Detailed Pathophysiology of Minimal Change Disease: Insights into Podocyte Dysfunction, Immune Dysregulation, and Genetic Susceptibility
Abstract
:1. Introduction
1.1. Clinical Overview
1.2. Pathophysiology of MCD
1.2.1. Podocyte Dysfunction
1.2.2. Nephrin and the Slit Diaphragm
1.2.3. Clinical Implications
1.3. Immune Dysregulation
1.3.1. Immune Mechanisms in MCD
1.3.2. Cytokine Involvement
1.3.3. Clinical Relevance
1.4. Genetic Susceptibility
1.4.1. Genetic Factors in MCD
1.4.2. Impact of Genetic Variants
1.4.3. Implications for Personalized Medicine
1.5. Biomarkers in MCD
1.5.1. Current Treatment Challenges
1.5.2. Potential for Targeted Therapies
1.5.3. Clinical Trials and Future Directions
1.6. Future Directions in Precision Medicine
1.7. Expanding the Therapeutic Arsenal
1.8. Research Gaps and Future Studies
1.9. Gene–Environment Interactions
1.10. Mechanisms of Steroid Resistance
1.11. Long-Term Efficacy and Safety of Emerging Therapies
1.12. Novel Therapeutic Targets
1.13. Integration of Biomarkers into Clinical Practice
1.14. Comparative Analysis of MCD in Global Renal Biopsy Studies
1.15. Global Trends and Clinical Implications
2. Conclusions
Funding
Conflicts of Interest
References
- Avner, E.D.; Harmon, W.E.; Niaudet, P.; Yoshikawa, N.; Emma, F.; Goldstein, S.L. (Eds.) Pediatric Nephrology, 7th ed.; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Machado, J.R.; Rocha, L.P.; de Menezes Neves, P.D.M.; de Castro Cobô, E.; Silva, M.V.; Castellano, L.R.; Corrêa, R.R.M.; Reis, M.A. An Overview of Molecular Mechanism of Nephrotic Syndrome. Int. J. Nephrol. 2012, 2012, 937623. [Google Scholar] [CrossRef] [PubMed]
- Cara-Fuentes, G.; Clapp, W.L.; Johnson, R.J.; Garin, E.H. Pathogenesis of proteinuria in idiopathic minimal change disease: Molecular mechanisms. Pediatr. Nephrol. 2016, 31, 2179–2189. [Google Scholar] [CrossRef] [PubMed]
- Kakani, S.; Yardeni, T.; Poling, J.; Ciccone, C.; Niethamer, T.K.; Klootwijk, E.; Manoli, I.; Darvish, D.; Hoogstraten-Miller, S.; Zerfas, P.; et al. The Gne M712T Mouse as a Model for Human Glomerulopathy. Am. J. Pathol. 2012, 180, 1431–1440. [Google Scholar] [CrossRef] [PubMed]
- Hogan, J.; Radhakrishnan, J. The Treatment of Minimal Change Disease in Adults. J. Am. Soc. Nephrol. 2013, 24, 702–711. [Google Scholar] [CrossRef]
- Melvin, T.; Bennett, W. Management of Nephrotic Syndrome in Childhood. Drugs 1991, 42, 30–51. [Google Scholar] [CrossRef]
- DynaMed [Internet]. Dynamed.com. 2024. Available online: https://www.dynamed.com/condition/minimal-change-disease#GUID-7696237B-A946-4335-B43E-095830792AEB (accessed on 28 October 2024).
- Garg, P. A Review of Podocyte Biology. Am. J. Nephrol. 2018, 47 (Suppl. S1), 3–13. [Google Scholar] [CrossRef]
- Watts, A.J.B.; Keller, K.H.; Lerner, G.; Rosales, I.; Collins, A.B.; Sekulic, M.; Waikar, S.S.; Chandraker, A.; Riella, L.; Alexander, M.P.; et al. Discovery of Autoantibodies Targeting Nephrin in Minimal Change Disease Supports a Novel Autoimmune Etiology. J. Am. Soc. Nephrol. 2021, 33, 238–252. [Google Scholar] [CrossRef]
- Wernerson, A. Altered ultrastructural distribution of nephrin in minimal change nephrotic syndrome. Nephrol. Dial. Transplant. 2003, 18, 70–76. [Google Scholar] [CrossRef]
- Zhang, P.L.; Mahalingam, V.D.; Metcalf, B.D.; Al-Othman, Y.A.; Li, W.; Kanaan, H.D.; Herrera, G.A. Punctate IgG staining particles localize in the budding ballooning clusters of reactive foot processes in minimal change disease. Ultrastruct. Pathol. 2023, 48, 121–127. [Google Scholar] [CrossRef]
- Nagahama, K.; Maru, K.; Kanzaki, S.; Chai, H.L.; Nakai, T.; Miura, S.; Yamaguchi, A.; Yamanaka, S.; Nagashima, Y.; Aoki, I. Possible role of autoantibodies against nephrin in an experimental model of chronic graft-versus-host disease. Clin. Exp. Immunol. 2005, 141, 215–222. [Google Scholar] [CrossRef]
- Webendörfer, M.; Reinhard, L.; Stahl, R.A.K.; Wiech, T.; Mittrücker, H.-W.; Harendza, S.; Hoxha, E. Rituximab Induces Complete Remission of Proteinuria in a Patient With Minimal Change Disease and No Detectable B Cells. Front. Immunol. 2021, 11, 586012. [Google Scholar] [CrossRef] [PubMed]
- Mansur, A. Minimal-Change Disease Treatment & Management: Approach Considerations, Consultations, Diet and Activity. eMedicine [Internet]. 30 March 2023. Available online: https://emedicine.medscape.com/article/243348-treatment?form=fpf (accessed on 8 February 2023).
