Scholar] [CrossRef] [PubMed]
- Giatti, S.; Garcia-Segura, L.M.; Barreto, G.E.; Melcangi, R.C. Neuroactive steroids, neurosteroidogenesis and sex. Prog. Neurobiol. 2019, 176, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Starka, L.; Duskova, M.; Hill, M. Dehydroepiandrosterone: A neuroactive steroid. J. Steroid Biochem. Mol. Biol. 2015, 145, 254–260. [Google Scholar] [CrossRef] [PubMed]
- Maggio, M.; De Vita, F.; Fisichella, A.; Colizzi, E.; Provenzano, S.; Lauretani, F.; Luci, M.; Ceresini, G.; Dall’Aglio, E.; Caffarra, P.; et al. DHEA and cognitive function in the elderly. J. Steroid Biochem. Mol. Biol. 2015, 145, 281–292. [Google Scholar] [CrossRef]
- Marx, C.E.; Stevens, R.D.; Shampine, L.J.; Uzunova, V.; Trost, W.T.; Butterfield, M.I.; Massing, M.W.; Hamer, R.M.; Morrow, A.L.; Lieberman, J.A. Neuroactive steroids are altered in schizophrenia and bipolar disorder: Relevance to pathophysiology and therapeutics. Neuropsychopharmacology 2006, 31, 1249–1263. [Google Scholar] [CrossRef]
- Chew, L.; Sun, K.L.; Sun, W.; Wang, Z.; Rajadas, J.; Flores, R.E.; Arnold, E.; Jo, B.; Fung, L.K. Association of serum allopregnanolone with restricted and repetitive behaviors in adult males with autism. Psychoneuroendocrinology 2021, 123, 105039. [Google Scholar] [CrossRef]
- Lloyd-Evans, E.; Waller-Evans, H. Biosynthesis and signalling functions of central and peripheral nervous system neurosteroids in health and disease. Essays Biochem. 2020, 64, 591–606. [Google Scholar]
- Deligiannidis, K.M.; Kroll-Desrosiers, A.R.; Tan, Y.; Dubuke, M.L.; Shaffer, S.A. Longitudinal proneuroactive and neuroactive steroid profiles in medication-freewomen with, without and at-risk for perinatal depression: A liquid chromatography-tandem mass spectrometry analysis. Psychoneuroendocrinology 2020, 121, 104827. [Google Scholar] [CrossRef]
- Wang, M.; Hu, S.; Fu, X.; Zhou, H.; Yang, S.; Yang, C. Neurosteroids: A potential target for neuropsychiatric disorders. J. Steroid Biochem. Mol. Biol. 2024, 239, 106485. [Google Scholar] [CrossRef]
- Leri, M.; Scuto, M.; Ontario, M.L.; Calabrese, V.; Calabrese, E.J.; Bucciantini, M.; Stefani, M. Healthy Effects of Plant Polyphenols: Molecular Mechanisms. Int. J. Mol. Sci. 2020, 21, 1250. [Google Scholar] [CrossRef]
- Jomova, K.; Raptova, R.; Alomar, S.Y.; Alwasel, S.H.; Nepovimova, E.; Kuca, K.; Valko, M. Reactive oxygen species, toxicity, oxidative stress, and antioxidants: Chronic diseases and aging. Arch. Toxicol. 2023, 97, 2499–2574. [Google Scholar] [PubMed]
- Liang, J.J.; Rasmusson, A.M. Overview of the Molecular Steps in Steroidogenesis of the GABAergic Neurosteroids Allopregnanolone and Pregnanolone. Chronic Stress 2018, 2, 2470547018818555. [Google Scholar] [CrossRef] [PubMed]
- Calabrese, V.; Scuto, M.; Salinaro, A.T.; Dionisio, G.; Modafferi, S.; Ontario, M.L.; Greco, V.; Sciuto, S.; Schmitt, C.P.; Calabrese, E.J.; et al. Hydrogen Sulfide and Carnosine: Modulation of Oxidative Stress and Inflammation in Kidney and Brain Axis. Antioxidants 2020, 9, 1303. [Google Scholar] [CrossRef] [PubMed]
- Amara, I.; Ontario, M.L.; Scuto, M.; Lo Dico, G.M.; Sciuto, S.; Greco, V.; Abid-Essefi, S.; Signorile, A.; Salinaro, A.T.; Calabrese, V. Moringa oleifera Protects SH-SY5YCells from DEHP-Induced Endoplasmic Reticulum Stress and Apoptosis. Antioxidants 2021, 10, 532. [Google Scholar] [CrossRef]
- Amara, I.; Salah, A.; Timoumi, R.; Annabi, E.; Scuto, M.; Trovato, A.; Neffati, F.; Calabrese, V.; Abid-Essefi, S. Effect of di(2-ethylhexyl) phthalate on Nrf2-regulated glutathione homeostasis in mouse kidney. Cell Stress Chaperones 2020, 25, 919–928. [Google Scholar] [CrossRef]
- Cordaro, M.; Siracusa, R.; Fusco, R.; D’Amico, R.; Peritore, A.F.; Gugliandolo, E.; Genovese, T.; Scuto, M.; Crupi, R.; Mandalari, G.; et al. Cashew (Anacardium occidentale L.) Nuts Counteract Oxidative Stress and Inflammation in an Acute Experimental Model of Carrageenan-Induced Paw Edema. Antioxidants 2020, 9, 660. [Google Scholar] [CrossRef]
- Bucciantini, M.; Leri, M.; Scuto, M.; Ontario, M.; Trovato Salinaro, A.; Calabrese, E.J.; Calabrese, V.; Stefani, M. Xenohormesis underlyes the anti-aging and healthy properties of olive polyphenols. Mech. Ageing Dev. 2022, 202, 111620. [Google Scholar] [CrossRef]
- Cordaro, M.; Scuto, M.; Siracusa, R.; D’amico, R.; Peritore, F.A.; Gugliandolo, E.; Fusco, R.; Crupi, R.; Impellizzeri, D.; Pozzebon, M.; et al. Effect of N-palmitoylethanolamine-oxazoline on comorbid neuropsychiatric disturbance associated with inflammatory bowel disease. FASEB J. 2020, 34, 4085–4106. [Google Scholar] [CrossRef]
- Scuto, M.; Trovato Salinaro, A.; Modafferi, S.; Polimeni, A.; Pfeffer, T.; Weigand, T.; Calabrese, V.; Schmitt, C.P.; Peters, V. Carnosine Activates Cellular Stress Response in Podocytes and Reduces Glycative and Lipoperoxidative Stress. Biomedicines 2020, 8, 177. [Google Scholar] [CrossRef]
- Fusco, R.; Scuto, M.; Cordaro, M.; D’Amico, R.; Gugliandolo, E.; Siracusa, R.; Peritore, A.F.; Crupi, R.; Impellizzeri, D.; Cuzzocrea, S.; et al. N-Palmitoylethanolamide-Oxazoline Protects against Middle Cerebral Artery Occlusion Injury in Diabetic Rats by Regulating the SIRT1 Pathway. Int. J. Mol. Sci. 2019, 20, 4845. [Google Scholar] [CrossRef]
- Busler, J.N.; Slate, S.R.; Liao, H.; Lyndon, S.; Taylor, J.; Lin, A.P.; Mahon, P.B. Sex hormones as correlates of oxidative stress in the adult brain. Psychiatry Res. Neuroimaging 2023, 334, 111681. [Google Scholar] [CrossRef] [PubMed]
- Xiao, H.; Liu, J.; He, J.; Lan, Z.; Deng, M.; Hu, Z. 17β-Estradiol Attenuates Intracerebral Hemorrhage-Induced Blood-Brain Barrier Injury and Oxidative Stress Through SRC3-Mediated PI3K/Akt Signaling Pathway in a Mouse Model. ASN Neuro 2021, 13, 17590914211038443. [Google Scholar] [CrossRef] [PubMed]
- Abbas, N.A.T.; Hassan, H.A. The protective and therapeutic effects of 5-androstene3β, 17β-diol (ADIOL) in abdominal post-operative adhesions in rat: Suppressing TLR4/NFκB/HMGB1/TGF1 β/α SMA pathway. Int. Immunopharmacol. 2022, 109, 108801. [Google Scholar] [CrossRef]
- Som, S.; Antony, J.; Dhanabal, S.; Ponnusankar, S. Neuroprotective role of Diosgenin, a NGF stimulator, against Aβ (1–42) induced neurotoxicity in animal model of Alzheimer’s disease. Metab. Brain Dis. 2022, 37, 359–372. [Google Scholar] [CrossRef]
- Puig-Bosch, X.; Ballmann, M.; Bieletzki, S.; Antkowiak, B.; Rudolph, U.; Zeilhofer, H.U.; Rammes, G. Neurosteroids Mediate Neuroprotection in an In Vitro Model of Hypoxic/Hypoglycaemic Excitotoxicity via δ-GABAA Receptors without Affecting Synaptic Plasticity. Int. J. Mol. Sci. 2023, 24, 9056. [Google Scholar] [CrossRef]
- Martirosyan, S. Functional Food Center; Dallas, Texas: 2015. A New Definition for Functional Food by FFC: Creating Functional Food Products Using New Definition. Available online: http://functionalfoodscenter.net (accessed on 3 April 2015).
- Yammine, A.; Nury, T.; Vejux, A.; Latruffe, N.; Vervandier-Fasseur, D.; Samadi, M.; Greige-Gerges, H.; Auezova, L.; Lizard, G. Prevention of 7-Ketocholesterol-Induced Overproduction of Reactive Oxygen Species, Mitochondrial Dysfunction and Cell Death with Major Nutrients (Polyphenols, ω3 and ω9 Unsaturated Fatty Acids) of the Mediterranean Diet on N2a Neuronal Cells. Molecules 2020, 25, 2296. [Google Scholar] [CrossRef]
- Wu, Y.; Li, L.; Zhou, S.; Shen, Q.; Lin, H.; Zhu, Q.; Sun, J.; Ge, R.S. Apigenin inhibits rat neurosteroidogenic 5α-reductase 1 and 3α-hydroxysteroid dehydrogenase. Neurochem. Int. 2017, 110, 84–90. [Google Scholar] [CrossRef]
- Su, Y.; Zhu, Q.; Hong, X.; Ge, R.S. Taxifolin Inhibits Neurosteroidogenic Rat Steroid 5α-Reductase 1 and 3α-Hydroxysteroid Dehydrogenase. Pharmacology 2020, 105, 397–404. [Google Scholar] [CrossRef]
- Szychowski, K.A.; Skóra, B.; Wójtowicz, A.K. Involvement of sirtuins (Sirt1 and Sirt3) and aryl hydrocarbon receptor (AhR) in the effects of triclosan (TCS) on production of neurosteroids in primary mouse cortical neurons cultures. Pestic. Biochem. Physiol. 2022, 184, 105131. [Google Scholar] [CrossRef]
- Trovato Salinaro, A.; Pennisi, M.; Di Paola, R.; Scuto, M.; Crupi, R.; Cambria, M.T.; Ontario, M.L.; Tomasello, M.; Uva, M.; Maiolino, L.; et al. Neuroinflammation and neurohormesis in the pathogenesis of Alzheimer’s disease and Alzheimer-linked pathologies: Modulation by nutritional mushrooms. Immun. Ageing 2018, 15, 8. [Google Scholar] [CrossRef]
- Calabrese, V.; Trovato, A.; Scuto, M.; Ontario, M.L.; Tomasello, M.; Perrotta, R.; Calabrese, E. Resilience signaling and hormesis in brain health and disease. In Human Aging: From Cellular Mechanisms to Therapeutic Strategies; Academic Press: Cambridge, MA, USA, 2021; pp. 155–172. [Google Scholar]
- de Kloet, E.R.; Joëls, M. The cortisol switch between vulnerability and resilience. Mol. Psychiatry 2024, 29, 20–34. [Google Scholar] [CrossRef] [PubMed]
- Hernandez, G.D.; Brinton, R.D. Allopregnanolone: Regenerative therapeutic to restore neurological health. Neurobiol. Stress 2022, 21, 100502. [Google Scholar] [CrossRef] [PubMed]
- Mattson, M.P.; Cheng, A. Neurohormetic phytochemicals: Low-dose toxins that induce adaptive neuronal stress responses. Trends Neurosci. 2006, 29, 632–639. [Google Scholar] [CrossRef] [PubMed]
- Cosentino, A.; Agafonova, A.; Modafferi, S.; Trovato Salinaro, A.; Scuto, M.; Maiolino, L.; Fritsch, T.; Calabrese, E.J.; Lupo, G.; Anfuso, C.D.; et al. Blood-Labyrinth Barrier in Health and Diseases: Effect of Hormetic Nutrients. Antioxid. Redox Signal 2024, 40, 542–563. [Google Scholar] [CrossRef]
- Peters, V.; Calabrese, V.; Forsberg, E.; Volk, N.; Fleming, T.; Baelde, H.; Weigand, T.; Thiel, C.; Trovato, A.; Scuto, M.; et al. Protective Actions of Anserine Under Diabetic Conditions. Int. J. Mol. Sci. 2018, 19, 2751. [Google Scholar] [CrossRef]
- Scuto, M.; Di Mauro, P.; Ontario, M.L.; Amato, C.; Modafferi, S.; Ciavardelli, D.; Trovato Salinaro, A.; Maiolino, L.; Calabrese, V. Nutritional Mushroom Treatment in Meniere’s Disease with Coriolus versicolor: A Rationale for Therapeutic Intervention in Neuroinflammation and Antineurodegeneration. Int. J. Mol. Sci. 2019, 21, 284. [Google Scholar] [CrossRef]
- D’Amico, R.; Trovato Salinaro, A.; Fusco, R.; Cordaro, M.; Impellizzeri, D.; Scuto, M.; Ontario, M.L.; Lo Dico, G.; Cuzzocrea, S.; Di Paola, R.; et al. Hericium erinaceus and Coriolus versicolor Modulate Molecular and Biochemical Changes after Traumatic Brain Injury. Antioxidants 2021, 10, 898. [Google Scholar] [CrossRef]
- Paola, R.D.; Siracusa, R.; Fusco, R.; Ontario, M.; Cammilleri, G.; Pantano, L.; Scuto, M.; Tomasello, M.; Spanò, S.; Salinaro, A.T.; et al. Redox Modulation of Meniere Disease by Coriolus Versicolor Treatment, a Nutritional Mushroom Approach with Neuroprotective Potential. Curr. Neuropharmacol. 2024, 22, 2079–2098. [Google Scholar] [CrossRef]
- Cordaro, M.; Salinaro, A.T.; Siracusa, R.; D’Amico, R.; Impellizzeri, D.; Scuto, M.; Ontario, M.L.; Cuzzocrea, S.; Di Paola, R.; Fusco, R.; et al. Key Mechanisms and Potential Implications of Hericium erinaceus in NLRP3 Inflammasome Activation by Reactive Oxygen Species during Alzheimer’s Disease. Antioxidants 2021, 10, 1664. [Google Scholar] [CrossRef]
