Acid Sphingomyelinase Activation and ROS Generation Potentiate Antiproliferative Effects of Mitomycin in HCC
Abstract
:1. Introduction
2. Results
2.1. Mitomycin Activates Acid Sphingomyelinase in HCC Cell Lines
2.2. Ceramide Levels Upregulated upon Stimulation with MITOMYCIN
2.3. Mitomycin Induces Cell Death via ASM Activation and ROS Generation
2.4. Stimulation with Mitomycin Induces Deregulation of Sphingolipid Metabolism
3. Discussion
4. Materials and Methods
4.1. Cells
4.2. Cell Proliferation and ROS Formation
4.3. Acid Sphingomyelinase Activity
4.4. Two-Step Polymerase Chain Reaction (PCR) Analysis
4.5. Determination of Sphingolipid Concentrations by High-Performance Liquid Chromatography Tandem Mass Spectrometry
4.6. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
List of Abbreviations
References
- Singal, A.G.; Lampertico, P.; Nahon, P. Epidemiology and Surveillance for Hepatocellular Carcinoma: New Trends. J. Hepatol. 2020, 72, 250–261. [Google Scholar] [CrossRef] [PubMed]
- Aravalli, R.N.; Cressman, E.N.K.; Steer, C.J. Cellular and Molecular Mechanisms of Hepatocellular Carcinoma: An Update. Arch. Toxicol. 2013, 87, 227–247. [Google Scholar] [CrossRef] [PubMed]
- El-Serag, H.B.; Kramer, J.R.; Chen, G.J.; Duan, Z.; Richardson, P.A.; Davila, J.A. Effectiveness of AFP and Ultrasound Tests on Hepatocellular Carcinoma Mortality in HCV-Infected Patients in the USA. Gut 2011, 60, 992–997. [Google Scholar] [CrossRef] [PubMed]
- EASL–EASD–EASO Clinical Practice Guidelines for the Management of Non-Alcoholic Fatty Liver Disease. J. Hepatol. 2016, 64, 1388–1402. [CrossRef]
- Sangiovanni, A.; Prati, G.M.; Fasani, P.; Ronchi, G.; Romeo, R.; Manini, M.; Del Ninno, E.; Morabito, A.; Colombo, M. The Natural History of Compensated Cirrhosis Due to Hepatitis C Virus: A 17-Year Cohort Study of 214 Patients. Hepatology 2006, 43, 1303–1310. [Google Scholar] [CrossRef]
- De Lope, C.R.; Tremosini, S.; Forner, A.; Reig, M.; Bruix, J. Management of HCC. J. Hepatol. 2012, 56, S75–S87. [Google Scholar] [CrossRef]
- Abou-Alfa, G.K.; Lau, G.; Kudo, M.; Chan, S.L.; Kelley, R.K.; Furuse, J.; Sukeepaisarnjaroen, W.; Kang, Y.-K.; Van Dao, T.; De Toni, E.N.; et al. Tremelimumab plus Durvalumab in Unresectable Hepatocellular Carcinoma. NEJM Evid. 2022, 1. [Google Scholar] [CrossRef]
- Vivarelli, M. Multimodal Treatment of Hepatocellular Carcinoma on Cirrhosis: An Update. World. J. Gastroenterol. 2013, 19, 7316. [Google Scholar] [CrossRef]
- Lencioni, R.; Kudo, M.; Erinjeri, J.; Qin, S.; Ren, Z.; Chan, S.; Arai, Y.; Heo, J.; Mai, A.; Escobar, J.; et al. EMERALD-1: A Phase 3, Randomized, Placebo-Controlled Study of Transarterial Chemoembolization Combined with Durvalumab with or without Bevacizumab in Participants with Unresectable Hepatocellular Carcinoma Eligible for Embolization. J. Clin. Oncol. 2024, 42, LBA432. [Google Scholar] [CrossRef]
- Hannun, Y.A.; Obeid, L.M. Principles of Bioactive Lipid Signalling: Lessons from Sphingolipids. Nat. Rev. Mol. Cell Biol. 2008, 9, 139–150. [Google Scholar] [CrossRef]
- Kolter, T. A View on Sphingolipids and Disease. Chem. Phys. Lipids 2011, 164, 590–606. [Google Scholar] [CrossRef] [PubMed]
- Ponnusamy, S.; Meyers-Needham, M.; Senkal, C.E.; Saddoughi, S.A.; Sentelle, D.; Selvam, S.P.; Salas, A.; Ogretmen, B. Sphingolipids and Cancer: Ceramide and Sphingosine-1-Phosphate in the Regulation of Cell Death and Drug Resistance. Future Oncol. 2010, 6, 1603–1624. [Google Scholar] [CrossRef] [PubMed]
- Nojima, H.; Freeman, C.M.; Gulbins, E.; Lentsch, A.B. Sphingolipids in Liver Injury, Repair and Regeneration. Biol. Chem. 2015, 396, 633–643. [Google Scholar] [CrossRef]