- Ruggenenti, P.; Ruggiero, B.; Cravedi, P.; Vivarelli, M.; Massella, L.; Marasà, M.; Chianca, A.; Rubis, N.; Ene-Iordache, B.; Rudnicki, M.; et al. Rituximab in Steroid-Dependent or Frequently Relapsing Idiopathic Nephrotic Syndrome. J. Am. Soc. Nephrol. 2014, 25, 850–863. [Google Scholar] [CrossRef] [PubMed]
- McDonald, R.A.; Eddy, A.A.; Hingorani, S.R.; Finn, L.S.; Kowalewska, J. Expression of nephrin in acquired forms of nephrotic syndrome in childhood. Pediatr. Nephrol. 2004, 19, 300–305. [Google Scholar] [CrossRef] [PubMed]
- Asma, H.; Narjes, B.A.; Senda, M.; Rihab, M.; Olfa, Z.; Wissal, S.; Azzabi, A.; Dorsaf, Z.; Yosra, G.; Asma, A.; et al. POS-449 Adult onset minimal change disease: Clinical characteristics, treatment and prognosis. Kidney Int. Rep. 2021, 6, S195. Available online: https://www.kireports.org/article/S2468-0249(21)00621-5/fulltext (accessed on 4 October 2024). [CrossRef]
- Medjeral-Thomas, N.R.; Lawrence, C.; Condon, M.; Sood, B.; Warwicker, P.; Brown, H.; Pattison, J.; Bhandari, S.; Barratt, J.; Turner, N.; et al. Randomized, Controlled Trial of Tacrolimus and Prednisolone Monotherapy for Adults with De Novo Minimal Change Disease. Clin. J. Am. Soc. Nephrol. CJASN 2020, 15, 209–218. [Google Scholar] [CrossRef]
- Ravani, P.; Bertelli, E.; Gill, S.; Ghiggeri, G.M. Clinical trials in minimal change disease. Nephrol. Dial. Transplant. 2017, 32 (Suppl. S1), 7–13. [Google Scholar] [CrossRef]
- Giannou, P.; Gakiopoulou, H.; Stambolliu, E.; Petras, D.; Chalkia, A.; Kapota, A.; Palamaris, K.; Hadziyannis, E.; Thomas, K.; Alexakou, Z.; et al. Urine Nephrin and Podocalyxin Reflecting Podocyte Damage and Severity of Kidney Disease in Various Glomerular Diseases—A Cross-Sectional Study. J. Clin. Med. 2024, 13, 3432. [Google Scholar] [CrossRef]
- Hayward, S.; Parmesar, K.; Welsh, G.I.; Suderman, M.; Saleem, M.A. Epigenetic Mechanisms and Nephrotic Syndrome: A Systematic Review. Biomedicines 2023, 11, 514. [Google Scholar] [CrossRef]
- Keskar, V.; Jamale, T.E.; Kulkarni, M.J.; Jagadish, P.K.; Fernandes, G.; Hase, N. Minimal-change disease in adolescents and adults: Epidemiology and therapeutic response. Clin. Kidney J. 2013, 6, 469–472. [Google Scholar] [CrossRef]
- Navarro-Muñoz, M.; Meritxell Ibernón Vanessa Carballés Pérez Ara, J.; Espinal, A.; López, D.; Bonet, J.; Romero, R. Messenger RNA expression of B7-1 and NPHS1 in urinary sediment could be useful to differentiate between minimal-change disease and focal segmental glomerulosclerosis in adult patients. Nephrol. Dial. Transplant. 2011, 26, 3914–3923. [Google Scholar] [CrossRef]
- Karle, S.M.; Uetz, B.; Ronner, V.; Glaeser, L.; Hildebrandt, F.; Fuchshuber, A. Novel Mutations in NPHS2 Detected in Both Familial and Sporadic Steroid-Resistant Nephrotic Syndrome. J. Am. Soc. Nephrol. 2002, 13, 388–393. [Google Scholar] [CrossRef] [PubMed]
- Audard, V.; Lang, P.; Sahali, D. Pathogénie du syndrome néphrotique à lesions glomérulaires minimes. Médecine/Sciences 2008, 24, 853–858. [Google Scholar] [CrossRef] [PubMed]
- Machuca, E.; Esquivel, E.L.; Antignac, C. Idiopathic Nephrotic Syndrome: Genetic Aspects; Springer: Berlin/Heidelberg, Germany, 2009; pp. 643–666. [Google Scholar] [CrossRef]
- McCarthy, H.J.; Bierzynska, A.; Wherlock, M.; Ognjanovic, M.; Kerecuk, L.; Hegde, S.; Feather, S.; Gilbert, R.D.; Krischock, L.; Jones, C.; et al. Simultaneous sequencing of 24 genes associated with steroid-resistant nephrotic syndrome. Clin. J. Am. Soc. Nephrol. CJASN 2013, 8, 637–648. [Google Scholar] [CrossRef] [PubMed]
- Hsiao, C.C.; Tu, K.H.; Hsieh, C.Y.; Lee, C.C.; Chang, C.H.; Fan, P.C.; Tian, P.C.; Fang, J.T. Immunoglobulin E and G Levels in Predicting Minimal Change Disease before Renal Biopsy. BioMed Res. Int. 2018, 2018, 3480309. [Google Scholar] [CrossRef] [PubMed]
- Doublier, S.; Ruotsalainen, V.; Salvidio, G.; Lupia, E.; Biancone, L.; Conaldi, P.G.; Reponen, P.; Tryggvason, K.; Camussi, G. Nephrin Redistribution on Podocytes Is a Potential Mechanism for Proteinuria in Patients with Primary Acquired Nephrotic Syndrome. Am. J. Pathol. 2001, 158, 1723–1731. [Google Scholar] [CrossRef]
- Yamazaki, M.; Fukusumi, Y.; Kayaba, M.; Kitazawa, Y.; Takamura, S.; Narita, I.; Kawachi, H. Possible role for glomerular-derived angiotensinogen in nephrotic syndrome. J. Renin-Angiotensin-Aldosterone Syst. 2016, 17, 147032031668122. [Google Scholar] [CrossRef]
- Patrakka, J.; Ruotsalainen, V.; Ketola, I.; Holmberg, C.; Heikinheimo, M.; Tryggvason, K.; Jalanko, H. Expression of Nephrin in Pediatric Kidney Diseases. J. Am. Soc. Nephrol. 2001, 12, 289–296. [Google Scholar] [CrossRef]
- Kawachi, H.; Fukusumi, Y. New insight into podocyte slit diaphragm, a therapeutic target of proteinuria. Clin. Exp. Nephrol. 2020, 24, 193–204. [Google Scholar] [CrossRef]
- Kanazawa, N.; Iyoda, M.; Suzuki, T.; Tachibana, S.; Nagashima, R.; Honda, H. Exploring the significance of interleukin-33/ST2 axis in minimal change disease. Sci. Rep. 2023, 13, 20666. [Google Scholar] [CrossRef]
- Minimal Change Disease [Internet]. www.kidneypathology.com. Available online: https://www.kidneypathology.com/English_version/Minimal_change_disease.html (accessed on 2 November 2024).