- Amara, I.; Scuto, M.; Zappalà, A.; Ontario, M.L.; Petralia, A.; Abid-Essefi, S.; Maiolino, L.; Signorile, A.; Trovato Salinaro, A.; Calabrese, V. Hericium erinaceus Prevents DEHP-Induced Mitochondrial Dysfunction and Apoptosis in PC12 Cells. Int. J. Mol. Sci. 2020, 21, 2138. [Google Scholar] [CrossRef]
- Martín-Aragón, S.; Jiménez-Aliaga, K.L.; Benedí, J.; Bermejo-Bescós, P. Neurohormetic responses of quercetin and rutin in a cell line over-expressing the amyloid precursor protein (APPswe cells). Phytomedicine 2016, 23, 1285–1294. [Google Scholar] [CrossRef] [PubMed]
- Scuto, M.C.; Mancuso, C.; Tomasello, B.; Ontario, M.L.; Cavallaro, A.; Frasca, F.; Maiolino, L.; Trovato Salinaro, A.; Calabrese, E.J.; Calabrese, V. Curcumin, Hormesis and the Nervous System. Nutrients 2019, 11, 2417. [Google Scholar] [CrossRef] [PubMed]
- Rainey, N.E.; Moustapha, A.; Petit, P.X. Curcumin, a Multifaceted Hormetic Agent, Mediates an Intricate Crosstalk between Mitochondrial Turnover, Autophagy, and Apoptosis. Oxidative Med. Cell. Longev. 2020, 2020, 3656419. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.Y.; Son, T.G.; Park, H.R.; Jang, Y.J.; Oh, S.B.; Jin, B.; Lee, J. Naphthazarin has a protective effect on the 1-methyl-4-phenyl-1,2,3,4-tetrahydropyridine-induced Parkinson’s disease model. J. Neurosci. Res. 2012, 90, 1842–1849. [Google Scholar] [CrossRef]
- Barros, M.P.; Poppe, S.C.; Bondan, E.F. Neuroprotective properties of the marine carotenoid astaxanthin and omega-3 fatty acids, and perspectives for the natural combination of both in krill oil. Nutrients 2014, 6, 1293–1317. [Google Scholar] [CrossRef]
- Strom, J.O.; Theodorsson, A.; Theodorsson, E. Hormesis and Female Sex Hormones. Pharmaceuticals 2011, 4, 726–740. [Google Scholar] [CrossRef]
- Medlock, K.L.; Lyttle, C.R.; Kelepouris, N.; Newman, E.D.; Sheehan, D.M. Estradiol down-regulation of the rat uterine estrogen receptor. Proc. Soc. Exp. Biol. Med. 1991, 196, 293–300. [Google Scholar] [CrossRef]
- Andreen, L.; Nyberg, S.; Turkmen, S.; van Wingen, G.; Fernandez, G.; Backstrom, T. Sex steroid induced negative mood may be explained by the paradoxical effect mediated by GABAA modulators. Psychoneuroendocrinology 2009, 34, 1121–1132. [Google Scholar] [CrossRef]
- Rone, M.B.; Fan, J.; Papadopoulos, V. Cholesterol transport in steroid biosynthesis: Role of protein-protein interactions and implications in disease states. Biochim. Biophys. Acta 2009, 1791, 646–658. [Google Scholar] [CrossRef]
- Melcangi, R.C.; Celotti, F.; Martini, L. Progesterone 5-alpha-reduction in neuronal and in different types of glial cell cultures: Type 1 and 2 astrocytes and oligodendrocytes. Brain Res. 1994, 639, 202–206. [Google Scholar] [CrossRef]
- Patte-Mensah, C.; Penning, T.M.; Mensah-Nyagan, A.G. Anatomical and cellular localization of neuroactive 5 alpha/3 alpha-reduced steroid-synthesizing enzymes in the spinal cord. J. Comp. Neurol. 2004, 477, 286–299. [Google Scholar] [CrossRef] [PubMed]
- Belelli, D.; Lambert, J.J. Neurosteroids: Endogenous regulators of the GABA(A) receptor. Nat. Rev. Neurosci. 2005, 6, 565–575. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Segura, L.M. Aromatase in the brain: Not just for reproduction anymore. J. Neuroendocrinol. 2008, 20, 705–712. [Google Scholar] [CrossRef] [PubMed]
- Azcoitia, I.; Yague, J.G.; Garcia-Segura, L.M. Estradiol synthesis within the human brain. Neuroscience 2011, 191, 139–147. [Google Scholar] [CrossRef]
- Compagnone, N.A.; Mellon, S.H. Neurosteroids: Biosynthesis and function of these novel neuromodulators. Front. Neuroendocrinol. 2000, 21, 1–56. [Google Scholar] [CrossRef]
- Janzen, D.; Slavik, B.; Zehe, M.; Sotriffer, C.; Loos, H.M.; Buettner, A.; Villmann, C. Sesquiterpenes and sesquiterpenoids harbor modulatory allosteric potential and affect inhibitory GABAA receptor function in vitro. J. Neurochem. 2021, 159, 101–115. [Google Scholar] [CrossRef]
- Karaca, E.; Yarim, M. Naringenin stimulates aromatase expression and alleviates the clinical and histopathological findings of experimental autoimmune encephalomyelitis in C57bl6 mice. Histochem. Cell Biol. 2023, 160, 477–490. [Google Scholar] [CrossRef]
- Tian, B.; Liu, J. Resveratrol: A review of plant sources, synthesis, stability, modification and food application. J. Sci. Food Agric. 2020, 100, 1392–1404. [Google Scholar] [CrossRef]
- Shinn, L.J.; Lagalwar, S. Treating Neurodegenerative Disease with Antioxidants: Efficacy of the Bioactive Phenol Resveratrol and Mitochondrial-Targeted MitoQ and SkQ. Antioxidants 2021, 10, 573. [Google Scholar] [CrossRef]
- El-Sayed, N.S.; Bayan, Y. Possible role of resveratrol targeting estradiol and neprilysin pathways in lipopolysaccharide model of Alzheimer disease. Adv. Exp. Med. Biol. 2015, 822, 107–118. [Google Scholar]
- Bayele, H.K. Sirtuins transduce STACs signals through steroid hormone receptors. Sci. Rep. 2020, 10, 5338. [Google Scholar] [CrossRef] [PubMed]
- Hashem, N.M.; Gonzalez-Bulnes, A.; Simal-Gandara, J. Polyphenols in farm animals: Source of reproductive gain or waste? Antioxidants 2020, 9, 1023. [Google Scholar] [CrossRef]
- Spicer, L.J.; Schütz, L.F. Effects of grape phenolics, myricetin and piceatannol, on bovine granulosa and theca cell proliferation and steroid production in vitro. Food Chem. Toxicol. 2022, 167, 113288. [Google Scholar] [CrossRef] [PubMed]
- Citrinovitz, A.C.M.; Langer, L.; Strowitzki, T.; Germeyer, A. Resveratrol enhances decidualization of human endometrial stromal cells. Reproduction 2020, 159, 453–463. [Google Scholar] [CrossRef] [PubMed]
- Barbe, A.; Ramé, C.; Mellouk, N.; Estienne, A.; Bongrani, A.; Brossaud, A.; Riva, A.; Guérif, F.; Froment, P.; Dupont, J. Effects of grape seed extract and proanthocyanidin B2 on in vitro proliferation, viability, steroidogenesis, oxidative stress, and cell signaling in human granulosa cells. Int. J. Mol. Sci. 2019, 20, 4215. [Google Scholar] [CrossRef]
- Eng, E.T.; Ye, J.; Williams, D.; Phung, S.; Moore, R.E.; Young, M.K.; Gruntmanis, U.; Braunstein, G.; Chen, S. Suppression of estrogen biosynthesis by procyanidin dimers in red wine and grape seeds. Cancer Res. 2003, 63, 8516–8522. [Google Scholar]
- Savchuk, I.; Morvan, M.L.; Søeborg, T.; Antignac, J.P.; Gemzell-Danielsson, K.; Le Bizec, B.; Söder, O.; Svechnikov, K. Resveratrol inhibits steroidogenesis in human fetal adrenocortical cells at the end of first trimester. Mol. Nutr. Food Res. 2017, 61, 1600522. [Google Scholar] [CrossRef]
- Wang, Y.; Sun, J.; Chen, L.; Zhou, S.; Lin, H.; Wang, Y.; Lin, N.; Ge, R.S. Effects of resveratrol on rat neurosteroid synthetic enzymes. Fitoterapia 2017, 122, 61–66. [Google Scholar] [CrossRef]
- Hafezi, H.; Vahdati, A.; Forouzanfar, M.; Shariatic, M. Ameliorate effects of resveratrol and l-carnitine on the testicular tissue and sex hormones level in busulfan induced azoospermia rats. Theriogenology 2022, 191, 47–53. [Google Scholar] [CrossRef]
- Furat Rencber, S.; Kurnaz Ozbek, S.; Eraldemır, C.; Sezer, Z.; Kum, T.; Ceylan, S.; Guzel, E. Effect of resveratrol and metformin on ovarian reserve and ultrastructure in PCOS: An experimental study. J. Ovarian Res. 2018, 11, 55. [Google Scholar] [CrossRef]
- Zhang, Z.S.; Qiu, Z.K.; He, J.L.; Liu, X.; Chen, J.S.; Wang, Y.L. Resveratrol ameliorated the behavioral deficits in a mouse model of post-traumatic stress disorder. Pharmacol. Biochem. Behav. 2017, 161, 68–76. [Google Scholar] [CrossRef] [PubMed]
- Kjaer, T.N.; Ornstrup, M.J.; Poulsen, M.M.; Jørgensen, J.O.; Hougaard, D.M.; Cohen, A.S.; Neghabat, S.; Richelsen, B.; Pedersen, S.B. Resveratrol reduces the levels of circulating androgen precursors but has no effect on, testosterone, dihydrotestosterone, PSA levels or prostate volume. A 4-month randomised trial in middle-aged men. Prostate 2015, 75, 1255–1263. [Google Scholar] [CrossRef] [PubMed]
- Marhuenda, J.; Medina, S.; Martínez-Hernández, P.; Arina, S.; Zafrilla, P.; Mulero, J.; Oger, C.; Galano, J.M.; Durand, T.; Ferreres, F.; et al. Melatonin and hydroxytyrosol protect against oxidative stress related to the central nervous system after the ingestion of three types of wine by healthy volunteers. Food Funct. 2017, 8, 64–74. [Google Scholar] [CrossRef] [PubMed]
- Marchiani, A.; Rozzo, C.; Fadda, A.; Delogu, G.; Ruzza, P. Curcumin and curcumin-like molecules: From spice to drugs. Curr. Med. Chem. 2014, 21, 204–222. [Google Scholar] [CrossRef]
- Wei, W.; Dong, Q.; Jiang, W.; Wang, Y.; Chen, Y.; Han, T.; Sun, C. Dichloroacetic acid-induced dysfunction in rat hippocampus and the protective effect of curcumin. Metab. Brain Dis. 2021, 36, 545–556. [Google Scholar] [CrossRef]
- Saied, N.M.; Georgy, G.S.; Hussien, R.M.; Hassan, W.A. Neuromodulatory effect of curcumin on catecholamine systems and inflammatory cytokines in ovariectomized female rats. Clin. Exp. Pharmacol. Physiol. 2021, 48, 337–346. [Google Scholar] [CrossRef]
- El-Shamarka, M.E.; Eliwa, H.A.; Ahmed, M.A.E. Inhibition of boldenone-induced aggression in rats by curcumin: Targeting TLR4/MyD88/TRAF-6/NF-κB pathway. J. Biochem. Mol. Toxicol. 2022, 36, e22936. [Google Scholar] [CrossRef]
- Langlois, L.D.; Oddoux, S.; Aublé, K.; Violette, P.; Déchelotte, P.; Noël, A.; Coëffier, M. Effects of Glutamine, Curcumin and Fish Bioactive Peptides Alone or in Combination on Intestinal Permeability in a Chronic-Restraint Stress Model. Int. J. Mol. Sci. 2023, 24, 7220. [Google Scholar] [CrossRef]
- Wang, S.; He, W.; Li, W.; Zhou, J.R.; Du, Z. Combination of Lycopene and Curcumin Synergistically Alleviates Testosterone-Propionate-Induced Benign Prostatic Hyperplasia in Sprague Dawley Rats via Modulating Inflammation and Proliferation. Molecules 2023, 28, 4900. [Google Scholar] [CrossRef]
- Zheng, L.; Chen, P.F.; Dai, W.C.; Zheng, Z.Q.; Wang, H.L. Curcumin Alleviates Hyperandrogenism and Promotes Follicular Proliferation in Polycystic Ovary Syndrome Rats: Insights on IRS1/PI3K/GLUT4 and PTEN Modulations. Chin. J. Integr. Med. 2022, 28, 1088–1095. [Google Scholar] [CrossRef]
- Tsao, C.W.; Ke, P.S.; Yang, H.Y.; Chang, T.C.; Liu, C.Y. Curcumin Remedies Testicular Function and Spermatogenesis in Male Mice with Low-Carbohydrate-Diet-Induced Metabolic Dysfunction. Int. J. Mol. Sci. 2022, 23, 10009. [Google Scholar] [CrossRef] [PubMed]
- Heshmati, J.; Moini, A.; Sepidarkish, M.; Morvaridzadeh, M.; Salehi, M.; Palmowski, A.; Mojtahedi, M.F.; Shidfar, F. Effects of curcumin supplementation on blood glucose, insulin resistance and androgens in patients with polycystic ovary syndrome: A randomized double-blind placebo-controlled clinical trial. Phytomedicine 2021, 80, 153395. [Google Scholar] [CrossRef] [PubMed]
- Malvasi, A.; Tinelli, A.; Dellino, M.; Trojano, G.; Vinciguerra, M.; Mina, M. Curcumin and Teupolioside attenuate signs and symptoms severity associated to hirsutism in PCOS women: A preliminary pilot study. Eur. Rev. Med. Pharmacol. Sci. 2022, 26, 6187–6191. [Google Scholar] [PubMed]
