Prenatal Acoustic Signals Influence Nestling Heat Shock Protein Response to Heat and Heterophil-to-Lymphocyte Ratio in a Desert Bird
Abstract
:1. Introduction
2. Results
2.1. Nestling Response to Nest Temperature: In-Nest Experiment
2.2. Nestling Stress Response to a Controlled Acute Heat-Challenge
3. Discussion
3.1. Acoustic Programming of HSPs and Stress Physiology
3.2. HSP Response to Acute and Chronic Heat
3.3. Stress Response to Acute Heat
3.4. Stress Biomarker Covariation
3.5. Conclusions
4. Materials and Methods
4.1. Prenatal Acoustic Playback
4.2. Postnatal Nest Temperature
4.3. In-Nest and Heat-Challenge Experiments
4.4. Corticosterone Assays
4.5. HSPs Assays
4.6. Heterophil-to-Lymphocyte Ratio
4.7. Statistical Analyses
4.7.1. H/L Ratio Distribution
4.7.2. Developmental Effects Within Each Experiment
4.7.3. Variation Across Experiments (In-Nest vs. Heat-Challenge)
4.7.4. Link Between Nestling Mass and Stress Physiology
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Romero, L.M.; Wingfield, J.C. Tempests, Poxes, Predators, and People: Stress in Wild Animals and How They Cope; Oxford Series in Behavioral Neuroendocrinology; Oxford University Press: New York, NY, USA, 2015; ISBN 978-0-19-536669-3. [Google Scholar]
- Sørensen, J.G. Application of Heat Shock Protein Expression for Detecting Natural Adaptation and Exposure to Stress in Natural Populations. Curr. Zool. 2010, 56, 703–713. [Google Scholar] [CrossRef]
- Angelier, F.; Wingfield, J.C. Importance of the Glucocorticoid Stress Response in a Changing World: Theory, Hypotheses and Perspectives. Gen. Comp. Endocrinol. 2013, 190, 118–128. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Feder, M.E.; Kang, L. Evolution of Heat-Shock Protein Expression Underlying Adaptive Responses to Environmental Stress. Mol. Ecol. 2018, 27, 3040–3054. [Google Scholar] [CrossRef] [PubMed]
- Guindre-Parker, S. Individual Variation in Glucocorticoid Plasticity: Considerations and Future Directions. Integr. Comp. Biol. 2020, 60, 79–88. [Google Scholar] [CrossRef]
- Jolly, C.; Morimoto, R.I. Role of the Heat Shock Response and Molecular Chaperones in Oncogenesis and Cell Death. JNCI J. Natl. Cancer Inst. 2000, 92, 1564–1572. [Google Scholar] [CrossRef]
- Richter, K.; Haslbeck, M.; Buchner, J. The Heat Shock Response: Life on the Verge of Death. Mol. Cell 2010, 40, 253–266. [Google Scholar] [CrossRef]
- Kültz, D. Molecular and evolutionary basis of the cellular stress response. Annu. Rev. Physiol. 2005, 67, 225–257. [Google Scholar] [CrossRef]
- Feder, M.E.; Hofmann, G.E. Heat-Shock Proteins, Molecular Chaperones, and the Stress Response: Evolutionary and Ecological Physiology. Annu. Rev. Physiol. 1999, 61, 243–282. [Google Scholar] [CrossRef]
- Kregel, K.C. Invited Review: Heat Shock Proteins: Modifying Factors in Physiological Stress Responses and Acquired Thermotolerance. J. Appl. Physiol. 2002, 92, 2177–2186. [Google Scholar] [CrossRef]
- Balakrishnan, K.N.; Ramiah, S.K.; Zulkifli, I. Heat Shock Protein Response to Stress in Poultry: A Review. Animals 2023, 13, 317. [Google Scholar] [CrossRef]