- Purohit, S.; Piani, F.; Ordoñez, F.A.; de Lucas-Collantes, C.; Bauer, C.; Cara-Fuentes, G. Molecular Mechanisms of Proteinuria in Minimal Change Disease. Front. Med. 2021, 8, 761600. [Google Scholar] [CrossRef]
- Jiang, H.; Shen, Z.; Zhuang, J.; Lu, C.; Qu, Y.; Xu, C.; Yang, S.; Tian, X. Understanding the podocyte immune responses in proteinuric kidney diseases: From pathogenesis to therapy. Front. Immunol. 2024, 14, 1335936. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, M.; Khoshnoodi, J.; Akimoto, Y.; Kawakami, H.; Hirano, H.; Higashihara, E.; Hosoyamada, M.; Seine, Y.; Kurayama, R.; Joh, K.; et al. Expression of galectin-1, a new component of slit diaphragm, is altered in minimal change nephrotic syndrome. Lab. Investig. 2008, 89, 178–195. [Google Scholar] [CrossRef] [PubMed]
- Lai, K.W.; Wei, C.L.; Tan, L.K.; Tan, P.H.; Chiang, G.S.C.; Lee, C.G.L.; Jordan, S.C.; Yap, H.K. Overexpression of Interleukin-13 Induces Minimal-Change–Like Nephropathy in Rats. J. Am. Soc. Nephrol. 2007, 18, 1476–1485. [Google Scholar] [CrossRef] [PubMed]
- Wei, C.L.; Cheung, W.; Heng, C.K.; Arty, N.; Chong, S.S.; Lee, B.W.; Puah, K.L.; Yap, H.K. Interleukin-13 genetic polymorphisms in Singapore Chinese children correlate with long-term outcome of minimal-change disease. Nephrol. Dial. Transplant. 2005, 20, 728–734. [Google Scholar] [CrossRef] [PubMed]
- Mariani, L.H.; Eddy, S.; AlAkwaa, F.M.; McCown, P.J.; Harder, J.L.; Nair, V.; Eichinger, F.; Martini, S.; Ademola, A.D.; Boima, V.; et al. Precision nephrology identified tumor necrosis factor activation variability in minimal change disease and focal segmental glomerulosclerosis. Kidney Int. 2023, 103, 565–579. [Google Scholar] [CrossRef]
- Song, N.; Liu, Z.S.; Xue, W.; Bai, Z.F.; Wang, Q.Y.; Dai, J.; Liu, X.; Huang, Y.J.; Cai, H.; Han, Q.Y.; et al. NLRP3 Phosphorylation Is an Essential Priming Event for Inflammasome Activation. Mol. Cell 2017, 68, 185–197.e6. [Google Scholar] [CrossRef]
- Okabe, M.; Koike, K.; Yamamoto, I.; Tsuboi, N.; Matsusaka, T.; Yokoo, T. Early growth response 1 as a podocyte injury marker in human glomerular diseases. Clin. Kidney J. 2023, 17, sfad289. [Google Scholar] [CrossRef]
- Clinicaltrials.gov. 2024. Available online: https://clinicaltrials.gov/study/NCT06405100?cond=Minimal%20Change%20Disease&limit=100&page=1&rank=4 (accessed on 4 October 2024).
- Feng, Y.; Li, M.; Wang, Y.; Yang, M.; Shi, G.; Yin, D.; Xuan, Z.; Xu, F. Activation of TRPC6 by AngII Induces Podocyte Injury and Participates in Proteinuria of Nephrotic Syndrome. Front. Pharmacol. 2022, 13, 915153. [Google Scholar] [CrossRef]
- Chehade, H.; Cachat, F.; Girardin, E.; Rotman, S.; Correia, A.J.; Fellmann, F.; Bonny, O. Two new families with hereditary minimal change disease. BMC Nephrol. 2013, 14, 65. [Google Scholar] [CrossRef]
- Gembillo, G.; Siligato, R.; Santoro, D. Personalized Medicine in Kidney Disease. J. Pers. Med. 2023, 13, 1501. [Google Scholar] [CrossRef]
- Ma, S.; Qiu, Y.; Zhang, C. Cytoskeleton Rearrangement in Podocytopathies: An Update. Int. J. Mol. Sci. 2024, 25, 647. [Google Scholar] [CrossRef] [PubMed]
- Siligato, R.; Cernaro, V.; Nardi, C.; De Gregorio, F.; Gembillo, G.; Costantino, G.; Cont, G.; Buemi, M.; Santoro, D. Emerging therapeutic strategies for minimal change disease and focal and segmental glomerulosclerosis. Mol. Membr. Biol. 2018, 27, 839–879. [Google Scholar] [CrossRef] [PubMed]
- Kandasamy, Y.; Smith, R.; Lumbers, E.R.; Rudd, D. Nephrin—A biomarker of early glomerular injury. Biomark. Res. 2014, 2, 21. [Google Scholar] [CrossRef] [PubMed]
- Eroglu, F.K.; Orhan, D.; İnözü, M.; Duzova, A.; Gulhan, B.; Ozaltin, F.; Topaloglu, R. CD80 expression and infiltrating regulatory T cells in idiopathic nephrotic syndrome of childhood. Pediatr. Int. 2019, 61, 1250–1256. [Google Scholar] [CrossRef] [PubMed]
- Cara-Fuentes, G.; Wei, C.; Segarra, A.; Ishimoto, T.; Rivard, C.; Johnson, R.J.; Reiser, J.; Garin, E.H. CD80 and suPAR in patients with minimal change disease and focal segmental glomerulosclerosis: Diagnostic and pathogenic significance. Pediatr. Nephrol. 2013, 29, 1363–1371. [Google Scholar] [CrossRef]
- Low, L.D.; Lu, L.; Chan, C.Y.; Chen, J.; Yang, H.H.; Yu, H.; Lee, C.G.; Ng, K.H.; Yap, H.K. IL-13-driven alterations in hepatic cholesterol handling contributes to hypercholesterolemia in a rat model of minimal change disease. Clin. Sci. 2020, 134, 225–237. [Google Scholar] [CrossRef]