- Calabrese, E.J.; Kozumbo, W.J. The phytoprotective agent sulforaphane prevents inflammatory degenerative diseases and age-related pathologies via Nrf2-mediated hormesis. Pharmacol. Res. 2021, 163, 105283. [Google Scholar] [CrossRef] [PubMed]
- Angeloni, C.; Teti, G.; Barbalace, M.C.; Malaguti, M.; Falconi, M.; Hrelia, S. 17β-Estradiol enhances sulforaphane cardioprotection against oxidative stress. J. Nutr. Biochem. 2017, 42, 26–36. [Google Scholar] [CrossRef]
- Sasaki, M.; Shinozaki, S.; Shimokado, K. Sulforaphane promotes murine hair growth by accelerating the degradation of dihydrotestosterone. Biochem. Biophys. Res. Commun. 2016, 472, 250–254. [Google Scholar] [CrossRef]
- Chung, J.Y.; Chen, H.; Zirkin, B. Sirt1 and Nrf2: Regulation of Leydig cell oxidant/antioxidant intracellular environment and steroid formation†. Biol. Reprod. 2021, 105, 1307–1316. [Google Scholar] [CrossRef]
- Bergandi, L.; Palladino, G.; Meduri, A.; De Luca, L.; Silvagno, F. Vitamin D and Sulforaphane Decrease Inflammatory Oxidative Stress and Restore the Markers of Epithelial Integrity in an In Vitro Model of Age-Related Macular Degeneration. Int. J. Mol. Sci. 2024, 25, 6404. [Google Scholar] [CrossRef]
- Tuttis, K.; Machado, A.R.T.; Santos, P.W.D.S.; Antunes, L.M.G. Sulforaphane Combined with Vitamin D Induces Cytotoxicity Mediated by Oxidative Stress, DNA Damage, Autophagy, and JNK/MAPK Pathway Modulation in Human Prostate Tumor Cells. Nutrients 2023, 15, 2742. [Google Scholar] [CrossRef]
- Hernández-Rabaza, V.; López-Pedrajas, R.; Almansa, I. Progesterone, Lipoic Acid, and Sulforaphane as Promising Antioxidants for Retinal Diseases: A Review. Antioxidants 2019, 8, 53. [Google Scholar] [CrossRef]
- Soni, M.G.; Burdock, G.A.; Christian, M.S.; Bitler, C.M.; Crea, R. Safety assessment of aqueous olive pulp extract as an antioxidant or antimicrobial agent in foods. Food Chem. Toxicol. 2006, 44, 903–915. [Google Scholar] [CrossRef] [PubMed]
- Miraglia, N.; Bianchi, D.; Trentin, A.; Volpi, N.; Soni, M.G. Safety assessment of non-animal chondroitin sulfate sodium: Subchronic study in rats, genotoxicity tests and human bioavailability. Food Chem. Toxicol. 2016, 93, 89–101. [Google Scholar] [CrossRef] [PubMed]
- Cordaro, M.; Trovato Salinaro, A.; Siracusa, R.; D’Amico, R.; Impellizzeri, D.; Scuto, M.; Ontario, M.L.; Crea, R.; Cuzzocrea, S.; Di Paola, R.; et al. Hidrox® Roles in Neuroprotection: Biochemical Links between Traumatic Brain Injury and Alzheimer’s Disease. Antioxidants 2021, 10, 818. [Google Scholar] [CrossRef]
- Siracusa, R.; Scuto, M.; Fusco, R.; Trovato, A.; Ontario, M.L.; Crea, R.; Di Paola, R.; Cuzzocrea, S.; Calabrese, V. Anti-inflammatory and Anti-oxidant Activity of Hidrox® in Rotenone-Induced Parkinson’s Disease in Mice. Antioxidants 2020, 9, 824. [Google Scholar] [CrossRef]
- D’Amico, R.; Trovato Salinaro, A.; Cordaro, M.; Fusco, R.; Impellizzeri, D.; Interdonato, L.; Scuto, M.; Ontario, M.L.; Crea, R.; Siracusa, R.; et al. Hidrox® and Chronic Cystitis: Biochemical Evaluation of Inflammation, Oxidative Stress, and Pain. Antioxidants 2021, 10, 1046. [Google Scholar] [CrossRef]
- Di Rosa, G.; Brunetti, G.; Scuto, M.; Trovato Salinaro, A.; Calabrese, E.J.; Crea, R.; Schmitz-Linneweber, C.; Calabrese, V.; Saul, N. Healthspan Enhancement by Olive Polyphenols in C. elegans Wild Type and Parkinson’s Models. Int. J. Mol. Sci. 2020, 21, 3893. [Google Scholar] [CrossRef]
- Brunetti, G.; Di Rosa, G.; Scuto, M.; Leri, M.; Stefani, M.; Schmitz-Linneweber, C.; Calabrese, V.; Saul, N. Healthspan Maintenance and Prevention of Parkinson’s-like Phenotypes with Hydroxytyrosol and Oleuropein Aglycone in C. elegans. Int. J. Mol. Sci. 2020, 21, 2588. [Google Scholar] [CrossRef]
- Gallardo-Fernández, M.; Hornedo-Ortega, R.; Cerezo, A.B.; Troncoso, A.M.; Garcia-Parrilla, M.C. Hydroxytyrosol and dopamine metabolites: Anti-aggregative effect and neuroprotective activity against α-synuclein-induced toxicity. Food Chem. Toxicol. 2023, 171, 113542. [Google Scholar] [CrossRef]
- Yoon, J.; Sasaki, K.; Nishimura, I.; Hashimoto, H.; Okura, T.; Isoda, H. Effects of Desert Olive Tree Pearls Containing High Hydroxytyrosol Concentrations on the Cognitive Functions of Middle-Aged and Older Adults. Nutrients 2023, 15, 3234. [Google Scholar] [CrossRef]
- Han, H.; Zhong, R.; Zhou, Y.; Xiong, B.; Chen, L.; Jiang, Y.; Liu, L.; Sun, H.; Tan, J.; Tao, F.; et al. Hydroxytyrosol Benefits Boar Semen Quality via Improving Gut Microbiota and Blood Metabolome. Front. Nutr. 2022, 8, 815922. [Google Scholar] [CrossRef]
- Bender, C.; Strassmann, S.; Golz, C. Oral Bioavailability and Metabolism of Hydroxytyrosol from Food Supplements. Nutrients 2023, 15, 325. [Google Scholar] [CrossRef] [PubMed]
- Figueiroa, M.S.; César Vieira, J.S.; Leite, D.S.; Filho, R.C.; Ferreira, F.; Gouveia, P.S.; Udrisar, D.P.; Wanderley, M.I. Green tea polyphenols inhibit testosterone production in rat Leydig cells. Asian J. Androl. 2009, 11, 362–370. [Google Scholar] [CrossRef] [PubMed]
- Zhao, T.; Li, C.; Wang, S.; Song, X. Green Tea (Camellia sinensis): A Review of Its Phytochemistry, Pharmacology, and Toxicology. Molecules 2022, 27, 3909. [Google Scholar] [CrossRef] [PubMed]
- Grandi, G.; Del Savio, M.C.; Melotti, C.; Feliciello, L.; Facchinetti, F. Vitamin D and green tea extracts for the treatment of uterine fibroids in late reproductive life: A pilot, prospective, daily-diary based study. Gynecol. Endocrinol. 2022, 38, 63–67. [Google Scholar] [CrossRef]
- Hintzpeter, J.; Stapelfeld, C.; Loerz, C.; Martin, H.J.; Maser, E. Green tea and one of its constituents, Epigallocatechine-3-gallate, are potent inhibitors of human 11β-hydroxysteroid dehydrogenase type 1. PLoS ONE 2014, 9, e84468. [Google Scholar] [CrossRef]
- Adachi, N.; Tomonaga, S.; Tachibana, T.; Denbow, D.M.; Furuse, M. (−)-Epigallocatechin gallate attenuates acute stress responses through GABAergic system in the brain. Eur. J. Pharmacol. 2006, 531, 171–175. [Google Scholar] [CrossRef]
- Fang, L.; Guo, Y.; Li, Y.; Jia, Q.; Han, X.; Liu, B.; Chen, J.; Cheng, J.C.; Sun, Y.P. Epigallocatechin-3-gallate stimulates StAR expression and progesterone production in human granulosa cells through the 67-kDa laminin receptor-mediated CREB signaling pathway. J. Cell. Physiol. 2022, 237, 687–695. [Google Scholar] [CrossRef]
- Sharma, R.; Sharma, A.; Kumari, A.; Kulurkar, P.M.; Raj, R.; Gulati, A.; Padwad, Y.S. Consumption of green tea epigallocatechin-3-gallate enhances systemic immune response, antioxidative capacity and HPA axis functions in aged male swiss albino mice. Biogerontology 2017, 18, 367–382. [Google Scholar] [CrossRef]
- Wang, Y.; Xiang, Y.F.; Liu, A.L. Comparative and Combined Effects of Epigallocatechin-3-gallate and Caffeine in Reducing Lipid Accumulation in Caenorhabditis elegans. Plant Foods Hum. Nutr. 2022, 77, 279–285. [Google Scholar] [CrossRef]
- Siddiqui, S.; Ahmad, R.; Ahmad, Y.; Faizy, A.F.; Moin, S. Biophysical insight into the binding mechanism of epigallocatechin-3-gallate and cholecalciferol to albumin and its preventive effect against AGEs formation: An in vitro and in silico approach. Int. J. Biol. Macromol. 2024, 267, 131474. [Google Scholar] [CrossRef]
- Mori, T.; Koyama, N.; Tan, J.; Segawa, T.; Maeda, M.; Town, T. Combined treatment with the phenolics (−)-epigallocatechin-3-gallate and ferulic acid improves cognition and reduces Alzheimer-like pathology in mice. J. Biol. Chem. 2019, 294, 2714–2731. [Google Scholar] [CrossRef] [PubMed]
- Tinelli, A.; Panese, G.; Licchelli, M.; Morciano, A.; Pecorella, G.; Gambioli, R. The impact of epigallocatechin gallate, vitamin D, and D-chiro-inositol on early surgical outcomes of laparoscopic myomectomy: A pilot study. Arch. Gynecol. Obstet. 2024, 309, 1021–1026. [Google Scholar] [CrossRef] [PubMed]
- Kalueff, A.V.; Tuohimaa, P. Neurosteroid hormone vitamin D and its utility in clinical nutrition. Curr. Opin. Clin. Nutr. Metab. Care 2007, 10, 12–19. [Google Scholar] [CrossRef] [PubMed]
- Panza, F.; La Montagna, M.; Lampignano, L.; Zupo, R.; Bortone, I.; Castellana, F.; Sardone, R.; Borraccino, L.; Dibello, V.; Resta, E.; et al. Vitamin D in the development and progression of Alzheimer’s disease: Implications for clinical management. Expert Rev. Neurother. 2021, 21, 287–301. [Google Scholar] [CrossRef]
- Bytowska, Z.K.; Korewo-Labelle, D.; Berezka, P.; Kowalski, K.; Przewłócka, K.; Libionka, W.; Kloc, W.; Kaczor, J.J. Effect of 12-Week BMI-Based Vitamin D Supplementation in Parkinson’s Disease with Deep Brain Stimulation on Physical Performance, Inflammation, and Vitamin D Metabolites. Int. J. Mol. Sci. 2023, 24, 10200. [Google Scholar] [CrossRef]
- Siracusano, M.; Riccioni, A.; Abate, R.; Benvenuto, A.; Curatolo, P.; Mazzone, L. Vitamin D Deficiency and Autism Spectrum Disorder. Curr. Pharm. Des. 2020, 26, 2460–2474. [Google Scholar] [CrossRef]
- Wang, K.; Yang, Z.; Li, H.; Wang, S. Vitamin D supplementation in mice with advanced maternal age and cognitive function of the offspring. Am. J. Trans. 2021, 13, 7641–7653. [Google Scholar]
- Petruzzelli, M.G.; Marzulli, L.; Margari, F.; De Giacomo, A.; Gabellone, A.; Giannico, O.V.; Margari, L. Vitamin D Deficiency in Autism Spectrum Disorder: A Cross-Sectional Study. Dis. Markers 2020, 2020, 9292560. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, J.; Jiang, G.; Yu, H. Vitamin D receptor gene variants and serum vitamin D in childhood autism spectrum disorder. Mol. Biol. Rep. 2022, 49, 9481–9488. [Google Scholar] [CrossRef]
- Ali, A.; Shah, S.A.; Zaman, N.; Uddin, M.N.; Khan, W.; Ali, A.; Riaz, M.; Kamil, A. Vitamin D exerts neuroprotection via SIRT1/nrf-2/ NF-kB signaling pathways against D-galactose-induced memory impairment in adult mice. Neurochem. Int. 2021, 142, 104893. [Google Scholar] [CrossRef]
- Lisakovska, O.; Labudzynskyi, D.; Khomenko, A.; Isaev, D.; Savotchenko, A.; Kasatkina, L.; Savosko, S.; Veliky, M.; Shymanskyi, I. Brain vitamin D3-auto/paracrine system in relation to structural, neurophysiological, and behavioral disturbances associated with glucocorticoid-induced neurotoxicity. Front. Cell. Neurosci. 2023, 17, 1133400. [Google Scholar] [CrossRef] [PubMed]
- Kaviani, M.; Nikooyeh, B.; Etesam, F.; Behnagh, S.J.; Kangarani, H.M.; Arefi, M.; Yaghmaei, P.; Neyestani, T.R. Effects of vitamin D supplementation on depression and some selected pro-inflammatory biomarkers: A double-blind randomized clinical trial. BMC Psychiatry 2022, 22, 694. [Google Scholar] [CrossRef] [PubMed]
- Nolan, J.M.; Power, R.; Howard, A.N.; Bergin, P.; Roche, W.; Prado-Cabrero, A.; Pope, G.; Cooke, J.; Power, T.; Mulcahy, R. Supplementation with Carotenoids, Omega-3 Fatty Acids, and Vitamin E Has a Positive Effect on the Symptoms and Progression of Alzheimer’s Disease. J. Alzheimer’s Dis. 2022, 90, 233–249. [Google Scholar] [CrossRef] [PubMed]
- Alessandri, J.M.; Extier, A.; Langelier, B.; Perruchot, M.H.; Heberden, C.; Guesnet, P.; Lavialle, M. Estradiol favors the formation of eicosapentaenoic acid (20:5n-3) and n-3 docosapentaenoic acid (22:5n-3) from alpha-linolenic acid (18:3n-3) in SH-SY5Y neuroblastoma cells. Lipids 2008, 43, 19–28. [Google Scholar] [CrossRef]
