The HicAB System: Characteristics and Biological Roles of an Underappreciated Toxin-Antitoxin System
Abstract
:1. Introduction
2. Type II HicAB System
2.1. HicA Toxins
2.2. HicB Antitoxins
2.3. HicAB Complexes
3. Regulation of hicAB Loci Expression
4. Biological Role of HicAB Systems
4.1. Biofilm Formation
4.2. Bacterial Persistence
4.3. Virulence
4.4. Phage Defense
5. HicAB Systems in MGEs
5.1. Plasmidial HicAB Systems
5.2. HicAB Systems in Bacteriophages
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Van Melderen, L. Toxin–Antitoxin Systems: Why so Many, What For? Curr. Opin. Microbiol. 2010, 13, 781–785. [Google Scholar] [CrossRef] [PubMed]
- Pandey, D.P. Toxin-Antitoxin Loci Are Highly Abundant in Free-Living but Lost from Host-Associated Prokaryotes. Nucleic Acids Res. 2005, 33, 966–976. [Google Scholar] [CrossRef] [PubMed]
- Díaz-Orejas, R.; Espinosa, M.; Yeo, C.C. The Importance of the Expendable: Toxin–Antitoxin Genes in Plasmids and Chromosomes. Front. Microbiol. 2017, 8, 1479. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Arriaga, A.M.; Chan, W.T.; Espinosa, M.; Díaz-Orejas, R. Conditional Activation of Toxin-Antitoxin Systems: Postsegregational Killing and Beyond. Microbiol. Spectr. 2014, 2. [Google Scholar] [CrossRef]
- Hayes, F.; Van Melderen, L. Toxins-Antitoxins: Diversity, Evolution and Function. Crit. Rev. Biochem. Mol. Biol. 2011, 46, 386–408. [Google Scholar] [CrossRef]
- Jurėnas, D.; Fraikin, N.; Goormaghtigh, F.; Van Melderen, L. Biology and Evolution of Bacterial Toxin–Antitoxin Systems. Nat. Rev. Microbiol. 2022, 20, 335–350. [Google Scholar] [CrossRef]
- Leplae, R.; Geeraerts, D.; Hallez, R.; Guglielmini, J.; Drèze, P.; Van Melderen, L. Diversity of Bacterial Type II Toxin–Antitoxin Systems: A Comprehensive Search and Functional Analysis of Novel Families. Nucleic Acids Res. 2011, 39, 5513–5525. [Google Scholar] [CrossRef]
- Guan, J.; Chen, Y.; Goh, Y.-X.; Wang, M.; Tai, C.; Deng, Z.; Song, J.; Ou, H.-Y. TADB 3.0: An Updated Database of Bacterial Toxin–Antitoxin Loci and Associated Mobile Genetic Elements. Nucleic Acids Res. 2024, 52, D784–D790. [Google Scholar] [CrossRef]
- Turnbull, K.J.; Gerdes, K. HIcA Toxin of EScherichia Coli Derepresses HicAB Transcription to Selectively Produce HIcB Antitoxin. Mol. Microbiol. 2017, 104, 781–792. [Google Scholar] [CrossRef]
- Fraikin, N.; Rousseau, C.J.; Goeders, N.; Van Melderen, L. Reassessing the Role of the Type II MqsRA Toxin-Antitoxin System in Stress Response and Biofilm Formation: mqsA Is Transcriptionally Uncoupled from mqsR. mBio 2019, 10, e02678-19. [Google Scholar] [CrossRef]
- Harms, A.; Brodersen, D.E.; Mitarai, N.; Gerdes, K. Toxins, Targets, and Triggers: An Overview of Toxin-Antitoxin Biology. Mol. Cell 2018, 70, 768–784. [Google Scholar] [CrossRef] [PubMed]
- Ramisetty, B.C.M. Regulation of Type II Toxin-Antitoxin Systems: The Translation-Responsive Model. Front. Microbiol. 2020, 11, 895. [Google Scholar] [CrossRef] [PubMed]