- Garcia-Ruiz, C.; Mari, M.; Colell, A.; Morales, A.; C. Fernandez-Checa, J. Metabolic Therapy: Lessons from Liver Diseases. Curr. Pharm. Des. 2011, 17, 3933–3944. [Google Scholar] [CrossRef]
- Brenner, C.; Galluzzi, L.; Kepp, O.; Kroemer, G. Decoding Cell Death Signals in Liver Inflammation. J. Hepatol. 2013, 59, 583–594. [Google Scholar] [CrossRef]
- Lang, P.A.; Schenck, M.; Nicolay, J.P.; Becker, J.U.; Kempe, D.S.; Lupescu, A.; Koka, S.; Eisele, K.; Klarl, B.A.; Rübben, H.; et al. Liver Cell Death and Anemia in Wilson Disease Involve Acid Sphingomyelinase and Ceramide. Nat. Med. 2007, 13, 164–170. [Google Scholar] [CrossRef] [PubMed]
- Savić, R.; Schuchman, E.H. Use of Acid Sphingomyelinase for Cancer Therapy. In Advances in Cancer Research; Elsevier: New York, NY, USA, 2013; Volume 117, pp. 91–115. ISBN 978-0-12-394274-6. [Google Scholar]
- Bao, M.; Chen, Z.; Xu, Y.; Zhao, Y.; Zha, R.; Huang, S.; Liu, L.; Chen, T.; Li, J.; Tu, H.; et al. Sphingosine Kinase 1 Promotes Tumour Cell Migration and Invasion via the S1P / EDG 1 Axis in Hepatocellular Carcinoma. Liver Int. 2012, 32, 331–338. [Google Scholar] [CrossRef]
- Savić, R.; He, X.; Fiel, I.; Schuchman, E.H. Recombinant Human Acid Sphingomyelinase as an Adjuvant to Sorafenib Treatment of Experimental Liver Cancer. PLoS ONE 2013, 8, e65620. [Google Scholar] [CrossRef]
- Grammatikos, G.; Teichgräber, V.; Carpinteiro, A.; Trarbach, T.; Weller, M.; Hengge, U.R.; Gulbins, E. Overexpression of Acid Sphingomyelinase Sensitizes Glioma Cells to Chemotherapy. Antioxid. Redox Signal. 2007, 9, 1449–1456. [Google Scholar] [CrossRef]
- Grammatikos, G.; Mühle, C.; Ferreiros, N.; Schroeter, S.; Bogdanou, D.; Schwalm, S.; Hintereder, G.; Kornhuber, J.; Zeuzem, S.; Sarrazin, C.; et al. Serum Acid Sphingomyelinase Is Upregulated in Chronic Hepatitis C Infection and Non Alcoholic Fatty Liver Disease. Biochim. Biophys. Acta BBA-Mol. Cell Biol. Lipids 2014, 1841, 1012–1020. [Google Scholar] [CrossRef]
- Grammatikos, G.; Schoell, N.; Ferreirós, N.; Bon, D.; Herrmann, E.; Farnik, H.; Köberle, V.; Piiper, A.; Zeuzem, S.; Kronenberger, B.; et al. Serum Sphingolipidomic Analyses Reveal an Upregulation of C16- Ceramide and Sphingosine-1-Phosphate in Hepatocellular Carcinoma. Oncotarget 2016, 7, 18095–18105. [Google Scholar] [CrossRef] [PubMed]
- Mücke, V.T.; Thomas, D.; Mücke, M.M.; Waidmann, O.; Zeuzem, S.; Sarrazin, C.; Pfeilschifter, J.; Vermehren, J.; Finkelmeier, F.; Grammatikos, G. Serum Sphingolipids Predict de Novo Hepatocellular Carcinoma in Hepatitis C Cirrhotic Patients with Sustained Virologic Response. Liver Int. 2019, 39, 2174–2183. [Google Scholar] [CrossRef] [PubMed]
- Kornhuber, J.; Medlin, A.; Bleich, S.; Jendrossek, V.; Henkel, A.W.; Wiltfang, J.; Gulbins, E. High Activity of Acid Sphingomyelinase in Major Depression. J. Neural Transm. 2005, 112, 1583–1590. [Google Scholar] [CrossRef]
- Grammatikos, G.; Ferreiros, N.; Bon, D.; Schwalm, S.; Dietz, J.; Berkowski, C.; Fitting, D.; Herrmann, E.; Zeuzem, S.; Sarrazin, C.; et al. Variations in Serum Sphingolipid Levels Associate with Liver Fibrosis Progression and Poor Treatment Outcome in Hepatitis C Virus but Not Hepatitis B Virus Infection. Hepatology 2015, 61, 812–822. [Google Scholar] [CrossRef]
- Santana, P.; Peña, L.A.; Haimovitz-Friedman, A.; Martin, S.; Green, D.; McLoughlin, M.; Cordon-Cardo, C.; Schuchman, E.H.; Fuks, Z.; Kolesnick, R. Acid Sphingomyelinase–Deficient Human Lymphoblasts and Mice Are Defective in Radiation-Induced Apoptosis. Cell 1996, 86, 189–199. [Google Scholar] [CrossRef]