- SzSzeto, C.C.; So, H.; Poon, P.Y.K.; Luk, C.C.W.; Ng, J.K.C.; Fung, W.W.S.; Chan, G.C.K.; Chow, K.M.; Lai, F.M.M.; Tam, L.S. Urinary Long Non-Coding RNA Levels as Biomarkers of Lupus Nephritis. Int. J. Mol. Sci. 2023, 24, 11813. [Google Scholar] [CrossRef]
- Ran, L.; Li, W.; Zhang, H.; Lin, J.; Zhu, L.; Long, H.; Xiang, L.; Chen, L.; Li, Q.; Hu, Y.; et al. Identification of Plasma hsa_circ_0001230 and hsa_circ_0023879 as Potential Novel Biomarkers for Focal Segmental Glomerulosclerosis and circRNA-miRNA-mRNA network analysis. Kidney Blood Press. Res. 2024, 49, 1. [Google Scholar] [CrossRef]
- Bondue, T.; van den Heuvel, L.; Levtchenko, E.; Brock, R. The potential of RNA-based therapy for kidney diseases. Pediatr. Nephrol. 2022, 38, 327–344. [Google Scholar] [CrossRef]
- George, S.; Rafi, M.; Aldarmaki, M.; ElSiddig, M.; Al Nuaimi, M.; Amiri, K.M.A. tRNA derived small RNAs—Small players with big roles. Front. Genet. 2022, 13, 997780. [Google Scholar] [CrossRef]
- Lou, W.; Ding, B.; Fu, P. Pseudogene-Derived lncRNAs and Their miRNA Sponging Mechanism in Human Cancer. Front. Cell Dev. Biol. 2020, 8, 85. [Google Scholar] [CrossRef] [PubMed]
- Wei, Q.; Huang, J.; Livingston, M.J.; Wang, S.; Dong, G.; Xu, H.; Zhou, J.; Dong, Z. Pseudogene GSTM3P1 derived long non-coding RNA promotes ischemic acute kidney injury by target directed microRNA degradation of kidney-protective mir-668. Kidney Int. 2024, 106, 640–657. Available online: https://www.kidney-international.org/article/S0085-2538(24)00531-3/abstract (accessed on 4 October 2024). [CrossRef] [PubMed]
- Bharati, J.; Kumar, M.; Kumar, N.; Malhotra, A.; Singhal, P.C. MicroRNA193a: An Emerging Mediator of Glomerular Diseases. Biomolecules 2023, 13, 1743. [Google Scholar] [CrossRef] [PubMed]
- Ahmadian, E.; Rahbar Saadat, Y.; Dalir Abdolahinia, E.; Bastami, M.; Shoja, M.M.; Zununi Vahed, S.; Ardalan, M. The Role of Cytokines in Nephrotic Syndrome. Mediat. Inflamm. 2022, 2022, 6499668. [Google Scholar] [CrossRef]
- Zhang, N.; Zhao, P.; Shrestha, A.; Zhang, L.; Qu, Z.; Liu, M.; Zhang, S.; Jiang, Y. A Higher Frequency of CD4+CXCR5+T Follicular Helper Cells in Adult Patients with Minimal Change Disease. BioMed Res. Int. 2014, 2014, 836157. [Google Scholar] [CrossRef]
- Wada, Y.; Abe, M.; Moritani, H.; Mitori, H.; Kondo, M.; Tanaka-Amino, K.; Eguchi, M.; Imasato, A.; Inoki, Y.; Kajimayama, H.; et al. Original Research: Potential of urinary nephrin as a biomarker reflecting podocyte dysfunction in various kidney disease models. Exp. Biol. Med. 2016, 241, 1865–1876. [Google Scholar] [CrossRef]
- Kavoura, E.; Gakiopoulou, H.; Paraskevakou, H.; Marinaki, S.; Agrogiannis, G. Immunohistochemical evaluation of podocalyxin expression in glomerulopathies associated with nephrotic syndrome. Hum. Pathol. 2011, 42, 227–235. [Google Scholar] [CrossRef]
- Chebotareva, N.A.; Vinogradov, A.; McDonnell, V.; Zakharova, N.; Indeykina, M.I.; Moiseev, S.; Nikolaev, E.N.; Kononikhin, A.S. Urinary Protein and Peptide Markers in Chronic Kidney Disease. Int. J. Mol. Sci. 2021, 22, 12123. [Google Scholar] [CrossRef]
- Clinicaltrials.gov. 2024. Available online: https://clinicaltrials.gov/study/NCT00981838?cond=Minimal%20Change%20Disease%20%5C(MCD%5C)&limit=100&rank=9 (accessed on 4 October 2024).
- Guan, N.; Zhang, M.; Zhang, M.; Chen, R.; Xie, Q.; Hao, C. Rituximab as Initial Therapy in Adult Patients with Minimal Change Disease. Kidney Int. Rep. 2023, 8, 1102–1104. [Google Scholar] [CrossRef]
- Maas, R.J.; Deegens, J.K.; Smeets, B.; Moeller, M.J.; Wetzels, J.F. Minimal change disease and idiopathic FSGS: Manifestations of the same disease. Nat. Rev. Nephrol. 2016, 12, 768–776. Available online: https://pubmed.ncbi.nlm.nih.gov/27748392/ (accessed on 17 October 2016). [CrossRef]
- Lan, L.; Lin, Y.; Yu, B.; Wang, Y.; Pan, H.; Wang, H.; Lou, X.; Lang, X.; Zhang, Q.; Jin, L.; et al. Efficacy of Rituximab for Minimal Change Disease and Focal Segmental Glomerulosclerosis with Frequently Relapsing or Steroid-Dependent Nephrotic Syndrome in Adults: A Chinese Multicenter Retrospective Study. Am. J. Nephrol. 2024, 55, 25–36. [Google Scholar] [CrossRef] [PubMed]
- Kannan, L. Rituximab for Steroid-Dependent Minimal Change Disease in Adults: Is It Time for a Change? Cureus 2022, 14, e22313. [Google Scholar] [CrossRef] [PubMed]
- Clinicaltrials.gov. 2024. Available online: https://clinicaltrials.gov/study/NCT06405100?cond=Minimal%20Change%20Disease%20%5C(MCD%5C)&limit=100&rank=2 (accessed on 4 October 2024).