- Blower, T.R.; Salmond, G.P.; Luisi, B.F. Balancing at Survival’s Edge: The Structure and Adaptive Benefits of Prokaryotic Toxin–Antitoxin Partners. Curr. Opin. Struct. Biol. 2011, 21, 109–118. [Google Scholar] [CrossRef] [PubMed]
- Park, S.J.; Son, W.S.; Lee, B.-J. Structural Overview of Toxin–Antitoxin Systems in Infectious Bacteria: A Target for Developing Antimicrobial Agents. Biochim. Biophys. Acta (BBA)—Proteins Proteom. 2013, 1834, 1155–1167. [Google Scholar] [CrossRef] [PubMed]
- Jurėnas, D.; Garcia-Pino, A.; Van Melderen, L. Novel Toxins from Type II Toxin-Antitoxin Systems with Acetyltransferase Activity. Plasmid 2017, 93, 30–35. [Google Scholar] [CrossRef]
- Mhlanga-Mutangadura, T.; Morlin, G.; Smith, A.L.; Eisenstark, A.; Golomb, M. Evolution of the Major Pilus Gene Cluster of Haemophilus influenzae. J. Bacteriol. 1998, 180, 4693–4703. [Google Scholar] [CrossRef]
- Schmidt, O.; Schuenemann, V.J.; Hand, N.J.; Silhavy, T.J.; Martin, J.; Lupas, A.N.; Djuranovic, S. prlF and yhaV Encode a New Toxin–Antitoxin System in Escherichia coli. J. Mol. Biol. 2007, 372, 894–905. [Google Scholar] [CrossRef]
- Fraikin, N.; Goormaghtigh, F.; Van Melderen, L. Type II Toxin-Antitoxin Systems: Evolution and Revolutions. J. Bacteriol. 2020, 202, e00763-19. [Google Scholar] [CrossRef]
- Kamruzzaman, M.; Wu, A.Y.; Iredell, J.R. Biological Functions of Type II Toxin-Antitoxin Systems in Bacteria. Microorganisms 2021, 9, 1276. [Google Scholar] [CrossRef]
- Makarova, K.S.; Grishin, N.V.; Koonin, E.V. The HicAB Cassette, a Putative Novel, RNA-Targeting Toxin-Antitoxin System in Archaea and Bacteria. Bioinformatics 2006, 22, 2581–2584. [Google Scholar] [CrossRef]
- Jørgensen, M.G.; Pandey, D.P.; Jaskolska, M.; Gerdes, K. HicA of Escherichia coli Defines a Novel Family of Translation-Independent mRNA Interferases in Bacteria and Archaea. J. Bacteriol. 2009, 191, 1191–1199. [Google Scholar] [CrossRef] [PubMed]
- Hou, B.; Wang, C.-Y.; Li, S.-W.; Zhou, L.-J.; Che, Y.-L.; Chen, Q.-Y. Effects of Toxin-Antitoxin System HicAB on Biofilm Formation by Extraintestinal Pathogenic E. coli. Curr. Microbiol. 2023, 80, 50. [Google Scholar] [CrossRef] [PubMed]
- Xie, Z.; Qi, F.; Merritt, J. Development of a Tunable Wide-Range Gene Induction System Useful for the Study of Streptococcal Toxin-Antitoxin Systems. Appl. Environ. Microbiol. 2013, 79, 6375–6384. [Google Scholar] [CrossRef] [PubMed]
- Butt, A.; Müller, C.; Harmer, N.; Titball, R.W. Identification of Type II Toxin-Antitoxin Modules in Burkholderia Pseudomallei. FEMS Microbiol. Lett. 2013, 338, 86–94. [Google Scholar] [CrossRef] [PubMed]
- Butt, A.; Higman, V.A.; Williams, C.; Crump, M.P.; Hemsley, C.M.; Harmer, N.; Titball, R.W. The HicA Toxin from Burkholderia Pseudomallei Has a Role in Persister Cell Formation. Biochem. J. 2014, 459, 333–344. [Google Scholar] [CrossRef]
- Bibi-Triki, S.; Li De La Sierra-Gallay, I.; Lazar, N.; Leroy, A.; Van Tilbeurgh, H.; Sebbane, F.; Pradel, E. Functional and Structural Analysis of HicA3-HicB3, a Novel Toxin-Antitoxin System of Yersinia Pestis. J. Bacteriol. 2014, 196, 3712–3723. [Google Scholar] [CrossRef]