- Nieminen, L.R.; Makino, K.K.; Mehta, N.; Virkkunen, M.; Kim, H.Y.; Hibbeln, J.R. Relationship between omega-3 fatty acids and plasma neuroactive steroids in alcoholism, depression and controls. Prostaglandins Leukot. Essent. Fat. Acids 2006, 75, 309–314. [Google Scholar] [CrossRef]
- Semba, R.D.; Trehan, I.; Li, X.; Salem, N., Jr.; Moaddel, R.; Ordiz, M.I.; Maleta, K.M.; Kraemer, K.; Manary, M.J. Low serum ω-3 and ω-6 polyunsaturated fatty acids and other metabolites are associated with poor linear growth in young children from rural Malawi. Am. J. Clin. Nutr. 2017, 106, 1490–1499. [Google Scholar] [CrossRef]
- Paduchová, Z.; Katrenčíková, B.; Vaváková, M.; Laubertová, L.; Nagyová, Z.; Garaiova, I.; Ďuračková, Z.; Trebatická, J. The Effect of Omega-3 Fatty Acids on Thromboxane, Brain-Derived Neurotrophic Factor, Homocysteine, and Vitamin D in Depressive Children and Adolescents: Randomized Controlled Trial. Nutrients 2021, 13, 1095. [Google Scholar] [CrossRef]
- Ilavská, L.; Morvová, M., Jr.; Paduchová, Z.; Muchová, J.; Garaiova, I.; Ďuračková, Z.; Šikurová, L.; Trebatická, J. The kynurenine and serotonin pathway, neopterin and biopterin in depressed children and adolescents: An impact of omega-3 fatty acids, and association with markers related to depressive disorder. A randomized, blinded, prospective study. Front. Psychiatry 2024, 15, 1347178. [Google Scholar] [CrossRef]
- Mazahery, H.; Conlon, C.; Beck, K.L.; Kruger, M.C.; Stonehouse, W.; Camargo, C.A.; Meyer, B.J.; Tsang, B.; Mugridge, O.; von Hurst, P.R. Vitamin D and omega-3 fatty acid supplements in children with autism spectrum disorder: A study protocol for a factorial randomised, double-blind, placebo-controlled trial. Trials 2016, 17, 295. [Google Scholar] [CrossRef]
- Shen, Y.; Cao, B.; Snyder, N.R.; Woeppel, K.M.; Eles, J.R.; Cui, X.T. ROS responsive resveratrol delivery from LDLR peptide conjugated PLA-coated mesoporous silica nanoparticles across the blood-brain barrier. J. Nanobiotechnol. 2018, 16, 13. [Google Scholar] [CrossRef]
- Alizadeh Noghani, M.; Brooks, D.E. Progesterone binding nano-carriers based on hydrophobically modified hyperbranched polyglycerols. Nanoscale 2016, 8, 5189–5199. [Google Scholar] [CrossRef] [PubMed]
- Veetil, A.T.; Chakraborty, K.; Xiao, K.; Minter, M.R.; Sisodia, S.S.; Krishnan, Y. Cell-targetable DNA nanocapsules for spatiotemporal release of caged bioactive small molecules. Nat. Nanotechnol. 2017, 12, 1183–1189. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, M.M.; Hussein, M.M.A.; Saber, T.; Abd-Elhakim, Y.M. Palliative Effect of Resveratrol against Nanosized Iron Oxide-Induced Oxidative Stress and Steroidogenesis-Related Genes Dysregulation in Testicular Tissue of Adult Male Rats. Int. J. Environ. Res. Public Health 2022, 19, 8171. [Google Scholar] [CrossRef] [PubMed]
- Montalesi, E.; Cracco, P.; Acconcia, F.; Fiocchetti, M.; Iucci, G.; Battocchio, C.; Orlandini, E.; Ciccone, L.; Nencetti, S.; Muzzi, M.; et al. Resveratrol Analogs and Prodrugs Differently Affect the Survival of Breast Cancer Cells Impairing Estrogen/Estrogen Receptor α/Neuroglobin Pathway. Int. J. Mol. Sci. 2023, 24, 2148. [Google Scholar] [CrossRef]
- Zaki, N.F.; Orabi, S.H.; Abdel-Bar, H.M.; Elbaz, H.T.; Korany, R.M.S.; Ismail, A.K.; Daoush, W.M.; Abduljabbar, M.H.; Alosaimi, M.E.; Alnemari, R.M.; et al. Zinc oxide resveratrol nanoparticles ameliorate testicular dysfunction due to levofloxacin-induced oxidative stress in rats. Sci. Rep. 2024, 14, 2752. [Google Scholar] [CrossRef]
- Gao, C.; Wang, Y.; Sun, J.; Han, Y.; Gong, W.; Li, Y.; Feng, Y.; Wang, H.; Yang, M.; Li, Z.; et al. Neuronal mitochondria-targeted delivery of curcumin by biomimetic engineered nanosystems in Alzheimer’s disease mice. Acta Biomater. 2020, 108, 285–299. [Google Scholar] [CrossRef]
- Giacomeli, R.; Izoton, J.C.; Dos Santos, R.B.; Boeira, S.P.; Jesse, C.R.; Haas, S.E. Neuroprotective effects of curcumin lipid-core nanocapsules in a model Alzheimer’s disease induced by β-amyloid 1–42 peptide in aged female mice. Brain Res. 2019, 1721, 146325. [Google Scholar] [CrossRef]
- Small, G.W.; Siddarth, P.; Li, Z.; Miller, K.J.; Ercoli, L.; Emerson, N.D.; Martinez, J.; Wong, K.P.; Liu, J.; Merrill, D.A.; et al. Memory and Brain Amyloid and Tau Effects of a Bioavailable Form of Curcumin in Non-Demented Adults: A Double-Blind, Placebo-Controlled 18-Month Trial. Am. J. Geriatr. Psychiatry 2018, 26, 266–277. [Google Scholar] [CrossRef]
- Das, S.S.; Gopal, P.M.; Thomas, J.V.; Mohan, M.C.; Thomas, S.C.; Maliakel, B.P.; Krishnakumar, I.M.; Pulikkaparambil Sasidharan, B.C. Influence of CurQfen®-curcumin on cognitive impairment: A randomized, double-blinded, placebo-controlled, 3-arm, 3-sequence comparative study. Front. Dement. 2023, 2, 1222708. [Google Scholar] [CrossRef]
- Singh, D. Astrocytic and microglial cells as the modulators of neuroinflammation in Alzheimer’s disease. J. Neuroinflamm. 2022, 19, 206. [Google Scholar] [CrossRef]
- Germelli, L.; Da Pozzo, E.; Giacomelli, C.; Tremolanti, C.; Marchetti, L.; Wetzel, C.H.; Barresi, E.; Taliani, S.; Da Settimo, F.; Martini, C.; et al. De novo Neurosteroidogenesis in Human Microglia: Involvement of the 18 kDa Translocator Protein. Int. J. Mol. Sci. 2021, 22, 3115. [Google Scholar] [CrossRef] [PubMed]
- Yilmaz, C.; Karali, K.; Fodelianaki, G.; Gravanis, A.; Chavakis, T.; Charalampopoulos, I.; Alexaki, V.I. Neurosteroids as regulators of neuroinflammation. Front. Neuroendocrinol. 2019, 55, 100788. [Google Scholar] [CrossRef] [PubMed]
- Balan, I.; Aurelian, L.; Schleicher, R.; Boero, G.; O’Buckley, T.; Morrow, A.L. Neurosteroid allopregnanolone (3α,5α-THP) inhibits inflammatory signals induced by activated MyD88-dependent toll-like receptors. Transl. Psychiatry 2021, 11, 145. [Google Scholar] [CrossRef] [PubMed]
- Balan, I.; Grusca, A.; O’Buckley, T.K.; Morrow, A.L. Neurosteroid [3α,5α]-3-hydroxy-pregnan-20-one enhances IL-10 production via endosomal TRIF-dependent TLR4 signaling pathway. Front. Endocrinol. 2023, 14, 1299420. [Google Scholar] [CrossRef]
- Avallone, R.; Lucchi, C.; Puja, G.; Codeluppi, A.; Filaferro, M.; Vitale, G.; Rustichelli, C.; Biagini, G. BV-2 Microglial Cells Respond to Rotenone Toxic Insult by Modifying Levels. Cells 2020, 9, 2091. [Google Scholar] [CrossRef]
- Lee, M.; Schwab, C.; McGeer, P.L. Astrocytes are GABAergic cells that modulate microglial activity. Glia 2010, 59, 152–165. [Google Scholar] [CrossRef]
- Yilmaz, C.; Rogdakis, T.; Latorrata, A.; Thanou, E.; Karadima, E.; Papadimitriou, E.; Siapi, E.; Li, K.W.; Katsila, T.; Calogeropoulou, T.; et al. ENT-A010, a Novel Steroid Derivative, Displays Neuroprotective Functions and Modulates Microglial Responses. Biomolecules 2022, 12, 424. [Google Scholar] [CrossRef]
- Narducci, D.; Charou, D.; Rogdakis, T.; Zota, I.; Bafiti, V.; Zervou, M.; Katsila, T.; Gravanis, A.; Prousis, K.C.; Charalampopoulos, I.; et al. A quest for the stereo-electronic requirements for selective agonism for the neurotrophin receptors TrkA and TrkB in 17-spirocyclic-dehydroepiandrosterone derivatives. Front. Mol. Neurosci. 2023, 16, 1244133. [Google Scholar] [CrossRef]
- Lucchi, C.; Codeluppi, A.; Filaferro, M.; Vitale, G.; Rustichelli, C.; Avallone, R.; Mandrioli, J.; Biagini, G. Human Microglia Synthesize Neurosteroids to Cope with Rotenone-Induced Oxidative Stress. Antioxidants 2023, 12, 963. [Google Scholar] [CrossRef]
- Reddy, D.S.; Singh, T.; Ramakrishnan, S.; Huber, M.; Wu, X. Neuroprotectant Activity of Novel Water-Soluble Synthetic Neurosteroids on Organophosphate Intoxication and Status Epilepticus-Induced Long-Term Neurological Dysfunction, Neurodegeneration, and Neuroinflammation. J. Pharmacol. Exp. Ther. 2024, 388, 399–415. [Google Scholar] [CrossRef]
- Neff, M.J.; Reddy, D.S. Long-Term Neuropsychiatric Developmental Defects after Neonatal Organophosphate Exposure: Mitigation by Synthetic Neurosteroids. J. Pharmacol. Exp. Ther. 2024, 388, 451–468. [Google Scholar] [CrossRef] [PubMed]
- De Nicola, A.F.; Meyer, M.; Garay, L.; Kruse, M.S.; Schumacher, M.; Guennoun, R.; Gonzalez Deniselle, M.C. Progesterone and Allopregnanolone Neuroprotective Effects in the Wobbler Mouse Model of Amyotrophic Lateral Sclerosis. Cell. Mol. Neurobiol. 2022, 42, 23–40. [Google Scholar] [CrossRef] [PubMed]
- Mincheva, G.; Gimenez-Garzo, C.; Izquierdo-Altarejos, P.; Martinez-Garcia, M.; Doverskog, M.; Blackburn, T.P.; Hällgren, A.; Bäckström, T.; Llansola, M.; Felipo, V. Golexanolone, a GABAA receptor modulating steroid antagonist, restores motor coordination and cognitive function in hyperammonemic rats by dual effects on peripheral inflammation and neuroinflammation. CNS Neurosci. Ther. 2022, 28, 1861–1874. [Google Scholar] [CrossRef] [PubMed]
- Izumi, Y.; O’Dell, K.A.; Cashikar, A.G.; Paul, S.M.; Covey, D.F.; Mennerick, S.J.; Zorumski, C.F. Neurosteroids mediate and modulate the effects of pro-inflammatory stimulation and toll-like receptors on hippocampal plasticity and learning. PLoS ONE 2024, 19, e0304481. [Google Scholar] [CrossRef] [PubMed]
- Ramírez, S.; Haddad-Tóvolli, R.; Radosevic, M.; Toledo, M.; Pané, A.; Alcolea, D.; Ribas, V.; Milà-Guasch, M.; Pozo, M.; Obri, A.; et al. Hypothalamic pregnenolone mediates recognition memory in the context of metabolic disorders. Cell Metab. 2022, 34, 269–284. [Google Scholar] [CrossRef]
- Xu, F.R.; Wei, Z.H.; Xu, X.X.; Zhang, X.G.; Wei, C.J.; Qi, X.M.; Li, Y.H.; Gao, X.L.; Wu, Y. The hypothalamic steroidogenic pathway mediates susceptibility to inflammation-evoked depression in female mice. J. Neuroinflamm. 2023, 20, 293. [Google Scholar] [CrossRef]
- Fragkiadaki, E.; Katsanou, L.; Vartzoka, F.; Gravanis, A.; Pitsikas, N. Effects of low doses of the novel dehydroepiandrosterone (DHEA) derivative BNN27 in rat models of anxiety. Psychopharmacology 2024, 241, 341–350. [Google Scholar] [CrossRef]
- Corsi, S.; Scheggi, S.; Pardu, A.; Braccagni, G.; Caruso, D.; Cioffi, L.; Diviccaro, S.; Gentile, M.; Fanni, S.; Stancampiano, R.; et al. Pregnenolone for the treatment of L-DOPA-induced dyskinesia in Parkinson’s disease. Exp. Neurol. 2023, 363, 114370. [Google Scholar] [CrossRef]
- Calabrese, V.; Scapagnini, G.; Davinelli, S.; Koverech, G.; Koverech, A.; De Pasquale, C.; Salinaro, A.T.; Scuto, M.; Calabrese, E.J.; Genazzani, A.R. Sex hormonal regulation and hormesis in aging and longevity: Role of vitagenes. J. Cell Commun. Signal. 2014, 8, 369–384. [Google Scholar] [CrossRef]
- Shirvani, M.; Nouri, F.; Sarihi, A.; Habibi, P.; Mohammadi, M. Neuroprotective Effects of Dehydroepiandrosterone and Hericium erinaceus in Scopolamine-induced Alzheimer’s Diseases-like Symptoms in Male Rats. Cell Biochem. Biophys. 2024, 82, 2853–2864. [Google Scholar] [CrossRef]
- Modafferi, S.; Lupo, G.; Tomasello, M.; Rampulla, F.; Ontario, M.; Scuto, M.; Salinaro, A.T.; Arcidiacono, A.; Anfuso, C.D.; Legmouz, M.; et al. Antioxidants, Hormetic Nutrition, and Autism. Curr. Neuropharmacol. 2024, 22, 1156–1168. [Google Scholar] [CrossRef] [PubMed]