- Castillo, S.S.; Levy, M.; Thaikoottathil, J.V.; Goldkorn, T. Reactive Nitrogen and Oxygen Species Activate Different Sphingomyelinases to Induce Apoptosis in Airway Epithelial Cells. Exp. Cell Res. 2007, 313, 2680–2686. [Google Scholar] [CrossRef] [PubMed]
- Grassme, H.; Jekle, A.; Riehle, A.; Schwarz, H.; Berger, J.; Sandhoff, K.; Kolesnick, R.; Gulbins, E. CD95 Signaling via Ceramide-Rich Membrane Rafts. J. Biol. Chem. 2001, 276, 20589–20596. [Google Scholar] [CrossRef]
- Rotolo, J.A.; Zhang, J.; Donepudi, M.; Lee, H.; Fuks, Z.; Kolesnick, R. Caspase-Dependent and -Independent Activation of Acid Sphingomyelinase Signaling. J. Biol. Chem. 2005, 280, 26425–26434. [Google Scholar] [CrossRef]
- Morita, Y.; Perez, G.I.; Paris, F.; Miranda, S.R.; Ehleiter, D.; Haimovitz-Friedman, A.; Fuks, Z.; Xie, Z.; Reed, J.C.; Schuchman, E.H.; et al. Oocyte Apoptosis Is Suppressed by Disruption of the Acid Sphingomyelinase Gene or by Sphingosine -1-Phosphate Therapy. Nat. Med. 2000, 6, 1109–1114. [Google Scholar] [CrossRef]
- Smith, E.L.; Schuchman, E.H. Acid Sphingomyelinase Overexpression Enhances the Antineoplastic Effects of Irradiation In Vitro and In Vivo. Mol. Ther. 2008, 16, 1565–1571. [Google Scholar] [CrossRef]
- Revill, K.; Wang, T.; Lachenmayer, A.; Kojima, K.; Harrington, A.; Li, J.; Hoshida, Y.; Llovet, J.M.; Powers, S. Genome-Wide Methylation Analysis and Epigenetic Unmasking Identify Tumor Suppressor Genes in Hepatocellular Carcinoma. Gastroenterology 2013, 145, 1424–1435.e25. [Google Scholar] [CrossRef] [PubMed]
- Grösch, S.; Schiffmann, S.; Geisslinger, G. Chain Length-Specific Properties of Ceramides. Prog. Lipid Res. 2012, 51, 50–62. [Google Scholar] [CrossRef] [PubMed]
- Ben-David, O.; Futerman, A.H. The Role of the Ceramide Acyl Chain Length in Neurodegeneration: Involvement of Ceramide Synthases. NeuroMolecular Med. 2010, 12, 341–350. [Google Scholar] [CrossRef] [PubMed]
- Liebisch, G.; Fahy, E.; Aoki, J.; Dennis, E.A.; Durand, T.; Ejsing, C.S.; Fedorova, M.; Feussner, I.; Griffiths, W.J.; Köfeler, H.; et al. Update on LIPID MAPS Classification, Nomenclature, and Shorthand Notation for MS-Derived Lipid Structures. J. Lipid Res. 2020, 61, 1539–1555. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Buitkamp, S.; Schwalm, S.; Jakobi, K.; Ferreiros, N.; Wünsche, C.; Zeuzem, S.; Gulbins, E.; Sarrazin, C.; Pfeilschifter, J.; Grammatikos, G. Acid Sphingomyelinase Activation and ROS Generation Potentiate Antiproliferative Effects of Mitomycin in HCC. Int. J. Mol. Sci. 2024, 25, 12175. https://doi.org/10.3390/ijms252212175
Buitkamp S, Schwalm S, Jakobi K, Ferreiros N, Wünsche C, Zeuzem S, Gulbins E, Sarrazin C, Pfeilschifter J, Grammatikos G. Acid Sphingomyelinase Activation and ROS Generation Potentiate Antiproliferative Effects of Mitomycin in HCC. International Journal of Molecular Sciences. 2024; 25(22):12175. https://doi.org/10.3390/ijms252212175
Chicago/Turabian StyleBuitkamp, Sirkka, Stephanie Schwalm, Katja Jakobi, Nerea Ferreiros, Christin Wünsche, Stefan Zeuzem, Erich Gulbins, Christoph Sarrazin, Josef Pfeilschifter, and Georgios Grammatikos. 2024. "Acid Sphingomyelinase Activation and ROS Generation Potentiate Antiproliferative Effects of Mitomycin in HCC" International Journal of Molecular Sciences 25, no. 22: 12175. https://doi.org/10.3390/ijms252212175
APA StyleBuitkamp, S., Schwalm, S., Jakobi, K., Ferreiros, N., Wünsche, C., Zeuzem, S., Gulbins, E., Sarrazin, C., Pfeilschifter, J., & Grammatikos, G. (2024). Acid Sphingomyelinase Activation and ROS Generation Potentiate Antiproliferative Effects of Mitomycin in HCC. International Journal of Molecular Sciences, 25(22), 12175. https://doi.org/10.3390/ijms252212175