- Li, G.; Shen, M.; Lu, S.; Le, S.; Tan, Y.; Wang, J.; Zhao, X.; Shen, W.; Guo, K.; Yang, Y.; et al. Identification and Characterization of the HicAB Toxin-Antitoxin System in the Opportunistic Pathogen Pseudomonas Aeruginosa. Toxins 2016, 8, 113. [Google Scholar] [CrossRef]
- Kim, D.-H.; Kang, S.-M.; Park, S.J.; Jin, C.; Yoon, H.-J.; Lee, B.-J. Functional Insights into the Streptococcus Pneumoniae HicBA Toxin–Antitoxin System Based on a Structural Study. Nucleic Acids Res. 2018, 46, 6371–6386. [Google Scholar] [CrossRef]
- Xia, K.; Bao, H.; Zhang, F.; Linhardt, R.J.; Liang, X. Characterization and Comparative Analysis of Toxin–Antitoxin Systems in Acetobacter Pasteurianus. J. Ind. Microbiol. Biotechnol. 2019, 46, 869–882. [Google Scholar] [CrossRef]
- Xia, K.; Han, C.; Xu, J.; Liang, X. Toxin-Antitoxin HicAB Regulates the Formation of Persister Cells Responsible for the Acid Stress Resistance in Acetobacter Pasteurianus. Appl. Microbiol. Biotechnol. 2021, 105, 725–739. [Google Scholar] [CrossRef]
- Thomet, M.; Trautwetter, A.; Ermel, G.; Blanco, C. Characterization of HicAB Toxin-Antitoxin Module of Sinorhizobium Meliloti. BMC Microbiol. 2019, 19, 10. [Google Scholar] [CrossRef] [PubMed]
- Potnis, A.A.; Raghavan, P.S.; Shelke, A.; Nikam, T.D.; Rajaram, H. Comparative Analysis of MazEF and HicAB Toxin–Antitoxin Systems of the Cyanobacterium, Anabaena sp. PCC7120. FEMS Microbiol. Lett. 2017, 364, fnw279. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.-P.; Feng, H.-Z.; Wang, Q.; Kempher, M.L.; Quan, S.-W.; Tao, X.; Niu, S.; Wang, Y.; Feng, H.-Y.; He, Y.-X. Bacterial Type II Toxin-Antitoxin Systems Acting through Post-Translational Modifications. Comput. Struct. Biotechnol. J. 2021, 19, 86–93. [Google Scholar] [CrossRef] [PubMed]
- Germain, E.; Castro-Roa, D.; Zenkin, N.; Gerdes, K. Molecular Mechanism of Bacterial Persistence by HipA. Mol. Cell 2013, 52, 248–254. [Google Scholar] [CrossRef]
- Harms, A.; Stanger, F.V.; Scheu, P.D.; de Jong, I.G.; Goepfert, A.; Glatter, T.; Gerdes, K.; Schirmer, T.; Dehio, C. Adenylylation of Gyrase and Topo IV by FicT Toxins Disrupts Bacterial DNA Topology. Cell Rep. 2015, 12, 1497–1507. [Google Scholar] [CrossRef]
- Yeo, C.C. GNAT Toxins of Bacterial Toxin–Antitoxin Systems: Acetylation of Charged tRNAs to Inhibit Translation. Mol. Microbiol. 2018, 108, 331–335. [Google Scholar] [CrossRef]
- Jurėnas, D.; Van Melderen, L. The Variety in the Common Theme of Translation Inhibition by Type II Toxin–Antitoxin Systems. Front. Genet. 2020, 11, 262. [Google Scholar] [CrossRef]
- Chan, W.T.; Espinosa, M.; Yeo, C.C. Keeping the Wolves at Bay: Antitoxins of Prokaryotic Type II Toxin-Antitoxin Systems. Front. Mol. Biosci. 2016, 3, 9. [Google Scholar] [CrossRef]
- Manav, M.C.; Turnbull, K.J.; Jurėnas, D.; Garcia-Pino, A.; Gerdes, K.; Brodersen, D.E. The E. coli HicB Antitoxin Contains a Structurally Stable Helix-Turn-Helix DNA Binding Domain. Structure 2019, 27, 1675–1685. [Google Scholar] [CrossRef]