- Papadopoulos, D.; Scheiner-Bobis, G. Dehydroepiandrosterone sulfate augments blood-brain barrier and tight junction protein expression in brain endothelial cells. Biochim. Biophys. Acta Mol. Cell Res. 2017, 1864, 1382–1392. [Google Scholar] [CrossRef] [PubMed]
- Calan, O.G.; Akan, P.; Cataler, A.; Dogan, C.; Kocturk, S. Amyloid Beta Peptides Affect Pregnenolone and Pregnenolone Sulfate Levels in PC-12 and SH-SY5Y Cells Depending on Cholesterol. Neurochem. Res. 2016, 41, 1700–1712. [Google Scholar] [CrossRef] [PubMed]
- Radagdam, S.; Khaki-Khatibi, F.; Rahbarghazi, R.; Shademan, B.; Nourazarian, S.M.; Nikanfar, M.; Nourazarian, A. Evaluation of dihydrotestosterone and dihydroprogesterone levels and gene expression of genes involved in neurosteroidogenesis in the SH-SY5Y Alzheimer disease cell model. Front. Neurosci. 2023, 17, 1163806. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Wu, H.; Xue, G.; Ma, X.; Wu, J.; Qin, Y.; Hou, Y. Metabolic alteration of neuroactive steroids and protective effect of progesterone in Alzheimer’s disease-like rats. Neural Regen. Res. 2013, 8, 2800–2810. [Google Scholar] [PubMed]
- Schaeffer, V.; Meyer, L.; Patte-Mensah, C.; Eckert, A.; Mensah-Nyagan, A.G. Dose-dependent and sequence-sensitive effects of amyloid-beta peptide on neurosteroidogenesis in human neuroblastoma cells. Neurochem. Int. 2008, 52, 948–955. [Google Scholar] [CrossRef]
- Sinha, M.; Saha, A.; Basu, S.; Pal, K.; Chakrabarti, S. Aging and antioxidants modulate rat brain levels of homocysteine and dehydroepiandrosterone sulphate (DHEA-S): Implications in the pathogenesis of Alzheimer’s disease. Neurosci. Lett. 2010, 483, 123–126. [Google Scholar] [CrossRef]
- El Bitar, F.; Meunier, J.; Villard, V.; Almeras, M.; Krishnan, K.; Covey, D.F.; Maurice, T.; Akwa, Y. Neuroprotection by the synthetic neurosteroid enantiomers ent-PREGS and ent-DHEAS against Aβ25–35 peptide-induced toxicity in vitro and in vivo in mice. Psychopharmacology 2014, 231, 3293–3312. [Google Scholar] [CrossRef]
- Li, L.; Xu, B.; Zhu, Y.; Chen, L.; Sokabe, M.; Chen, L. DHEA prevents Abeta25–35-impaired survival of newborn neurons in the dentate gyrus through a modulation of PI3K-Akt-mTOR signaling. Neuropharmacology 2010, 59, 323–333. [Google Scholar] [CrossRef]
- Naylor, J.C.; Hulette, C.M.; Steffens, D.C.; Shampine, L.J.; Ervin, J.F.; Payne, V.M.; Massing, M.W.; Kilts, J.D.; Strauss, J.L.; Calhoun, P.S.; et al. Cerebrospinal fluid dehydroepiandrosterone levels are correlated with brain dehydroepiandrosterone levels, elevated in Alzheimer’s disease, and related to neuropathological disease stage. J. Clin. Endocrinol. Metab. 2008, 93, 3173–3178. [Google Scholar] [CrossRef]
- Naylor, J.C.; Kilts, J.D.; Hulette, C.M.; Steffens, D.C.; Blazer, D.G.; Ervin, J.F.; Strauss, J.L.; Allen, T.B.; Massing, M.W.; Payne, V.M.; et al. Allopregnanolone levels are reduced in temporal cortex in patients with Alzheimer’s disease compared to cognitively intact control subjects. Biochim. Biophys. Acta 2010, 1801, 951–959. [Google Scholar] [CrossRef] [PubMed]
- Ouanes, S.; Rabl, M.; Clark, C.; Kirschbaum, C.; Popp, J. Persisting neuropsychiatric symptoms, Alzheimer’s disease, and cerebrospinal fluid cortisol and dehydroepiandrosterone sulfate. Alzheimer’s Res. Ther. 2022, 14, 190. [Google Scholar] [CrossRef] [PubMed]
- Yamada, S.; Akishita, M.; Fukai, S.; Ogawa, S.; Yamaguchi, K.; Matsuyama, J.; Kozaki, K.; Toba, K.; Ouchi, Y. Effects of dehydroepiandrosterone supplementation on cognitive function and activities of daily living in older women with mild to moderate cognitive impairment. Geriatr. Gerontol. Int. 2010, 10, 280–287. [Google Scholar] [CrossRef] [PubMed]
- di Michele, F.; Luchetti, S.; Bernardi, G.; Romeo, E.; Longone, P. Neurosteroid and neurotransmitter alterations in Parkinson’s disease. Front. Neuroendocrinol. 2013, 34, 132–142. [Google Scholar] [CrossRef]
- Castelnovo, L.F.; Thomas, P. Progesterone exerts a neuroprotective action in a Parkinson’s disease human cell model through membrane progesterone receptor α (mPRα/PAQR7). Front. Endocrinol. 2023, 14, 1125962. [Google Scholar] [CrossRef]
- Bourque, M.; Morissette, M.; Al Sweidi, S.; Caruso, D.; Melcangi, R.C.; Di Paolo, T. Neuroprotective effect of progesterone in MPTP-treated male mice. Neuroendocrinology 2016, 103, 300–314. [Google Scholar] [CrossRef]
- Sánchez, M.G.; Bourque, M.; Morissette, M.; Di Paolo, T. Steroids-dopamine interactions in the pathophysiology and treatment of CNS disorders. CNS Neurosci. Ther. 2010, 16, e43–e71. [Google Scholar] [CrossRef]
- Wu, H.; Khuram Raza, H.; Li, Z.; Li, Z.; Zu, J.; Xu, C.; Yang, D.; Cui, G. Correlation between serum 25(OH)D and cognitive impairment in Parkinson’s disease. J. Clin. Neurosci. 2022, 100, 192–195. [Google Scholar] [CrossRef]
- Luchetti, S.; Liere, P.; Pianos, A.; Verwer, R.W.H.; Sluiter, A.; Huitinga, I.; Schumacher, M.; Swaab, D.F.; Mason, M.R.J. Disease stage-dependent changes in brain levels and neuroprotective effects of neuroactive steroids in Parkinson’s disease. Neurobiol. Dis. 2023, 183, 106169. [Google Scholar] [CrossRef]
- Bourque, M.; Morissette, M.; Di Paolo, T. Neuroactive steroids and Parkinson’s disease: Review of human and animal studies. Neurosci. Biobehav. Rev. 2024, 156, 105479. [Google Scholar] [CrossRef]
- Reddy, D.S.; Mbilinyi, R.H.; Estes, E. Preclinical and clinical pharmacology of brexanolone (allopregnanolone) for postpartum depression: A landmark journey from concept to clinic in neurosteroid replacement therapy. Psychopharmacology 2023, 240, 1841–1863. [Google Scholar] [CrossRef] [PubMed]
- Song, L.; Wu, X.; Wang, J.; Guan, Y.; Zhang, Y.; Gong, M.; Wang, Y.; Li, B. Antidepressant effect of catalpol on corticosterone-induced depressive-like behavior involves the inhibition of HPA axis hyperactivity, central inflammation and oxidative damage probably via dual regulation of NF-κB and Nrf2. Brain Res. Bull. 2021, 177, 81–91. [Google Scholar] [CrossRef] [PubMed]
- Ullah, M.I.; Anwar, R.; Kamran, S.; Gul, B.; Elhady, S.S.; Youssef, F.S. Evaluation of the Anxiolytic and Anti-Epileptogenic Potential of Lactuca Serriola Seed Using Pentylenetetrazol-Induced Kindling in Mice and Metabolic Profiling of Its Bioactive Extract. Antioxidants 2022, 11, 2232. [Google Scholar] [CrossRef]
- Birmann, P.T.; Casaril, A.M.; Pesarico, A.P.; Caballero, P.S.; Smaniotto, T.Â.; Rodrigues, R.R.; Moreira, Â.N.; Conceição, F.R.; Sousa, F.S.S.; Collares, T.; et al. Komagataella pastoris KM71H modulates neuroimmune and oxidative stress parameters in animal models of depression: A proposal for a new probiotic with antidepressant-like effect. Pharmacol. Res. 2021, 171, 105740. [Google Scholar] [CrossRef]
- Hellgren, C.; Åkerud, H.; Skalkidou, A.; Bäckström, T.; Sundström-Poromaa, I. Low Serum Allopregnanolone Is Associated with Symptoms of Depression in Late Pregnancy. Neuropsychobiology 2014, 69, 147–153. [Google Scholar] [CrossRef]
- Pearson Murphy, B.E.; Steinberg, S.I.; Hu, F.-Y.; Allison, C.M. Neuroactive Ring A-Reduced Metabolites of Progesterone in Human Plasma during Pregnancy: Elevated Levels of 5α-Dihydroprogesterone in Depressed Patients during the Latter Half of Pregnancy. J. Clin. Endocrinol. Metab. 2001, 86, 5981–5987. [Google Scholar] [CrossRef]
- Gordon, J.L.; Rubinow, D.R.; Eisenlohr-Moul, T.A.; Xia, K.; Schmidt, P.J.; Girdler, S.S. Efficacy of Transdermal Estradiol and Micronized Progesterone in the Prevention of Depressive Symptoms in the Menopause Transition: A Randomized Clinical Trial. JAMA Psychiatry 2018, 75, 149–157. [Google Scholar] [CrossRef]
- Standeven, L.R.; Osborne, L.M.; Betz, J.F.; Yenokyan, G.; Voegtline, K.; Hantsoo, L.; Payne, J.L. Allopregnanolone and depression and anxiety symptoms across the peripartum: An exploratory study. Arch. Womens Ment. Health 2022, 25, 521–526. [Google Scholar] [CrossRef]
- Epperson, C.N.; Rubinow, D.R.; Meltzer-Brody, S.; Deligiannidis, K.M.; Riesenberg, R.; Krystal, A.D.; Bankole, K.; Huang, M.-Y.; Li, H.; Brown, C.; et al. Effect of brexanolone on depressive symptoms, anxiety, and insomnia in women with postpartum depression: Pooled analyses from 3 double-blind, randomized, placebo-controlled clinical trials in the HUMMINGBIRD clinical program. J. Affect. Disord. 2023, 320, 353–359. [Google Scholar] [CrossRef]
- Bakalar, D.; O’Reilly, J.J.; Lacaille, H.; Salzbank, J.; Ellegood, J.; Lerch, J.P.; Sasaki, T.; Imamura, Y.; Hashimoto-Torii, K.; Vacher, C.-M.; et al. Lack of placental neurosteroid alters cortical development and female somatosensory function. Front. Endocrinol. 2022, 13, 972033. [Google Scholar] [CrossRef]
- Kazdoba, T.M.; Hagerman, R.J.; Zolkowska, D.; Rogawski, M.A.; Crawley, J.N. Evaluation of the neuroactive steroid ganaxolone on social and repetitive behaviors in the BTBR mouse model of autism. Psychopharmacology 2016, 233, 309–323. [Google Scholar] [CrossRef] [PubMed]
- Shaw, J.C.; Dyson, R.M.; Palliser, H.K.; Gray, C.; Berry, M.J.; Hirst, J.J. Neurosteroid replacement therapy using the allopregnanolone-analogue ganaxolone following preterm birth in male guinea pigs. Pediatr. Res. 2018, 85, 86–96. [Google Scholar] [CrossRef] [PubMed]
- Sherer, M.L.; Posillico, C.K.; Schwarz, J.M. An examination of changes in maternal neuroimmune function during pregnancy and the postpartum period. Brain Behav. Immun. 2017, 66, 201–209. [Google Scholar] [CrossRef] [PubMed]
- Hirst, J.J.; Palliser, H.K.; Yates, D.M.; Yawno, T.; Walker, D.W. Neurosteroids in the fetus and neonate: Potential protective role in compromised pregnancies. Neurochem. Int. 2008, 52, 602–610. [Google Scholar] [CrossRef]
- Kelleher, M.A.; Hirst, J.J.; Palliser, H.K. Changes in neuroactive steroid concentrations after preterm delivery in the Guinea pig. Reprod. Sci. 2013, 20, 1365–1375. [Google Scholar] [CrossRef]
- Pang, R.; Mujuni, B.M.; Martinello, K.A.; Webb, E.L.; Nalwoga, A.; Ssekyewa, J.; Musoke, M.; Kurinczuk, J.J.; Sewegaba, M.; Cowan, F.M.; et al. Elevated serum IL-10 is associated with severity of neonatal encephalopathy and adverse early childhood outcomes. Pediatr. Res. 2022, 92, 180–189. [Google Scholar] [CrossRef]
- Cesta, C.E.; Öberg, A.S.; Ibrahimson, A.; Yusuf, I.; Larsson, H.; Almqvist, C.; D’Onofrio, B.M.; Bulik, C.M.; Fernández de la Cruz, L.; Mataix-Cols, D.; et al. Maternal polycystic ovary syndrome and risk of neuropsychiatric disorders in offspring: Prenatal androgen exposure or genetic confounding? Psychol. Med. 2020, 50, 616–624. [Google Scholar] [CrossRef]
- Lee, B.K.; Arver, S.; Widman, L.; Gardner, R.M.; Magnusson, C.; Dalman, C.; Kosidou, K. Maternal hirsutism and autism spectrum disorders in offspring. Autism Res. 2017, 10, 1544–1546. [Google Scholar] [CrossRef]
- Kosidou, K.; Karlsson, H.; Arver, S.; Bhasin, S.; Dalman, C.; Gardner, R.M. Maternal Steroid Hormone Levels in Early Pregnancy and Autism in the Offspring: A Population-Based, Nested Case-Control Study. Biol. Psychiatry 2024, 96, 147–158. [Google Scholar] [CrossRef]
- Legesse, D.H.; Fan, C.; Teng, J.; Zhuang, Y.; Howard, R.J.; Noviello, C.M.; Lindahl, E.; Hibbs, R.E. Structural insights into opposing actions of neurosteroids on GABA(A) receptors. Nat. Commun. 2023, 14, 5091. [Google Scholar] [CrossRef]