- Chai, B.S. The use of tacrolimus in the management of minimal change disease. Kidney Res. Clin. Pract. 2012, 31, 257–258. [Google Scholar] [CrossRef]
- Lu, J.; Xu, Z.; Xu, W.; Gong, L.; Xu, M.; Tang, W.; Jiang, W.; Xie, F.; Ding, L.; Qian, X. Efficacy and safety of tacrolimus versus corticosteroid as initial monotherapy in adult-onset minimal change disease: A meta-analysis. Int. Urol. Nephrol. 2022, 54, 2205–2213. [Google Scholar] [CrossRef]
- Clinicaltrials.gov. 2024. Available online: https://clinicaltrials.gov/study/NCT01092962?cond=Minimal%20Change%20Disease&limit=100&page=1&rank=87 (accessed on 4 October 2024).
- Pesavento, T.E.; Bay, W.H.; Agarwal, G.; Hernandez, R.A.; Hebert, L.A. Mycophenolate therapy in frequently relapsing minimal change disease that has failed cyclophosphamide therapy. Am. J. Kidney Dis. 2004, 43, e10.1–e10.4. [Google Scholar] [CrossRef]
- Sandoval, D.; Poveda, R.; Draibe, J.; Perez-Oller, L.; Díaz, M.; Ballarín, J.; Saurina, A.; Marco, H.; Bonet, J.; Barros, X.; et al. Efficacy of mycophenolate treatment in adults with steroid-dependent/frequently relapsing idiopathic nephrotic syndrome. Clin. Kidney J. 2017, 10, 632–638. [Google Scholar] [CrossRef]
- Clinicaltrials.gov. 2024. Available online: https://clinicaltrials.gov/study/NCT03210688?cond=Minimal%20Change%20Disease&limit=100&page=1&rank=8 (accessed on 4 October 2024).
- Clinicaltrials.gov. 2024. Available online: https://clinicaltrials.gov/study/NCT01835639?cond=Minimal%20Change%20Disease&limit=100&page=1&rank=99 (accessed on 4 October 2024).
- Vivarelli, M.; Massella, L.; Ruggiero, B.; Emma, F. Minimal Change Disease. Clin. J. Am. Soc. Nephrol. 2016, 12, 332–345. [Google Scholar] [CrossRef]
- Clinicaltrials.gov. 2024. Available online: https://clinicaltrials.gov/study/NCT04387448?cond=Minimal%20Change%20Disease&limit=100&page=1&rank=45 (accessed on 4 October 2024).
- Clinicaltrials.gov. 2024. Available online: https://clinicaltrials.gov/study/NCT05441826?cond=Minimal%20Change%20Disease&limit=100&page=1&rank=11 (accessed on 4 October 2024).
- Mirioglu, S.; Daniel-Fischer, L.; Berke, I.; Ahmad, S.H.; Bajema, I.M.; Bruchfeld, A.; Fernandez-Juarez, G.M.; Floege, J.; Frangou, E.; Goumenos, D.; et al. Management of adult patients with podocytopathies—An update from the ERA Immunonephrology Working Group. Nephrol. Dial. Transplant./Nephrol. Dial. Transplant. 2024, 39, 569–580. [Google Scholar] [CrossRef]
- Chugh, S.S.; Clement, L.C.; Macé, C. New Insights Into Human Minimal Change Disease: Lessons From Animal Models. Am. J. Kidney Dis. 2012, 59, 284–292. [Google Scholar] [CrossRef]
- Saleem, M.A.; Kobayashi, Y. Cell biology and genetics of minimal change disease. F1000Research 2016, 5, 412. [Google Scholar] [CrossRef]
- Veeramaneni, C. WCN23-0353 Renal biopsy registry from a single centre in india: 20 years experience. Kidney Int. Rep. 2023, 8, S64. [Google Scholar] [CrossRef]
- Pereira, L.H.; da Silva, C.A.; Monteiro, M.L.; Araújo, L.S.; Rocha, L.P.; Reis, M.B.; Ramalho, F.S.; Corrêa, R.R.; Silva, M.V.; Reis, M.A.; et al. Podocin and uPAR are good biomarkers in cases of Focal and segmental glomerulosclerosis in pediatric renal biopsies. PLoS ONE 2019, 14, e0217569. [Google Scholar] [CrossRef] [PubMed]
- Eikrem, Ø.; Lillefosse, B.; Delaleu, N.; Strauss, P.; Osman, T.; Vikse, B.E.; Debiec, H.; Ronco, P.; Sekulic, M.; Koch, E.; et al. Network-Based Assessment of Minimal Change Disease Identifies Glomerular Response to IL-7 and IL-12 Pathways Activation as Innovative Treatment Target. Biomedicines 2023, 11, 226. [Google Scholar] [CrossRef] [PubMed]
- Ansori, A.N.; Antonius, Y.; Susilo, R.J.; Hayaza, S.; Kharisma, V.D.; Parikesit, A.A.; Zainul, A.A.; Jakhomola, V.; Saklani, T.; Rebezov, M.; et al. Application of CRISPR-Cas9 genome editing technology in various fields: A review. Narra J. 2023, 3, e184. [Google Scholar] [CrossRef] [PubMed]
- Gómez-García, F.; Martínez-Pulleiro, R.; Carrera, N.; Allegue, C.; Garcia-Gonzalez, M.A. Genetic Kidney Diseases (GKDs) Modeling Using Genome Editing Technologies. Cells 2022, 11, 1571. [Google Scholar] [CrossRef]
- Jiang, Y.; Wang, T.; Yu, W.; Wu, F.; Guo, R.; Li, H.; Zhang, Y.; Yan, G.; Wang, L.; Zhao, Z. Combination of the gut microbiota and clinical indicators as a potential index for differentiating idiopathic membranous nephropathy and minimal change disease. Renal Failure 2023, 45, 2209392. [Google Scholar] [CrossRef]
- Lahdenkari, A.T.; Kestilä, M.; Holmberg, C.; Koskimies, O.; Jalanko, H. Nephrin gene (NPHS1) in patients with minimal change nephrotic syndrome (MCNS). Kidney Int. 2004, 65, 1856–1863. [Google Scholar] [CrossRef]
- Faul, C.; Donnelly, M.; Merscher-Gomez, S.; Chang, Y.H.; Franz, S.; Delfgaauw, J.; Chang, J.M.; Choi, H.Y.; Campbell, K.N.; Kim, K.; et al. The actin cytoskeleton of kidney podocytes is a direct target of the antiproteinuric effect of cyclosporine A. Nat. Med. 2008, 14, 931–938. [Google Scholar] [CrossRef]
- Meyrier, A.; Radhakrishnan, J. UpToDate [Internet]. Uptodate.com. 2024. Available online: https://www.uptodate.com/contents/minimal-change-disease-treatment-in-adults/print (accessed on 4 October 2024).