- Winter, A.J.; Williams, C.; Isupov, M.N.; Crocker, H.; Gromova, M.; Marsh, P.; Wilkinson, O.J.; Dillingham, M.S.; Harmer, N.J.; Titball, R.W.; et al. The Molecular Basis of Protein Toxin HicA–Dependent Binding of the Protein Antitoxin HicB to DNA. J. Biol. Chem. 2018, 293, 19429–19440. [Google Scholar] [CrossRef]
- Ross, B.N.; Micheva-Viteva, S.; Hong-Geller, E.; Torres, A.G. Evaluating the Role of Burkholderia pseudomallei K96243 Toxins BPSS0390, BPSS0395, and BPSS1584 in Persistent Infection. Cell. Microbiol. 2019, 21, e13096. [Google Scholar] [CrossRef] [PubMed]
- LeRoux, M.; Culviner, P.H.; Liu, Y.J.; Littlehale, M.L.; Laub, M.T. Stress Can Induce Transcription of Toxin-Antitoxin Systems without Activating Toxin. Mol. Cell 2020, 79, 280–292.e8. [Google Scholar] [CrossRef] [PubMed]
- Song, S.; Wood, T.K. Toxin/Antitoxin System Paradigms: Toxins Bound to Antitoxins Are Not Likely Activated by Preferential Antitoxin Degradation. Adv. Biosys. 2020, 4, 1900290. [Google Scholar] [CrossRef] [PubMed]
- Overgaard, M.; Borch, J.; Jørgensen, M.G.; Gerdes, K. Messenger RNA Interferase RelE Controls relBE Transcription by Conditional Cooperativity. Mol. Microbiol. 2008, 69, 841–857. [Google Scholar] [CrossRef]
- Garcia-Pino, A.; Balasubramanian, S.; Wyns, L.; Gazit, E.; De Greve, H.; Magnuson, R.D.; Charlier, D.; Van Nuland, N.A.J.; Loris, R. Allostery and Intrinsic Disorder Mediate Transcription Regulation by Conditional Cooperativity. Cell 2010, 142, 101–111. [Google Scholar] [CrossRef]
- Brown, B.L.; Lord, D.M.; Grigoriu, S.; Peti, W.; Page, R. The Escherichia coli Toxin MqsR Destabilizes the Transcriptional Repression Complex Formed between the Antitoxin MqsA and the mqsRA Operon Promoter. J. Biol. Chem. 2013, 288, 1286–1294. [Google Scholar] [CrossRef]
- Ruangprasert, A.; Maehigashi, T.; Miles, S.J.; Giridharan, N.; Liu, J.X.; Dunham, C.M. Mechanisms of Toxin Inhibition and Transcriptional Repression by Escherichia coli DinJ-YafQ. J. Biol. Chem. 2014, 289, 20559–20569. [Google Scholar] [CrossRef]
- Findlay Black, H.; Mastromatteo, S.; Sinha, S.; Ehrlich, R.L.; Nislow, C.; Chang Mell, J.; Redfield, R.J. A Competence-Regulated Toxin-Antitoxin System in Haemophilus Influenzae. PLoS ONE 2020, 15, e0217255. [Google Scholar] [CrossRef]
- Gerdes, K. Diverse Genetic Contexts of HicA Toxin Domains Propose a Role in Anti-Phage Defense. mBio 2024, 15, e03293-23. [Google Scholar] [CrossRef]
- Pradel, E.; Lemaître, N.; Merchez, M.; Ricard, I.; Reboul, A.; Dewitte, A.; Sebbane, F. New Insights into How Yersinia Pestis Adapts to Its Mammalian Host during Bubonic Plague. PLoS Pathog. 2014, 10, e1004029. [Google Scholar] [CrossRef]
- Bibek, G.C.; Zhou, P.; Wu, C. A New Method for Gene Deletion to Investigate Cell Wall Biogenesis in Fusobacterium Nucleatum. In The Bacterial Cell Wall; Ton-That, H., Ed.; Methods in Molecular Biology; Springer: New York, NY, USA, 2024; Volume 2727, pp. 69–82. ISBN 978-1-07-163490-5. [Google Scholar]