- Ayatollahi, A.; Bagheri, S.; Ashraf-Ganjouei, A.; Moradi, K.; Mohammadi, M.-R.; Akhondzadeh, S. Does Pregnenolone Adjunct to Risperidone Ameliorate Irritable Behavior in Adolescents with Autism Spectrum Disorder: A Randomized, Double-Blind, Placebo-Controlled Clinical Trial? Clin. Neuropharmacol. 2020, 43, 139–145. [Google Scholar] [CrossRef] [PubMed]
- Adak, P.; Banerjee, N.; Sinha, S.; Bandyopadhyay, A.K. Gamma-Aminobutyric Acid Type A Receptor Variants are Associated with Autism Spectrum Disorders. J. Mol. Neurosci. 2023, 73, 237–249. [Google Scholar] [CrossRef] [PubMed]
- Menzikov, S.A.; Zaichenko, D.M.; Moskovtsev, A.A.; Morozov, S.G.; Kubatiev, A.A. Phenols and GABA(A) receptors: From structure and molecular mechanisms action to neuropsychiatric sequelae. Front. Pharmacol. 2024, 15, 1272534. [Google Scholar] [CrossRef] [PubMed]
- Sonar, V.P.; Fois, B.; Distinto, S.; Maccioni, E.; Meleddu, R.; Cottiglia, F.; Acquas, E.; Kasture, S.; Floris, C.; Colombo, D.; et al. Ferulic Acid Esters and Withanolides: In Search of Withania somnifera GABAA Receptor Modulators. J. Nat. Prod. 2019, 82, 1250–1257. [Google Scholar] [CrossRef]
- Sun, C.; Zhu, H.; Clark, S.; Gouaux, E. Cryo-EM structures reveal native GABA(A) receptor assemblies and pharmacology. Nature 2023, 622, 195–201. [Google Scholar] [CrossRef]
- Velásquez-Jiménez, D.; Corella-Salazar, D.A.; Zuñiga-Martínez, B.S.; Domínguez-Avila, J.A.; Montiel-Herrera, M.; Salazar-López, N.J.; Rodrigo-Garcia, J.; Villegas-Ochoa, M.A.; González-Aguilar, G.A. Phenolic compounds that cross the blood–brain barrier exert positive health effects as central nervous system antioxidants. Food Funct. 2021, 12, 10356–10369. [Google Scholar] [CrossRef]
- Menzikov, S.A. Effect of phenol on the GABAAR-coupled Cl−/HCO3−-ATPase from fish brain: An in vitro approach on the enzyme function. Toxicol. In Vitro 2018, 46, 129–136. [Google Scholar] [CrossRef]
- Menzikov, S.A.; Morozov, S.G. Involvement of brain GABAAR-coupled Cl−/HCO3−-ATPase in phenol-induced the head-twitching and tremor responses in rats. NeuroToxicology 2019, 71, 122–131. [Google Scholar] [CrossRef]
- Dunne, E.L.; Moss, S.J.; Smart, T.G. Inhibition of GABAAReceptor Function by Tyrosine Kinase Inhibitors and Their Inactive Analogues. Mol. Cell. Neurosci. 1998, 12, 300–310. [Google Scholar] [CrossRef]
- Johnston, G.A.R.; Beart, P.M. Milestone review: GABA, from chemistry, conformations, ionotropic receptors, modulators, epilepsy, flavonoids, and stress to neuro-nutraceuticals. J. Neurochem. 2024, 168, 1179–1192. [Google Scholar] [CrossRef]
- Prado-Fernández, M.F.; Magdaleno-Madrigal, V.M.; Cabañas-García, E.; Mucio-Ramírez, S.; Almazán-Alvarado, S.; Pérez-Molphe-Balch, E.; Gómez-Aguirre, Y.A.; Sánchez-Jaramillo, E. Pereskia sacharosa Griseb. (Cactaceae) Prevents Lipopolysaccharide-Induced Neuroinflammation in Rodents via Down-Regulating TLR4/CD14 Pathway and GABAA γ2 Activity. Curr. Issues Mol. Biol. 2024, 46, 6885–6902. [Google Scholar] [CrossRef] [PubMed]
- Benkherouf, A.Y.; Soini, S.L.; Stompor, M.; Uusi-Oukari, M. Positive allosteric modulation of native and recombinant GABAA receptors by hops prenylflavonoids. Eur. J. Pharmacol. 2019, 852, 34–41. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.-C.; Hsieh, P.-W.; Kuo, J.-R.; Wang, S.-J. Rosmarinic Acid, a Bioactive Phenolic Compound, Inhibits Glutamate Release from Rat Cerebrocortical Synaptosomes through GABA(A) Receptor Activation. Biomolecules 2021, 11, 1029. [Google Scholar]
- Jang, S.H.; Park, S.J.; Kim, K.-A.; Han, S.K. Resveratrol activates GABAA and/or glycine receptors on substantia gelatinosa neurons of the subnucleus caudalis in mice. Nat. Prod. Res. 2022, 36, 5788–5792. [Google Scholar] [CrossRef]
- Parveen, A.; Alqahtani, F.; Javaid, S.; Ashraf, W.; Siddique, F.; Rawat, R.; Rasool, M.F.; Ahmad, T.; Alasmari, F.; Imran, I. Anxiolytic potential of resveratrol and rufinamide combination by modulating GABA-ergic transmission: Insights from experiments, molecular docking and dynamics simulations. J. Physiol. Pharmacol. 2023, 74, 489–506. [Google Scholar]
- El Gizawy, H.A.; Abo-Salem, H.M.; Ali, A.A.; Hussein, M.A. Phenolic Profiling and Therapeutic Potential of Certain Isolated Compounds from Parkia roxburghii against AChE Activity as well as GABA(A) α5, GSK-3β, and p38α MAP-Kinase Genes. ACS Omega 2021, 6, 20492–20511. [Google Scholar] [CrossRef]
- Campbell, E.L.; Chebib, M.; Johnston, G.A.R. The dietary flavonoids apigenin and (−)-epigallocatechin gallate enhance the positive modulation by diazepam of the activation by GABA of recombinant GABAA receptors. Biochem. Pharmacol. 2004, 68, 1631–1638. [Google Scholar] [CrossRef]
- Bappi, M.H.; Mia, M.N.; Ansari, S.A.; Ansari, I.A.; Prottay, A.A.S.; Akbor, M.S.; El-Nashar, H.A.S.; El-Shazly, M.; Mubarak, M.S.; Torequl Islam, M. Quercetin increases the antidepressant-like effects of sclareol and antagonizes diazepam in thiopental sodium-induced sleeping mice: A possible GABAergic transmission intervention. Phytother. Res. 2024, 38, 2198–2214. [Google Scholar] [CrossRef]
- Rodríguez-Landa, J.F.; Hernández-López, F.; Martínez-Mota, L.; Scuteri, D.; Bernal-Morales, B.; Rivadeneyra-Domínguez, E. GABA (A)/Benzodiazepine Receptor Complex in the Dorsal Hippocampus Mediates the Effects of Chrysin on Anxiety-Like Behaviour in Female Rats. Front. Behav. Neurosci. 2022, 15, 789557. [Google Scholar] [CrossRef]
- Kwon, S.; Jung, J.H.; Cho, S.; Moon, K.-D.; Lee, J. Dieckol is a natural positive allosteric modulator of GABAA-benzodiazepine receptors and enhances inhibitory synaptic activity in cultured neurons. Nutr. Neurosci. 2019, 24, 835–842. [Google Scholar] [CrossRef]
- Jain, V.; Pareek, A.; Bhardwaj, Y.R.; Sinha, S.K.; Gupta, M.M.; Singh, N. Punicalagin and ellagic acid containing Punica granatum L. fruit rind extract prevents vincristine-induced neuropathic pain in rats: An in silico and in vivo evidence of GABAergic action and cytokine inhibition. Nutr. Neurosci. 2021, 25, 2149–2166. [Google Scholar] [CrossRef] [PubMed]
- Khom, S.; Baburin, I.; Timin, E.; Hohaus, A.; Trauner, G.; Kopp, B.; Hering, S. Valerenic acid potentiates and inhibits GABAA receptors: Molecular mechanism and subunit specificity. Neuropharmacology 2007, 53, 178–187. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, K.; Hatta, S.; Wada, K.; Ohshika, H.; Haga, M. Bilobalide prevents reduction of γ-aminobutyric acid levels and glutamic acid decarboxylase activity induced by 4-O-methylpyridoxine in mouse hippocampus. Life Sci. 2000, 67, 709–715. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.-M.; Fan, H.-R.; Ding, J.; Huang, C.; Deng, S.; Zhu, T.; Xu, T.-L.; Ge, W.-H.; Li, W.-G.; Li, F. Curcumol allosterically modulates GABA(A) receptors in a manner distinct from benzodiazepines. Sci. Rep. 2017, 7, 46654. [Google Scholar] [CrossRef]
- Ihara, M.; Tanaka, K.; Kai, K.; Hayashi, H.; Matsuda, K. Competitive chrodrimanin B interactions with rat brain GABAA receptors revealed by radioligand binding assays. Pestic. Biochem. Physiol. 2022, 183, 105074. [Google Scholar] [CrossRef]
- Kiss, E.; Kins, S.; Gorgas, K.; Orlik, M.; Fischer, C.; Endres, K.; Schlicksupp, A.; Kirsch, J.; Kuhse, J. Artemisinin-treatment in pre-symptomatic APP-PS1 mice increases gephyrin phosphorylation at Ser270: A modification regulating postsynaptic GABAAR density. Biol. Chem. 2021, 403, 73–87. [Google Scholar] [CrossRef]
- Reddy, D.S. Neurosteroids: Endogenous role in the human brain and therapeutic potentials. Prog. Brain Res. 2010, 186, 113–137. [Google Scholar]
- Reddy, D.S. Neurosteroid replacement therapy for catamenial epilepsy, postpartum depression and neuroendocrine disorders in women. J. Neuroendocrinol. 2022, 34, e13028. [Google Scholar] [CrossRef]
- Brown, R.C.; Cascio, C.; Papadopoulos, V. Pathways of Neurosteroid Biosynthesis in Cell Lines from Human Brain. J. Neurochem. 2000, 74, 847–859. [Google Scholar] [CrossRef]
- Zwain, I.H. Dehydroepiandrosterone: Biosynthesis and Metabolism in the Brain. Endocrinology 1999, 140, 880–887. [Google Scholar] [CrossRef]
- Gallegos-Saucedo, M.d.J.; Camargo-Hernández, G.; Castillo-Romero, A.; Ramírez-Herrera, M.A.; Bañuelos-Pineda, J.; Pereira-Suárez, A.L.; Hernández-Chávez, A.; Hernández-Hernández, L. GABAergic system’s Injuries Induced by Sodium Sulfite in Caenorhabditis elegans Were Prevented by the Anti-Oxidative Properties of Dehydroepiandrosterone Sulfate. Neurotox. Res. 2020, 38, 447–460. [Google Scholar] [CrossRef] [PubMed]
- Golub, V.; Ramakrishnan, S.; Reddy, D.S. Isobolographic analysis of adjunct antiseizure activity of the FDA-approved cannabidiol with neurosteroids and benzodiazepines in adult refractory focal onset epilepsy. Exp. Neurol. 2023, 360, 114294. [Google Scholar] [CrossRef] [PubMed]
- Abramova, V.; Leal Alvarado, V.; Hill, M.; Smejkalova, T.; Maly, M.; Vales, K.; Dittert, I.; Bozikova, P.; Kysilov, B.; Hrcka Krausova, B.; et al. Effects of Pregnanolone Glutamate and Its Metabolites on GABA(A) and NMDA Receptors and Zebrafish Behavior. ACS Chem. Neurosci. 2023, 14, 1870–1883. [Google Scholar] [CrossRef] [PubMed]
- Neufeld, P.M.; Nettersheim, R.A.; Matschke, V.; Vorgerd, M.; Stahlke, S.; Theiss, C. Unraveling the gut-brain axis: The impact of steroid hormones and nutrition on Parkinson’s disease. Neural Regen. Res. 2024, 19, 2219–2228. [Google Scholar] [CrossRef]
- Scuto, M.; Rampulla, F.; Reali, G.M.; Spanò, S.M.; Trovato Salinaro, A.; Calabrese, V. Hormetic Nutrition and Redox Regulation in Gut-Brain Axis Disorders. Antioxidants 2024, 13, 484. [Google Scholar] [CrossRef]
- Yoon, K.; Kim, N. Roles of Sex Hormones and Gender in the Gut Microbiota. J. Neurogastroenterol. Motil. 2021, 27, 314–325. [Google Scholar] [CrossRef]
- Goldstein, A.M.; Hofstra, R.M.W.; Burns, A.J. Building a brain in the gut: Development of the enteric nervous system. Clin. Genet. 2013, 83, 307–316. [Google Scholar] [CrossRef]
- Theis, V.; Theiss, C. Progesterone Effects in the Nervous System. Anat. Rec. 2019, 302, 1276–1286. [Google Scholar] [CrossRef]
- Jarras, H.; Bourque, M.; Poirier, A.A.; Morissette, M.; Coulombe, K.; Di Paolo, T.; Soulet, D. Neuroprotection and immunomodulation of progesterone in the gut of a mouse model of Parkinson’s disease. J. Neuroendocrinol. 2019, 32, e12782. [Google Scholar] [CrossRef]
- Stegemann, L.N.; Neufeld, P.M.; Hecking, I.; Vorgerd, M.; Matschke, V.; Stahlke, S.; Theiss, C. Progesterone: A Neuroprotective Steroid of the Intestine. Cells 2023, 12, 1206. [Google Scholar] [CrossRef]
- Krantis, A. GABA in the Mammalian Enteric Nervous System. Physiology 2000, 15, 284–290. [Google Scholar] [CrossRef] [PubMed]
- Bianchi, M.T.; Macdonald, R.L. Neurosteroids shift partial agonist activation of GABA(A) receptor channels from low- to high-efficacy gating patterns. J. Neurosci. 2003, 23, 10934–10943. [Google Scholar] [CrossRef] [PubMed]