- Nagai, K. Immunosuppressive Agent Options for Primary Nephrotic Syndrome: A Review of Network Meta-Analyses and Cost-Effectiveness Analysis. Medicina 2023, 59, 601. [Google Scholar] [CrossRef]
- Trautmann, A.; Boyer, O.; Hodson, E.; Bagga, A.; Gipson, D.S.; Samuel, S.; Wetzels, J.; Alhasan, K.; Banerjee, S.; Bhimma, R.; et al. IPNA clinical practice recommendations for the diagnosis and management of children with steroid-sensitive nephrotic syndrome. Pediatr. Nephrol. 2023, 38, 877–919. [Google Scholar] [CrossRef]
- Kobayashi, Y.; Arakawa, H.; Suzuki, M.; Takizawa, T.; Tokuyama, K.; Morikawa, A. Polymorphisms of interleukin-4—Related genes in Japanese children with minimal change nephrotic syndrome. Am. J. Kidney Dis. 2003, 42, 271–276. [Google Scholar] [CrossRef]
- Hodson, E.; Knight, J.; Willis, N.; Craig, J. Corticosteroid therapy for nephrotic syndrome in children. Cochrane Database Syst. Rev. 2005, CD001533. [Google Scholar] [CrossRef]
- Mallipattu, S.K.; He, J.C. The podocyte as a direct target for treatment of glomerular disease? Am. J. Physiol.-Ren. Physiol. 2016, 311, F46–F51. [Google Scholar] [CrossRef] [PubMed]
- Chintalacharuvu, S.R.; Nagy, N.U.; Sigmund, N.; Nedrud, J.G.; Amm, M.E.L.; Emancipator, S.N. T cell cytokines determine the severity of experimental IgA nephropathy by regulating IgA glycosylation. Clin. Exp. Immunol. 2001, 126, 326–333. [Google Scholar] [CrossRef] [PubMed]
- Jin, S.; Yu, C.; Yu, B. Changes of serum IL-6, IL-10 and TNF-α levels in patients with systemic lupus erythematosus and their clinical value. Am. J. Transl. Res. 2021, 13, 2867–2874. [Google Scholar] [PubMed]
- Richter, P.; Macovei, L.A.; Mihai, I.R.; Cardoneanu, A.; Burlui, M.A.; Rezus, E. Cytokines in Systemic Lupus Erythematosus—Focus on TNF-α and IL-17. Int. J. Mol. Sci. 2023, 24, 14413. [Google Scholar] [CrossRef] [PubMed]
- Perkowska-Ptasinska, A.; Bartczak, A.; Wagrowska-Danilewicz, M.; Halon, A.; Okon, K.; Wozniak, A.; Danilewicz, M.; Karkoszka, H.; Marszalek, A.; Kowalewska, J.; et al. Clinicopathologic correlations of renal pathology in the adult population of Poland. Nephrol. Dial. Transplant. 2017, 32 (Suppl. S2), ii209–ii218. [Google Scholar] [CrossRef]
- Rivera, F.; López-Gómez, J.M.; Pérez-García, R. Clinicopathologic correlations of renal pathology in Spain. Kidney Int. 2004, 66, 898–904. [Google Scholar] [CrossRef]
- Su, S.; Yu, J.; Wang, Y.; Wang, Y.; Li, J.; Xu, Z. Clinicopathologic correlations of renal biopsy findings from northeast China. Medicine 2019, 98, e15880. [Google Scholar] [CrossRef]
- Roca, N.; Martinez, C.; Jatem, E.; Madrid, A.; Lopez, M.; Segarra, A. Activation of the acute inflammatory phase response in idiopathic nephrotic syndrome: Association with clinicopathological phenotypes and with response to corticosteroids. Clin. Kidney J. 2021, 14, 1207–1215. [Google Scholar] [CrossRef]
- Zhao, Q.; Dai, H.; Hu, Y.; Jiang, H.; Feng, Z.; Liu, W.; Dong, Z.; Tang, X.; Hou, F.; Rui, H.; et al. Cytokines network in primary membranous nephropathy. Int. Immunopharmacol. 2022, 113, 109412. [Google Scholar] [CrossRef] [PubMed]
- Rawla, P.; Limaiem, F. IgA Nephropathy [Internet]. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, IL, USA, 2020. Available online: https://www.ncbi.nlm.nih.gov/books/NBK538214/ (accessed on 22 April 2024).