- Flemming, H.-C.; Wingender, J.; Szewzyk, U.; Steinberg, P.; Rice, S.A.; Kjelleberg, S. Biofilms: An Emergent Form of Bacterial Life. Nat. Rev. Microbiol. 2016, 14, 563–575. [Google Scholar] [CrossRef] [PubMed]
- Beloin, C.; Roux, A.; Ghigo, J.-M. Escherichia coli Biofilms. In Bacterial Biofilms; Romeo, T., Ed.; Current Topics in Microbiology and Immunology; Springer: BerlinBerlin/Heidelberg, Germany, 2008; Volume 322, pp. 249–289. ISBN 978-3-540-75417-6. [Google Scholar]
- Kolodkin-Gal, I.; Verdiger, R.; Shlosberg-Fedida, A.; Engelberg-Kulka, H. A Differential Effect of E. coli Toxin-Antitoxin Systems on Cell Death in Liquid Media and Biofilm Formation. PLoS ONE 2009, 4, e6785. [Google Scholar] [CrossRef] [PubMed]
- Ma, D.; Mandell, J.B.; Donegan, N.P.; Cheung, A.L.; Ma, W.; Rothenberger, S.; Shanks, R.M.Q.; Richardson, A.R.; Urish, K.L. The Toxin-Antitoxin MazEF Drives Staphylococcus Aureus Biofilm Formation, Antibiotic Tolerance, and Chronic Infection. mBio 2019, 10, e01658-19. [Google Scholar] [CrossRef] [PubMed]
- Kasari, V.; Kurg, K.; Margus, T.; Tenson, T.; Kaldalu, N. The Escherichia coli mqsR and ygiT Genes Encode a New Toxin-Antitoxin Pair. J. Bacteriol. 2010, 192, 2908–2919. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, H.; Hay, A.J.; Zhong, Z.; Zhu, J.; Kan, B. Functional RelBE-Family Toxin-Antitoxin Pairs Affect Biofilm Maturation and Intestine Colonization in Vibrio Cholerae. PLoS ONE 2015, 10, e0135696. [Google Scholar] [CrossRef]
- Chan, W.T.; Domenech, M.; Moreno-Córdoba, I.; Navarro-Martínez, V.; Nieto, C.; Moscoso, M.; García, E.; Espinosa, M. The Streptococcus Pneumoniae yefM-yoeB and relBE Toxin-Antitoxin Operons Participate in Oxidative Stress and Biofilm Formation. Toxins 2018, 10, 378. [Google Scholar] [CrossRef]
- Lemos, J.A.C.; Brown, T.A.; Abranches, J.; Burne, R.A. Characteristics of Streptococcus Mutans Strains Lacking the MazEF and RelBE Toxin–Antitoxin Modules. FEMS Microbiol. Lett. 2005, 253, 251–257. [Google Scholar] [CrossRef]
- Soo, V.W.C.; Wood, T.K. Antitoxin MqsA Represses Curli Formation Through the Master Biofilm Regulator CsgD. Sci. Rep. 2013, 3, 3186. [Google Scholar] [CrossRef]
- Ma, Q.; Wood, T.K. OmpA Influences Escherichia coli Biofilm Formation by Repressing Cellulose Production through the CpxRA Two-component System. Environ. Microbiol. 2009, 11, 2735–2746. [Google Scholar] [CrossRef]
- Fisher, R.A.; Gollan, B.; Helaine, S. Persistent Bacterial Infections and Persister Cells. Nat. Rev. Microbiol. 2017, 15, 453–464. [Google Scholar] [CrossRef]
- Goormaghtigh, F.; Fraikin, N.; Putrinš, M.; Hallaert, T.; Hauryliuk, V.; Garcia-Pino, A.; Sjödin, A.; Kasvandik, S.; Udekwu, K.; Tenson, T.; et al. Reassessing the Role of Type II Toxin-Antitoxin Systems in Formation of Escherichia coli Type II Persister Cells. mBio 2018, 9, e00640-18. [Google Scholar] [CrossRef] [PubMed]