- Diviccaro, S.; Caputi, V.; Cioffi, L.; Giatti, S.; Lyte, J.M.; Caruso, D.; O’Mahony, S.M.; Melcangi, R.C. Exploring the Impact of the Microbiome on Neuroactive Steroid Levels in Germ-Free Animals. Int. J. Mol. Sci. 2021, 22, 12551. [Google Scholar] [CrossRef] [PubMed]
- Kawahara, Y.; Mitsui, K.; Niwa, T.; Morimoto, N.; Kawaharada, S.; Katsumata, S. Translocator protein 18 kDa antagonist ameliorates stress-induced stool abnormality and abdominal pain in rodent stress models. Neurogastroenterol. Motil. 2018, 30, e13425. [Google Scholar] [CrossRef] [PubMed]
- Kong, Q.; Wang, B.; Tian, P.; Li, X.; Zhao, J.; Zhang, H.; Chen, W.; Wang, G. Daily intake of Lactobacillus alleviates autistic-like behaviors by ameliorating the 5-hydroxytryptamine metabolic disorder in VPA-treated rats during weaning and sexual maturation. Food Funct. 2021, 12, 2591–2604. [Google Scholar] [CrossRef] [PubMed]
- Bravo, J.A.; Forsythe, P.; Chew, M.V.; Escaravage, E.; Savignac, H.M.; Dinan, T.G.; Bienenstock, J.; Cryan, J.F. Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc. Natl. Acad. Sci. USA 2011, 108, 16050–16055. [Google Scholar] [CrossRef]
- Tsukahara, T.; Kawase, T.; Yoshida, H.; Bukawa, W.; Kan, T.; Toyoda, A. Preliminary investigation of the effect of oral supplementation of Lactobacillus plantarum strain SNK12 on mRNA levels of neurotrophic factors and GABA receptors in the hippocampus of mice under stress-free and sub-chronic mild social defeat-stressing conditions. Biosci. Biotechnol. Biochem. 2019, 83, 2345–2354. [Google Scholar]
- Varanoske, A.N.; McClung, H.L.; Sepowitz, J.J.; Halagarda, C.J.; Farina, E.K.; Berryman, C.E.; Lieberman, H.R.; McClung, J.P.; Pasiakos, S.M.; Philip Karl, J. Stress and the gut-brain axis: Cognitive performance, mood state, and biomarkers of blood-brain barrier and intestinal permeability following severe physical and psychological stress. Brain Behav. Immun. 2022, 101, 383–393. [Google Scholar] [CrossRef]
- Oh, N.S.; Joung, J.Y.; Lee, J.Y.; Song, J.G.; Oh, S.; Kim, Y.; Kim, H.W.; Kim, S.H. Glycated milk protein fermented with Lactobacillus rhamnosus ameliorates the cognitive health of mice under mild-stress condition. Gut Microbes 2020, 11, 1643–1661. [Google Scholar] [CrossRef]
- Lapmanee, S.; Supkamonseni, N.; Bhubhanil, S.; Treesaksrisakul, N.; Sirithanakorn, C.; Khongkow, M.; Namdee, K.; Surinlert, P.; Tipbunjong, C.; Wongchitrat, P. Stress-induced changes in cognitive function and intestinal barrier integrity can be ameliorated by venlafaxine and synbiotic supplementations. PeerJ 2024, 12, e17033. [Google Scholar] [CrossRef]
- Wang, N.; Wu, X.; Yang, Q.; Wang, D.; Wu, Z.; Wei, Y.; Cui, J.; Hong, L.; Xiong, L.; Qin, D. Qinglong Zhidong Decoction Alleviated Tourette Syndrome in Mice via Modulating the Level of Neurotransmitters and the Composition of Gut Microbiota. Front. Pharmacol. 2022, 13, 819872. [Google Scholar] [CrossRef] [PubMed]
- Luo, B.Y.; Liu, K.Q.; Fan, J.S. Bibliometric analysis of cerebral organoids and diseases in the last 10 years. Ibrain 2023, 9, 431–445. [Google Scholar] [CrossRef] [PubMed]
- Pazzin, D.B.; Previato, T.T.R.; Budelon Gonçalves, J.I.; Zanirati, G.; Xavier, F.A.C.; da Costa, J.C.; Marinowic, D.R. Induced Pluripotent Stem Cells and Organoids in Advancing Neuropathology Research and Therapies. Cells 2024, 13, 745. [Google Scholar] [CrossRef] [PubMed]
- Foliaki, S.T.; Schwarz, B.; Groveman, B.R.; Walters, R.O.; Ferreira, N.C.; Orrù, C.D.; Smith, A.; Wood, A.; Schmit, O.M.; Freitag, P.; et al. Neuronal excitatory-to-inhibitory balance is altered in cerebral organoid models of genetic neurological diseases. Mol. Brain 2021, 14, 156. [Google Scholar] [CrossRef]
- Kim, Y.; Yun, B.; Ye, B.S.; Kim, B.-Y. Generation of Alzheimer’s Disease Model Derived from Induced Pluripotent Stem Cells with APP Gene Mutation. Biomedicines 2024, 12, 1193. [Google Scholar] [CrossRef]
- Wulansari, N.; Darsono, W.H.W.; Woo, H.-J.; Chang, M.-Y.; Kim, J.; Bae, E.-J.; Sun, W.; Lee, J.-H.; Cho, I.-J.; Shin, H.; et al. Neurodevelopmental defects and neurodegenerative phenotypes in human brain organoids carrying Parkinson’s disease-linked DNAJC6 mutations. Sci. Adv. 2021, 7, eabb1540. [Google Scholar] [CrossRef]
- Mariani, J.; Coppola, G.; Zhang, P.; Abyzov, A.; Provini, L.; Tomasini, L.; Amenduni, M.; Szekely, A.; Palejev, D.; Wilson, M.; et al. FOXG1-Dependent Dysregulation of GABA/Glutamate Neuron Differentiation in Autism Spectrum Disorders. Cell 2015, 162, 375–390. [Google Scholar] [CrossRef]
- Yin, X.; Cai, Y.; Jia, N.; Hui, L.; Zhu, Z. Characterization of the human induced pluripotent stem cell (iPSC) SZGJMSi004-A line from a 28-year-old Han male patient with depression. Stem Cell Res. 2024, 77, 103428. [Google Scholar] [CrossRef]
- Kostka, K.; Sokolova, V.; El-Taibany, A.; Kruse, B.; Porada, D.; Wolff, N.; Prymak, O.; Seeds, M.C.; Epple, M.; Atala, A.J. The Application of Ultrasmall Gold Nanoparticles (2 nm) Functionalized with Doxorubicin in Three-Dimensional Normal and Glioblastoma Organoid Models of the Blood-Brain Barrier. Molecules 2024, 29, 2469. [Google Scholar] [CrossRef]
- Chen, C.; Ai, Q.-D.; Wei, Y.-H. Potential role of hydroxytyrosol in neuroprotection. J. Funct. Foods 2021, 82, 104506. [Google Scholar] [CrossRef]
- Małkiewicz, M.A.; Szarmach, A.; Sabisz, A.; Cubała, W.J.; Szurowska, E.; Winklewski, P.J. Blood-brain barrier permeability and physical exercise. J. Neuroinflamm. 2019, 16, 15. [Google Scholar] [CrossRef] [PubMed]
- Kim, G.H.; Kim, J.E.; Rhie, S.J.; Yoon, S. The Role of Oxidative Stress in Neurodegenerative Diseases. Exp. Neurobiol. 2015, 24, 325–340. [Google Scholar] [CrossRef] [PubMed]
- Grabska-Kobyłecka, I.; Szpakowski, P.; Król, A.; Książek-Winiarek, D.; Kobyłecki, A.; Głąbiński, A.; Nowak, D. Polyphenols and Their Impact on the Prevention of Neurodegenerative Diseases and Development. Nutrients 2023, 15, 3454. [Google Scholar] [CrossRef] [PubMed]
- Vacharasin, J.M.; Ward, J.A.; McCord, M.M.; Cox, K.; Imitola, J.; Lizarraga, S.B. Neuroimmune mechanisms in autism etiology—Untangling a complex problem using human cellular models. Oxf. Open Neurosci. 2024, 3, kvae003. [Google Scholar] [CrossRef] [PubMed]
- Kulkarni, S.K.; Bhutani, M.K.; Bishnoi, M. Antidepressant activity of curcumin: Involvement of serotonin and dopamine system. Psychopharmacology 2008, 201, 435–442. [Google Scholar] [CrossRef]
- Lee, Y.; Park, H.R.; Lee, J.Y.; Kim, J.; Yang, S.; Lee, C.; Kim, K.; Kim, H.S.; Chang, S.-C.; Lee, J. Low-dose curcumin enhances hippocampal neurogenesis and memory retention in young mice. Arch. Pharmacal Res. 2023, 46, 423–437. [Google Scholar] [CrossRef]
- Ye, J.; Fan, Y.; She, Y.; Shi, J.; Yang, Y.; Yuan, X.; Li, R.; Han, J.; Liu, L.; Kang, Y.; et al. Biomimetic Self-Propelled Asymmetric Nanomotors for Cascade-Targeted Treatment of Neurological Inflammation. Adv. Sci. 2024, 11, e2310211. [Google Scholar] [CrossRef]
- Youn, K.; Ho, C.-T.; Jun, M. Multifaceted neuroprotective effects of (−)-epigallocatechin-3-gallate (EGCG) in Alzheimer’s disease: An overview of pre-clinical studies focused on β-amyloid peptide. Food Sci. Hum. Wellness 2022, 11, 483–493. [Google Scholar] [CrossRef]
- Sergi, C.M. Epigallocatechin gallate for Parkinson’s disease. Clin. Exp. Pharmacol. Physiol. 2022, 49, 1029–1041. [Google Scholar] [CrossRef]
- Kelly, R.; Aviles, D.; Krisulevicz, C.; Hunter, K.; Krill, L.; Warshal, D.; Ostrovsky, O. The Effects of Natural Epigenetic Therapies in 3D Ovarian Cancer and Patient-Derived Tumor Explants: New Avenues in Regulating the Cancer Secretome. Biomolecules 2023, 13, 1066. [Google Scholar] [CrossRef]
- Wang, Y.; Wei, T.; Wang, Q.; Zhang, C.; Li, K.; Deng, J. Resveratrol’s neural protective effects for the injured embryoid body and cerebral organoid. BMC Pharmacol. Toxicol. 2022, 23, 47. [Google Scholar] [CrossRef] [PubMed]
- Visioli, F.; Rodríguez-Pérez, M.; Gómez-Torres, Ó.; Pintado-Losa, C.; Burgos-Ramos, E. Hydroxytyrosol improves mitochondrial energetics of a cellular model of Alzheimer’s disease. Nutr. Neurosci. 2020, 25, 990–1000. [Google Scholar] [CrossRef] [PubMed]
- Ercelik, M.; Tekin, C.; Tezcan, G.; Ak Aksoy, S.; Bekar, A.; Kocaeli, H.; Taskapilioglu, M.O.; Eser, P.; Tunca, B. Olea europaea Leaf Phenolics Oleuropein, Hydroxytyrosol, Tyrosol, and Rutin Induce Apoptosis and Additionally Affect Temozolomide against Glioblastoma: In Particular, Oleuropein Inhibits Spheroid Growth by Attenuating Stem-like Cell Phenotype. Life 2023, 13, 470. [Google Scholar] [CrossRef]
- Hou, T.-T.; Yang, H.-Y.; Wang, W.; Wu, Q.-Q.; Tian, Y.-R.; Jia, J.-P. Sulforaphane Inhibits the Generation of Amyloid-β Oligomer and Promotes Spatial Learning and Memory in Alzheimer’s Disease (PS1V97L) Transgenic Mice. J. Alzheimer’s Dis. 2018, 62, 1803–1813. [Google Scholar] [CrossRef]
- Wu, Y.; Cheng, J.; Qi, J.; Hang, C.; Dong, R.; Low, B.C.; Yu, H.; Jiang, X. Three-dimensional liquid metal-based neuro-interfaces for human hippocampal organoids. Nat. Commun. 2024, 15, 4047. [Google Scholar] [CrossRef]
- Park, S.B.; Koh, B.; Kwon, H.S.; Kim, Y.E.; Kim, S.S.; Cho, S.H.; Kim, T.Y.; Bae, M.A.; Kang, D.; Kim, C.H.; et al. Quantitative and Qualitative Analysis of Neurotransmitter and Neurosteroid Production in Cerebral Organoids during Differentiation. ACS Chem. Neurosci. 2023, 14, 3761–3771. [Google Scholar] [CrossRef]
- Scuto, M.; Ontario, M.L.; Salinaro, A.T.; Caligiuri, I.; Rampulla, F.; Zimbone, V.; Modafferi, S.; Rizzolio, F.; Canzonieri, V.; Calabrese, E.J.; et al. Redox modulation by plant polyphenols targeting vitagenes for chemoprevention and therapy: Relevance to novel anti-cancer interventions and mini-brain organoid technology. Free Radic. Biol. Med. 2022, 179, 59–75. [Google Scholar] [CrossRef]
- Scuto, M.; Trovato Salinaro, A.; Caligiuri, I.; Ontario, M.L.; Greco, V.; Sciuto, N.; Crea, R.; Calabrese, E.J.; Rizzolio, F.; Canzonieri, V.; et al. Redox modulation of vitagenes via plant polyphenols and vitamin D: Novel insights for chemoprevention and therapeutic interventions based on organoid technology. Mech. Ageing Dev. 2021, 199, 111551. [Google Scholar] [CrossRef]
- Carecho, R.; Marques, D.; Carregosa, D.; Masuero, D.; Garcia-Aloy, M.; Tramer, F.; Passamonti, S.; Vrhovsek, U.; Ventura, M.R.; Brito, M.A.; et al. Circulating low-molecular-weight (poly)phenol metabolites in the brain: Unveiling in vitro and in vivo blood–brain barrier transport. Food Funct. 2024, 15, 7812–7827. [Google Scholar] [CrossRef]
Nutrients | Pathways | Dose | Outcomes | References |
---|---|---|---|---|
↑ Estradiol and neprilysin | 4 mg for 7 days | Reverses cognitive decline and memory, ↓ Aβ deposition in mice. | [62] | |
↑ SIRT1 | 1–10 μM | Promotes healthy ageing through ERα activation and ↑ oestrogenic. | [63] | |
50–100 μM | Represses ERα activation and ↑ antioestrogenic. | |||
RSV | ↑ CREB, ↑ StAR ↑ MAPK/ERK 1/2 | 0.1 to 10 μg/mL | ↓ ROS content and ↑ estradiol and progesterone levels. Improves steroidogenesis activity in human granulosa cells dose dependently. | [67] |
↑ caspase 3, ↓ AKT | 50–100 μg/mL | ↑ ROS content and p27 and p21, ↓ cyclin D2. | ||