Aspect. | Adults [11,17,18,20] | Children [20,21] |
---|---|---|
Prevalence | Less common (10–25% of nephrotic syndrome cases) | More common (70–90% of nephrotic syndrome cases) |
Clinical Presentation | More severe with higher incidence of acute kidney injury and infections; more likely to present with comorbidities | Typically presents with classic nephrotic syndrome (massive proteinuria, hypoalbuminemia, edema, and hyperlipidemia) |
Response to Corticosteroids | Slower response; higher likelihood of steroid resistance or dependence | Generally rapid and favorable response to corticosteroids |
Relapse Rate | High; frequent relapses common, often requiring prolonged or repeated steroid therapy | High relapse rate but often responsive to repeat steroid therapy |
Complications | Higher risk of long-term complications from steroids (e.g., osteoporosis, hypertension, and cardiovascular issues) | Complications include growth retardation, obesity, and infections related to steroid use |
Histopathology | Subtle changes often detectable only through electron microscopy (podocyte foot process effacement) | Similar histopathological findings with minimal changes under light microscopy |
Prognosis | More complex and less predictable; risk of progression to chronic kidney disease in severe cases | Generally favorable with good long-term outcomes, although relapses are common |
Additional Therapies | May require additional immunosuppressive therapies like calcineurin inhibitors or rituximab | Additional therapies less commonly needed but used in cases of frequent relapse or steroid resistance |
Mortality and Morbidity | Higher due to complications and comorbidities | Lower overall, with most children achieving long-term remission |
Cytokine | Role in MCD | Associated Clinical Outcomes | Potential Therapeutic Targets |
---|---|---|---|
IL-13 | Alters podocyte gene expression, contributing to cytoskeletal changes and proteinuria [47]. | Severe proteinuria; progression to nephrotic syndrome [47]. | Anti-IL-13 monoclonal antibodies; cytokine pathway inhibitors [47]. |
TNF-alpha | Induces podocyte apoptosis and disrupts the glomerular basement membrane integrity [47,60]. | Increased proteinuria, inflammation, and kidney injury [47,60]. | TNF-alpha inhibitors (e.g., etanercept and infliximab) [47,60]. |
IL-4 | Promotes Th2 cell differentiation, enhancing B-cell activation and autoantibody production [47,60]. | Immune dysregulation; potential contribution to steroid resistance [47,60]. | IL-4 receptor antagonists; Th2-targeted immunomodulatory therapies [47,60]. |
IL-6 | Involved in the acute-phase response, contributing to inflammation and immune activation [47,60]. | Chronic inflammation; worsening of nephrotic syndrome [47,60]. | IL-6 inhibitors (e.g., tocilizumab); anti-inflammatory therapies [47,60]. |
TGF-beta | Promotes fibrosis and podocyte injury, contributing to chronic kidney disease progression [47]. | Increased risk of fibrosis, chronic kidney damage, and progression to ESRD [47]. | TGF-beta pathway inhibitors; anti-fibrotic agents [47]. |
Biomarker | Diagnostic Utility | Monitoring Utility | Prognostic Value |
---|---|---|---|
Urinary Nephrin | Early marker of podocyte injury helps in diagnosing MCD [61]. | Monitoring disease activity correlates with the extent of proteinuria [61]. | Higher levels may indicate ongoing podocyte damage and disease severity [61]. |
Serum Albumin | Indicative of nephrotic syndrome when levels are low [21]. | Used to monitor treatment response, especially to corticosteroids [21]. | Persistently low levels suggest poor prognosis and potential for relapse [21]. |
Podocalyxin | Marker of podocyte detachment, aiding in MCD diagnosis [62]. | Reflects podocyte injury, used to assess treatment effectiveness [62]. | Elevated levels may indicate active disease and risk of progression [62]. |
Urinary CD80 | Associated with immune activation in MCD, and a potential diagnostic tool [51]. | Monitors response to immunosuppressive therapy, especially in relapse [51]. | Elevated levels correlate with immune dysregulation, indicating poor response to steroids [51]. |
Alpha-1-microglobulin | Reflects tubular protein reabsorption capacity, and useful in early diagnosis [59,63] | Monitors kidney function and the effectiveness of therapy [59,63]. | Elevated levels may indicate tubular damage and worse long-term outcomes [59,63]. |
Therapy Type | Mechanism of Action | Efficacy in Inducing Remission | Side Effects | Long-Term Outcomes | Examples of Emerging Therapies |
---|---|---|---|---|---|
Corticosteroid Therapy | Broad immune suppression [21,84]. | High in most patients [21]. | Growth retardation, osteoporosis, obesity, hypertension, and increased infection risk [21,85]. | High relapse rates, steroid resistance, and significant side effects over time [21,84,85]. | Not applicable [21] |
B-Cell-Targeted Therapies | Depletion of B-cells; reduction in pathogenic antibodies (e.g., rituximab) [21,84]. | Effective in steroid-resistant/dependent patients [84]. | Well-tolerated; infusion reactions possible [84]. | Lower relapse rates compared to steroids; long-term safety data needed [84]. | Rituximab [84] |
Actin Cytoskeleton Stabilizers | Stabilizing podocyte structure to prevent foot process effacement [46]. | Early-stage research; potential efficacy [46]. | Few side effects expected based on mechanism of action [46]. | Could improve podocyte function and reduce disease progression [46]. | Small molecules targeting actin dynamics [46] |
TRPC6 Inhibitors | Inhibition of TRPC6 to prevent calcium-induced podocyte injury [46]. | Promising in preclinical and early trials [46]. | Specific side effects depending on TRPC6 inhibition [46]. | Potential to prevent podocyte injury and reduce proteinuria long-term [46]. | TRPC6 inhibitors (in development) [46] |
Gene | Mutation Type | Associated Protein | Clinical Implications | Potential Targeted Therapies |
---|---|---|---|---|
NPHS1 | Missense, nonsense, and splice site mutations [33,42,90]. | Nephrin [33,42,90,91] | Early-onset nephrotic syndrome, severe proteinuria, resistance to corticosteroids, and progression to ESRD [42,90,91]. | Gene therapy, nephrin replacement strategies, early intervention, and nephrin stabilization [42,90,91]. |
NPHS2 | Missense mutations, nonsense mutations, and deletions [42,90,91]. | Podocin [42,90,91] | Autosomal recessive steroid-resistant nephrotic syndrome and increased risk of progression to ESRD [42,90,91]. | Gene therapy, podocin stabilization, and precision medicine approaches [42,90,91]. |