- Holden, D.W.; Errington, J. Type II Toxin-Antitoxin Systems and Persister Cells. mBio 2018, 9, e01574-18. [Google Scholar] [CrossRef] [PubMed]
- Goormaghtigh, F.; Fraikin, N.; Putrinš, M.; Hauryliuk, V.; Garcia-Pino, A.; Udekwu, K.; Tenson, T.; Kaldalu, N.; Van Melderen, L. Reply to Holden and Errington, “Type II Toxin-Antitoxin Systems and Persister Cells”. mBio 2018, 9, e01838-18. [Google Scholar] [CrossRef] [PubMed]
- Sebbane, F.; Lemaître, N.; Sturdevant, D.E.; Rebeil, R.; Virtaneva, K.; Porcella, S.F.; Hinnebusch, B.J. Adaptive Response of Yersinia Pestis to Extracellular Effectors of Innate Immunity during Bubonic Plague. Proc. Natl. Acad. Sci. USA 2006, 103, 11766–11771. [Google Scholar] [CrossRef]
- Song, S.; Wood, T.K. A Primary Physiological Role of Toxin/Antitoxin Systems Is Phage Inhibition. Front. Microbiol. 2020, 11, 1895. [Google Scholar] [CrossRef]
- LeRoux, M.; Laub, M.T. Toxin-Antitoxin Systems as Phage Defense Elements. Annu. Rev. Microbiol. 2022, 76, 21–43. [Google Scholar] [CrossRef]
- Hazan, R.; Engelberg-Kulka, H. Escherichia coli mazEF-Mediated Cell Death as a Defense Mechanism That Inhibits the Spread of Phage P1. Mol. Genet. Genom. 2004, 272, 227–234. [Google Scholar] [CrossRef]
- Koga, M.; Otsuka, Y.; Lemire, S.; Yonesaki, T. Escherichia coli rnlA and rnlB Compose a Novel Toxin–Antitoxin System. Genetics 2011, 187, 123–130. [Google Scholar] [CrossRef]
- Bernheim, A.; Millman, A.; Ofir, G.; Meitav, G.; Avraham, C.; Shomar, H.; Rosenberg, M.M.; Tal, N.; Melamed, S.; Amitai, G.; et al. Prokaryotic Viperins Produce Diverse Antiviral Molecules. Nature 2021, 589, 120–124. [Google Scholar] [CrossRef]
- Dedrick, R.M.; Jacobs-Sera, D.; Bustamante, C.A.G.; Garlena, R.A.; Mavrich, T.N.; Pope, W.H.; Reyes, J.C.C.; Russell, D.A.; Adair, T.; Alvey, R.; et al. Prophage-Mediated Defence against Viral Attack and Viral Counter-Defence. Nat. Microbiol. 2017, 2, 16251. [Google Scholar] [CrossRef]
- Bustamante, P.; Iredell, J.R. Carriage of Type II Toxin-Antitoxin Systems by the Growing Group of IncX Plasmids. Plasmid 2017, 91, 19–27. [Google Scholar] [CrossRef] [PubMed]
- Freeman, K.G.; Lauer, M.J.; Jiang, D.; Roscher, J.; Sandler, S.; Mercado, N.; Fryberger, R.; Kovalski, J.; Lutz, A.R.; Hughes, L.E.; et al. Characterization of Mycobacteriophage Adephagia Cytotoxic Proteins. G3 Genes Genomes Genet. 2024, 14, jkae166. [Google Scholar] [CrossRef] [PubMed]
- Decewicz, P.; Dziewit, L.; Golec, P.; Kozlowska, P.; Bartosik, D.; Radlinska, M. Characterization of the Virome of Paracoccus spp. (Alphaproteobacteria) by Combined in Silico and in Vivo Approaches. Sci. Rep. 2019, 9, 7899. [Google Scholar] [CrossRef] [PubMed]
- Frock, A.D.; Montero, C.I.; Blumer-Schuette, S.E.; Kelly, R.M. Stationary Phase and Nutrient Levels Trigger Transcription of a Genomic Locus Containing a Novel Peptide (TM1316) in the Hyperthermophilic Bacterium Thermotoga Maritima. Appl. Environ. Microbiol. 2013, 79, 6637–6646. [Google Scholar] [CrossRef]