↓ DHEA ↓ androstenedione ↓ 11-deoxicortisol | 10 μM | Inhibits steroidogenesis in adrenocortical cells. The intake of this polyphenol at high doses by women who are at early stages of pregnancy is not recommended. | [69] | |
↓ SRD5A1 ↓ AKR1C9 ↓ RDH2 | 100 μM | Direct inhibitory effects on neurosteroidogenic enzymes such SRD5A1, AKR1C9 and RDH2 to regulate neurosteroids in the rat brain. | [70] | |
↑ adrenic acid, docosahexaenoic and eicosapentaenoic acids ↓ F4-neuroprostanes ↓ F2-dihomo-isoprostanes | 200 mL | ↓ oxidative stress and DNA damage in the CNS and ↑ melatonin and HT after red wine intake in healthy volunteers. | [75] | |
RSV + L-carnosine | ↑ Allopregnanolone and 5α-androstanediol | RSV 20 mg/kg + L-carnosine 200 mg/kg/day | Alleviates the toxic effects of alkylating drugs and improves testis and sperm parameters in rats. | [71] |
RSV + Metformin | ↓ LH and FSH | RSV 20 mg/kg/+metformin 300 mg/kg/day | Improves hormone profile and ovarian follicular cell architecture in albino rats. | [72] |
RSV + Sertraline RSV | ↑ SIRT1 and AMPK ↑ Progesterone ↑ allopregnanolone ↑ HPA ↓ androstenedione ↓ DHEA and DHEAS | RSV 20 and 40 mg/kg + sertraline 15 mg/kg 1000 mg | Antagonizes the decrease of progesterone and allopregnanolone levels and attenuates HPA dysfunction by improving behavioral deficits in the prefrontal cortex and hippocampus of stressed mice. ↓ serum levels of the androgen precursors androstenedione, DHEA and DHEAS in middle-aged men with metabolic syndrome after 4 months. | [73] [74] |
Nutrients | Pathways | Dose | Outcomes | References |
---|---|---|---|---|
CUR | ↓ TNF-α, IL-β1, IL-6 | 100 mg daily | Improves cognitive performance and regulates dopamine and norepinephrine levels in different brain areas of ovariectomized rats. | [78] |
↓ TLR4/MyD88/TRAF-6/NF-κB | 100 mg/kg once daily | Attenuates boldenone-induced neurobehavioral disturbances, restores antioxidant balance and represses neuroinflammation. | [79] | |
↑ GLUT4 and PTEN ↓ Testosterone, IRS1 ↓ PI3K and AKT | 200 mg/kg | Modulates serum hormone levels (e.g., 17 β-estradiol, follicle stimulating hormone, luteinizing hormone, progesterone and testosterone in PCOS. | [82] | |
↑ SOD, CAT and GPx ↑ PARP ↓ NF-κB | 80 mg/kg | Represses oxidative stress through a reduction in lipid peroxidation products and improves semen quality and testosterone hormone levels in rats. | [83] | |
Curcuméga® + Gabolysat® + Glutamine | ↓ CXCL1, TNFα and IL1β ↑ IL-10 | Curcuméga® 500 or 100 mg/kg + Gabolysat® 30 mg/kg by oral gavage | Reduces gut barrier disruption and inflammatory responses in murine models of IBS. | [80] |
CUR + Lycopene | ↓ testosterone, DHT and E2 ↓ IL-1β, IL-6 and TNF-α | CUR 2.4 mg/kg + lycopene 12.5 mg/kg | Attenuates benign prostate hyperplasia and inflammatory process in vivo. | [81] |
CUR + Placebo | ↓DHEA ↓FPG | 500 mg 3 times daily | Improves hyperandrogenemia and hyperglycemia in patients with PCOS. | [84] |
CUR + Teopolioside | Not specified | CUR 75 mg + teopolioside 35 mg | Enhances symptoms associated with hyperandrogenism in women with PCOS after 12-weeks. | [85] |
Nutrients | Pathways | Dose | Outcomes | References |
---|---|---|---|---|
SFN | ↑ 3α-HSD ↑ DHT ↓ testosterone | 10 mg/kg | Enhances 3α-HSDs in the liver and the degradation of DHT to block androgenic alopecia in murine hepatocytes and in rodents. | [88] |
SFN + 17β estradiol | ↑ Nrf2 ↑ GSH, HO-1, SOD, CAT, Trx and NQO1 | 10–50 nM | Inhibits oxidative damage, ROS production and 8-OHdG levels in cardiomyocytes. | [89] |
SFN + honokiol | ↑ Nrf2 ↑ Sirt1 | 1 μM | Regulates the oxidant/antioxidant environment for the control of testosterone homeostasis in aging Leydig cells. | [90] |
SFN + Vitamin D | ↑ MAPK/ERK ↓ VEGF ↓ TGF-β | 1 or 10 μM | Neuroprotection and antioxidant and anti-inflammatory effects in age-related macular degeneration in vitro. | [91] |
↑ JNK/MAPK ↑ Nrf2 ↑ Bax ↓ Bcl-2 | SFN 4, and 8 µM + Vitamin D 16 nM | Induces cytotoxicity by activating oxidative stress, DNA damage, and autophagy in prostate cancer in vitro | [92] |
Nutrients | Pathways | Dose | Outcomes | References |
---|---|---|---|---|
↑ Nrf2 ↑ HO-1 ↑ GSH, SOD and catalase ↓ NF-κB | 10 mg/kg | Modulates oxidative stress and neuroinflammation in the bladder and spinal cord in order to prevent or slow AD and PD in rodents. | [95,96,97] | |
HD | ↑ Nrf2 ↑ GSH, HO-1, SOD, CAT, Trx and NQO1 | 250 mg/kg | Neuroprotective action, ↑ lifespan and stress resistance and ↓ neurotoxic aggregates of misfolded α-synuclein in dopaminergic neurons of transgenic PD models. | [98,99] |
Not specified | 3 g twice daily | Enhances cognitive function, specifically memory, attention, reaction time and executive function in middle-aged and older adults after 12 weeks. | [101] | |
↑ p-ERK, PKA, p-AKT, and ZAG | 20 mg/kg | ↑ plasma testosterone and its metabolite testosterone glucuronide, ↑ L-carnitine and its propionyl-L-carnitine, ↑ beneficial gut bacteria and ↓ bile acids and improves spermatogenesis and semen quality after 2 months. | [102] |
Nutrients | Pathways | Dose | Outcomes | References |
---|---|---|---|---|
EGCG | ↓ PKA/PKC ↓ P450scc | 20 μg/mL | Reverses the inhibitory effect on 22(R)-hydroxycholesterol, androstenedione and P450scc function, suggesting that inhibition is dose-dependent. | [104] |
100 μg/mL | Blocks testosterone release in rat Leydig cells. Regulates 17β-HSD and leads to the reduction of cellular steroidogenic capacity. | |||
↓ 11β-HSD1 | 25–100 µM | Inhibits the cortisol producing enzyme 11β-HSD1 dose dependently in vitro and in silico. | [107] | |
↑ GABA | 50–200 μg i.c.v. | Attenuates stress behavior and plasma corticosterone concentration by inducing anti-anxiety, sedative and hypnotic effects in a dose-dependent manner. | [108] | |
↑ PKA/CREB | 5 μM and 10 μM | ↑ StAR expression and progesterone production in human granulosa cells. | [109] | |
↑ SOD ↓ IL-6 and TNF-α | 25 mg | ↑ Antioxidant defense system to block oxidative stress and neuroinflammatory response in aged albino rats. | [110] | |
↑ DHEA | 100 mg | Strengthens systemic immunity by enhancing cellular immune response in animals. | ||
EGCG + Caffeine | Not specified | EGCG 0.1 and 0.2 mM + caffeine 10–30 mM | ↓ total lipids, triglycerides and cholesterol in C. elegans dose-dependently. | [111] |
EGCG + Vitamin D | ↓ AGEs | EGCG 120 μM + vitamin D 0.1 μM | Exerts antiglycation ability by decreasing AGEs, ROS overproduction, DNA damage and cytotoxicity in PCOS in vitro and in silico. | [112] |
EGCG + ferulic acid | ↑ SOD1, GPx1 ↑ ADAM10 ↑ α-secretase ↓ β-secretase ↓ BACE1 ↓ TNF-α and IL-1β | 30 mg/kg each once daily p.o. | Inhibits oxidative stress and neuroinflammation, reverts cognitive impairment and mitigates synaptotoxicity and β-amyloid deposits in AD transgenic mice after 3 months. | [113] |
EGCG + vitamin D + D-chiro-inositol | Not specified | EGCG 300 mg + vitamin D 50 mg + D-chiro-inositol 50 mg in 2 pills daily | ↓ the time required to perform surgery and bleeding during surgery without affecting liver function after 3 months in women with uterine fibroids. | [114] |
Nutrients | Pathways | Dose | Outcomes | References |
---|---|---|---|---|
Vitamin D | ↑ Nrf2, HO-1, Sirt1 ↓ NF-κB, TNF-α, IL-1β | 100 μg/kg | Neuroprotection and improved neuronal synapse and memory, was found to abrogate Aβ amyloid production in a rodent model of AD after 4 weeks. | [122] |
Vitamin D + Prednisolone | ↑ CYP24A1 ↑ IκB ↓ NF-κB | Vitamin D 1000 IU/kg + prednisolone 5 mg/kg | Prevents and regulates prednisolone-induced neurotoxicity and behavioral disturbances by reducing ROS and inflammation, exerting antidepressant-like effects in rats after 30 days. | [123] |
Vitamin D + Placebo | ↓ IL-1β, IL-6 and hs-CRP | 50,000 IU 2 wks−1 | Improves depressive symptoms in patients after eight weeks. | [124] |
Nutrients | Pathways | Dose | Outcomes | References |
---|---|---|---|---|
Omega-3 | ↑ DHP ↑ THDOC ↑ isopregnanolone | DHA % 22:6n-3 EPA % 20:5n-3 | DHA deficiency contributes to HPA axis hyperactivity. ↓ DHA correlate with ↑ DHP levels in psychiatric patients, while ↓ DHA correlate ↑ THDOC and isopregnanolone levels in healthy subjects. | [127] |
↑ BDNF ↓ TXB | 2400 mg | Enhances BDNF and reduces TXB levels in children and adolescents with depressive disorder after 12 weeks. | [129] | |
↑ KYN/TRP ↑ SER | 2400 mg | ↑ kynurenine/tryptophan ratio in depressed children and adolescents after 12-weeks. | [130] | |
Omega-3 + Vitamin D | Not specified | Omega-3 750 mg + vitamin D 2000 IU capsules per day | Improves core symptoms in children with ASD after a 24-month follow-up period. | [131] |
Nutrients | Pathways | Dose | Outcomes | References |
---|---|---|---|---|
RSV-loaded with gold nanoparticles | ↑ 3α-HSD ↑ DHT ↓ testosterone | 10 mg/kg | Prevents 17β-estradiol/ERα-induced neuroglobin accumulation and induced apoptosis in cancer cells. | [136] |
Zinc oxide–RSV nanoparticles | ↑ SOD ↓ MAD | 10–50 nM | Attenuates the harmful side effects of levofloxacin in rats. | [137] |
CUR-loaded with T807-modified nanoparticles | ↑ Nrf2 ↑ Sirt1 | 5 mg/kg | Crosses the BBB by improving its permeation into the brain. ↓ tau protein and apoptosis in neurons and in vivo. | [138] |
CUR-loaded lipid–core nanocapsules | ↓ TNF-α, IL-6, IL-1β and IFN-γ | 1 or 10 mg/kg | Neuroprotection by reducing Aβ1-42-induced inflammatory cytokines in serum and in the prefrontal cortex and hippocampus of aged mice. | [139] |
Theracurmin® + Placebo | Not specified | 90 mg twice daily | ↑ memory and attention in middle-aged and non-demented adults. Prevents or delays AD progression in non-demented middle-aged and older adults after 18 months. | [140] |
CurQfen® | ↑ BDNF ↓ IL-6 ↓ TNF-α | 400 mg × 2/day | Enhances BBB permeability and brain bioavailability. Attenuates AD progression and improves locomotor and cognitive functions in patients with moderate dementia after 6 months. | [141] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Scuto, M.; Majzúnová, M.; Torcitto, G.; Antonuzzo, S.; Rampulla, F.; Di Fatta, E.; Trovato Salinaro, A. Functional Food Nutrients, Redox Resilience Signaling and Neurosteroids for Brain Health. Int. J. Mol. Sci. 2024, 25, 12155. https://doi.org/10.3390/ijms252212155
Scuto M, Majzúnová M, Torcitto G, Antonuzzo S, Rampulla F, Di Fatta E, Trovato Salinaro A. Functional Food Nutrients, Redox Resilience Signaling and Neurosteroids for Brain Health. International Journal of Molecular Sciences. 2024; 25(22):12155. https://doi.org/10.3390/ijms252212155
Chicago/Turabian StyleScuto, Maria, Miroslava Majzúnová, Gessica Torcitto, Silvia Antonuzzo, Francesco Rampulla, Eleonora Di Fatta, and Angela Trovato Salinaro. 2024. "Functional Food Nutrients, Redox Resilience Signaling and Neurosteroids for Brain Health" International Journal of Molecular Sciences 25, no. 22: 12155. https://doi.org/10.3390/ijms252212155
APA StyleScuto, M., Majzúnová, M., Torcitto, G., Antonuzzo, S., Rampulla, F., Di Fatta, E., & Trovato Salinaro, A. (2024). Functional Food Nutrients, Redox Resilience Signaling and Neurosteroids for Brain Health. International Journal of Molecular Sciences, 25(22), 12155. https://doi.org/10.3390/ijms252212155