WT1 | Missense mutations, deletions, and point mutations [91]. | Wilms tumor 1 protein [91] | Congenital nephrotic syndrome, steroid resistance, associated with Wilms tumor, and gonadal dysgenesis [91]. | WT1-targeted therapies, personalized care, early genetic screening, and tumor monitoring [91]. |
ACTN4 | Missense mutations and deletions [91]. | Alpha-actinin-4 [91] | Adult-onset familial nephrotic syndrome; typically resistant to corticosteroids; associated with FSGS [91]. | Actin stabilization therapies, early monitoring, and personalized treatment plans [91]. |
TRPC6 | Gain-of-function mutations and missense mutations [46,91]. | TRPC6 [46,91] | Familial FSGS; proteinuria due to increased calcium influx; progressive renal disease [46,91]. | TRPC6 inhibitors, targeted therapies to reduce podocyte calcium levels, and gene editing [46,91]. |
CD2AP | Deletions and loss-of-function mutations [42,90,91]. | CD2-associated protein [42,90,91] | Steroid-resistant nephrotic syndrome, podocyte injury, and risk of progressing to ESRD [42,90,91]. | CD2AP stabilization strategies, gene therapy, and personalized immunomodulation [34,90,91]. |
NEPH1 | Missense mutations and nonsense mutations [34]. | Nephrin-like protein 1 [34] | Like NPHS1, involved in slit diaphragm function; associated with severe proteinuria [34]. | Gene therapy, NEPH1 stabilization, and nephrin pathway-targeted therapies [34]. |
PLCE1 | Homozygous mutations and deletions [92]. | Phospholipase C epsilon [92] | Early-onset nephrotic syndrome, rapid progression to ESRD, and variable response to steroids [92]. | PLCE1-targeted therapies, early genetic screening, and personalized care strategies [92]. |
Genetic Mutation/Biomarker | Associated Treatment Response | Therapeutic Recommendations | Clinical Implications |
---|---|---|---|
NPHS1 Mutation | Poor response to corticosteroids and higher risk of steroid resistance [42,90,91]. | Early use of alternative immunosuppressants; gene therapy (in development) [42,90,91]. | Indicates need for genetic screening; may benefit from personalized therapy [42,90,91]. |
NPHS2 Mutation | Increased risk of progression to end-stage renal disease and poor response to standard therapies [42,90,91]. | Consider early aggressive treatment; potential for gene therapy [42,90,91]. | Suggests close monitoring and early intervention [42,90,91]. |
WT1 Mutation | Association with steroid resistance and risk of Wilms tumor [91]. | Early genetic counseling, tumor surveillance, and alternative therapies [91]. | High-risk group requiring specialized management [91]. |
Urinary Nephrin Levels | Prominent levels indicate active podocyte injury, correlating with disease severity. | Use as a biomarker for treatment adjustment, particularly in relapse cases. | Helps in monitoring treatment efficacy and disease activity. |
Podocalyxin Levels | Elevated levels suggest ongoing podocyte detachment and damage [62,98]. | Consider adjusting therapy to target podocyte health [62,98]. | Biomarker for active disease, useful in predicting relapse [62,98]. |
Urinary CD80 Levels | Elevated levels may predict poor response to steroids [51,63]. | Early consideration of rituximab or other B-cell-depleting therapies [51,63]. | Potential for personalized immunomodulatory treatment [63]. |
Alpha-1-microglobulin Levels | Elevated levels associated with tubular damage and poor long-term outcomes [59,99]. | Focus on nephroprotective strategies; potential for novel tubular-targeted therapies [59,99]. | Indicators of overall kidney health help in long-term prognosis [59,99]. |
Disease. | Key Immune Dysregulation Features | Cytokine Profiles | Typical Immune Responses | Therapeutic Implications |
---|---|---|---|---|
Minimal Change Disease | T-cell abnormalities and autoantibodies against nephrin [47,60]. | Elevated IL-13, TNF-alpha, and IL-4 levels [47,60]. | Th2-mediated response; podocyte-targeted damage [47,60]. | Corticosteroids, rituximab, and anti-IL-13 therapies [47,60]. |
Focal Segmental Glomerulosclerosis | Circulating permeability factors and possible genetic predispositions [104]. | Elevated suPAR, TNF-alpha, and IL-6 levels [104]. | Immune-mediated podocyte damage; often steroid-resistant [104]. | Calcineurin inhibitors, rituximab, and plasmapheresis [104]. |
Membranous Nephropathy | Autoantibodies against PLA2R and immune complex deposition [60]. | Elevated IL-6, TNF-alpha, and IL-1 levels [60]. | Immune complex-mediated glomerular injury; complement activation [60]. | Rituximab, cyclophosphamide, and anti-complement therapies [60]. |
IgA Nephropathy | Aberrant IgA production and immune complex deposition in mesangium [104,105]. | Elevated IL-6 and TGF-beta levels [104,105]. | Complement-mediated mesangial injury; immune complex deposition [104,105]. | Corticosteroids, ACE inhibitors, and mycophenolate mofetil [104,105]. |
Lupus Nephritis | Autoantibodies against dsDNA and immune complex deposition in glomeruli [106]. | Elevated IL-6, IL-10, TNF-alpha, and interferon-gamma levels [106]. | Immune complex-mediated glomerular and tubulointerstitial damage [106]. | Corticosteroids, mycophenolate mofetil, biologics targeting TNF-alpha, and IL-6 [106]. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roman, M.; Nowicki, M. Detailed Pathophysiology of Minimal Change Disease: Insights into Podocyte Dysfunction, Immune Dysregulation, and Genetic Susceptibility. Int. J. Mol. Sci. 2024, 25, 12174. https://doi.org/10.3390/ijms252212174
Roman M, Nowicki M. Detailed Pathophysiology of Minimal Change Disease: Insights into Podocyte Dysfunction, Immune Dysregulation, and Genetic Susceptibility. International Journal of Molecular Sciences. 2024; 25(22):12174. https://doi.org/10.3390/ijms252212174
Chicago/Turabian StyleRoman, Maja, and Michał Nowicki. 2024. "Detailed Pathophysiology of Minimal Change Disease: Insights into Podocyte Dysfunction, Immune Dysregulation, and Genetic Susceptibility" International Journal of Molecular Sciences 25, no. 22: 12174. https://doi.org/10.3390/ijms252212174
APA StyleRoman, M., & Nowicki, M. (2024). Detailed Pathophysiology of Minimal Change Disease: Insights into Podocyte Dysfunction, Immune Dysregulation, and Genetic Susceptibility. International Journal of Molecular Sciences, 25(22), 12174. https://doi.org/10.3390/ijms252212174