- Kashyap, S.; Sharma, P.; Capalash, N. Tobramycin Stress Induced Differential Gene Expression in Acinetobacter Baumannii. Curr. Microbiol. 2022, 79, 88. [Google Scholar] [CrossRef]
- Bustamante, P.; Iredell, J.R. The Roles of HicBA and a Novel Toxin–Antitoxin-like System, TsxAB, in the Stability of IncX4 Resistance Plasmids in Escherichia coli. J. Antimicrob. Chemother. 2019, 74, 553–556. [Google Scholar] [CrossRef]
- Gerdes, K.; Rasmussen, P.B.; Molin, S. Unique Type of Plasmid Maintenance Function: Postsegregational Killing of Plasmid-Free Cells. Proc. Natl. Acad. Sci. USA 1986, 83, 3116–3120. [Google Scholar] [CrossRef]
- Fraikin, N.; Van Melderen, L. Single-Cell Evidence for Plasmid Addiction Mediated by Toxin–Antitoxin Systems. Nucleic Acids Res. 2024, 52, 1847–1859. [Google Scholar] [CrossRef]
- Kamruzzaman, M.; Iredell, J. A ParDE-Family Toxin Antitoxin System in Major Resistance Plasmids of Enterobacteriaceae Confers Antibiotic and Heat Tolerance. Sci. Rep. 2019, 9, 9872. [Google Scholar] [CrossRef]
- Qi, Q.; Kamruzzaman, M.; Iredell, J.R. The higBA-Type Toxin-Antitoxin System in IncC Plasmids Is a Mobilizable Ciprofloxacin-Inducible System. mSphere 2021, 6, e0042421. [Google Scholar] [CrossRef]
- Ramisetty, B.C.M.; Santhosh, R.S. Horizontal Gene Transfer of Chromosomal Type II Toxin–Antitoxin Systems of Escherichia coli. FEMS Microbiol. Lett. 2016, 363, fnv238. [Google Scholar] [CrossRef] [PubMed]
- Li, A.; Yang, Y.; Miao, M.; Chavda, K.D.; Mediavilla, J.R.; Xie, X.; Feng, P.; Tang, Y.-W.; Kreiswirth, B.N.; Chen, L.; et al. Complete Sequences of Mcr-1 -Harboring Plasmids from Extended-Spectrum-β-Lactamase- and Carbapenemase-Producing Enterobacteriaceae. Antimicrob. Agents Chemother. 2016, 60, 4351–4354. [Google Scholar] [CrossRef] [PubMed]
- Long, X.; Li, J.; Yang, H.; Gao, Y.; Ma, J.; Zeng, X.; Tang, B. The Bla NDM-1 and Mcr-1 Genes Coexist in Escherichia coli Strain Isolated from Public Trash Cans. JAC-Antimicrob. Resist. 2024, 6, dlae132. [Google Scholar] [CrossRef] [PubMed]
- Mondal, A.H.; Khare, K.; Saxena, P.; Debnath, P.; Mukhopadhyay, K.; Yadav, D. A Review on Colistin Resistance: An Antibiotic of Last Resort. Microorganisms 2024, 12, 772. [Google Scholar] [CrossRef] [PubMed]
- Ni, S.; Li, B.; Tang, K.; Yao, J.; Wood, T.K.; Wang, P.; Wang, X. Conjugative Plasmid-Encoded Toxin–Antitoxin System PrpT/PrpA Directly Controls Plasmid Copy Number. Proc. Natl. Acad. Sci. USA 2021, 118, e2011577118. [Google Scholar] [CrossRef]
- Pope, W.H.; Ferreira, C.M.; Jacobs-Sera, D.; Benjamin, R.C.; Davis, A.J.; DeJong, R.J.; Elgin, S.C.R.; Guilfoile, F.R.; Forsyth, M.H.; Harris, A.D.; et al. Cluster K Mycobacteriophages: Insights into the Evolutionary Origins of Mycobacteriophage TM4. PLoS ONE 2011, 6, e26750. [Google Scholar] [CrossRef]
Organism | Biological Role | Reference |
---|---|---|
ExPEC | Biofilm formation: the ability of a ΔhicAB deletion mutant was significantly decreased, independent of curli formation. | [22] |
B. pseudomallei | Biofilm formation: hicA deletion reduced biofilm formation. Bacterial persistence: hicA overexpression increased the fraction of persister cell population that is tolerant to ciprofloxacin and ceftazidime. The deletion of hicAB in B. pseudomallei reduced the number of ciprofloxacin persisters, but not ceftazidime persisters. | [25,41] |
Yersinia pestis | Virulence: Y. pestis lacking hicB3 is attenuated for virulence; however, a ΔhicAB3 mutant is fully virulent, discarding a role of YpHicAB in virulence. | [26,50] |
Pseudomonas aeruginosa | Biofilm formation: deletion of hicAB had no effect on the biofilm formation. Virulence: hicAB deletion had no effect on virulence in a mice infection model. | [27] |
Several bacteria | Phage defense: bioinformatic analysis identified that hicA genes are occasionally closely associated with genes that could have anti-phage activity and it was proposed that they could work together against phage infections. | [49] |
Acetobacter pasteurianus | Bacterial persistence: HicAB regulates the formation of persister cells responsible for the acid stress resistance. | [30] |
Organism | Accession Number | TA Loci | MGE | Reference |
---|---|---|---|---|
Paracoccus phage vB_PbeS_Pben1 | MK291441 | pben1_p26 (hicA)/pben1_p25 (hicB) | Prophage | [75] |
Thermotoga maritima MSB8 | NC_000853 | TM_RS06645 (hicA)/TM_RS06650 (hicB) | Genomic island | [76] |
Pseudomonas aeruginosa PA1 | NC_022808 | PA1S_RS06915 (hicA)/PA1S_RS31585 (hicB) | Prophage | [27] |
Acinetobacter baumannii ATCC 17978 | NC_009085 | A1S_2020 (hicA)/A1S_2019 (hicB) | Prophage | [77] |
Burkholderia pseudomallei K96243 | NC_006351 | BPS_RS20815 (hicA)/BPS_RS20820 (hicB) | Prophage-IS/Tn | [24,25,41] |
Streptococcus pneumoniae TIGR4 | NC_003028 | SP_RS08870 (hicA)/SP_RS08865 (hicB) | IS/Tn | [28] |
Escherichia coli plasmid pJIE143 | JN194214 | hicA/hicB | Plasmid | [78] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Encina-Robles, J.; Pérez-Villalobos, V.; Bustamante, P. The HicAB System: Characteristics and Biological Roles of an Underappreciated Toxin-Antitoxin System. Int. J. Mol. Sci. 2024, 25, 12165. https://doi.org/10.3390/ijms252212165
Encina-Robles J, Pérez-Villalobos V, Bustamante P. The HicAB System: Characteristics and Biological Roles of an Underappreciated Toxin-Antitoxin System. International Journal of Molecular Sciences. 2024; 25(22):12165. https://doi.org/10.3390/ijms252212165
Chicago/Turabian StyleEncina-Robles, Josefa, Valeria Pérez-Villalobos, and Paula Bustamante. 2024. "The HicAB System: Characteristics and Biological Roles of an Underappreciated Toxin-Antitoxin System" International Journal of Molecular Sciences 25, no. 22: 12165. https://doi.org/10.3390/ijms252212165
APA StyleEncina-Robles, J., Pérez-Villalobos, V., & Bustamante, P. (2024). The HicAB System: Characteristics and Biological Roles of an Underappreciated Toxin-Antitoxin System. International Journal of Molecular Sciences, 25(22), 12165. https://doi.org/10.3390/ijms252212165