- Xie, J.; Tang, L.; Lu, L.; Zhang, L.; Xi, L.; Liu, H.C.; Odle, J.; Luo, X. Differential Expression of Heat Shock Transcription Factors and Heat Shock Proteins after Acute and Chronic Heat Stress in Laying Chickens (Gallus gallus). PLoS ONE 2014, 9, e102204. [Google Scholar] [CrossRef] [PubMed]
- Xie, S.; Tearle, R.; McWhorter, T.J. Heat Shock Protein Expression Is Upregulated after Acute Heat Exposure in Three Species of Australian Desert Birds. Avian Biol. Res. 2018, 11, 263–273. [Google Scholar] [CrossRef]
- Fangue, N.A.; Hofmeister, M.; Schulte, P.M. Intraspecific Variation in Thermal Tolerance and Heat Shock Protein Gene Expression in Common Killifish, Fundulus Heteroclitus. J. Exp. Biol. 2006, 209, 2859–2872. [Google Scholar] [CrossRef] [PubMed]
- Roberts, D.A.; Hofmann, G.E.; Somero, G.N. Heat-Shock Protein Expression in Mytilus californianus: Acclimatization (Seasonal and Tidal-Height Comparisons) and Acclimation Effects. Biol. Bull. 1997, 192, 309–320. [Google Scholar] [CrossRef] [PubMed]
- Sørensen, J.G.; Kristensen, T.N.; Loeschcke, V. The Evolutionary and Ecological Role of Heat Shock Proteins. Ecol. Lett. 2003, 6, 1025–1037. [Google Scholar] [CrossRef]
- de Bruijn, R.; Romero, L.M. The Role of Glucocorticoids in the Vertebrate Response to Weather. Gen. Comp. Endocrinol. 2018, 269, 11–32. [Google Scholar] [CrossRef]
- Romero, L.M. Physiological Stress in Ecology: Lessons from Biomedical Research. Trends Ecol. Evol. 2004, 19, 249–255. [Google Scholar] [CrossRef]
- Baker, J.D.; Ozsan, I.; Rodriguez Ospina, S.; Gulick, D.; Blair, L.J. Hsp90 Heterocomplexes Regulate Steroid Hormone Receptors: From Stress Response to Psychiatric Disease. Int. J. Mol. Sci. 2018, 20, 79. [Google Scholar] [CrossRef]
- Grad, I.; Picard, D. The Glucocorticoid Responses Are Shaped by Molecular Chaperones. Mol. Cell. Endocrinol. 2007, 275, 2–12. [Google Scholar] [CrossRef]
- Dhabhar, F.S.; Miller, A.H.; McEwen, B.S.; Spencer, R.L. Effects of Stress on Immune Cell Distribution. Dynamics and Hormonal Mechanisms. J. Immunol. (Baltim. Md. 1950) 1995, 154, 5511–5527. [Google Scholar] [CrossRef]
- Minias, P. Evolution of Heterophil/Lymphocyte Ratios in Response to Ecological and Life-History Traits: A Comparative Analysis across the Avian Tree of Life. J. Anim. Ecol. 2019, 88, 554–565. [Google Scholar] [CrossRef] [PubMed]
- Davis, A.K.; Maney, D.L.; Maerz, J.C. The Use of Leukocyte Profiles to Measure Stress in Vertebrates: A Review for Ecologists. Funct. Ecol. 2008, 22, 760–772. [Google Scholar] [CrossRef]
- Xie, S.; Romero, L.M.; Htut, Z.W.; McWhorter, T.J. Stress Responses to Heat Exposure in Three Species of Australian Desert Birds. Physiol. Biochem. Zool. 2017, 90, 348–358. [Google Scholar] [CrossRef]
- Davis, A.K.; Maney, D.L. The Use of Glucocorticoid Hormones or Leucocyte Profiles to Measure Stress in Vertebrates: What’s the Difference? Methods Ecol. Evol. 2018, 9, 1556–1568. [Google Scholar] [CrossRef]
- Gross, W.B.; Siegel, H.S. Evaluation of the Heterophil/Lymphocyte Ratio as a Measure of Stress in Chickens. Avian Dis. 1983, 27, 972–979. [Google Scholar] [CrossRef] [PubMed]
- Woodruff, M.J.; Zimmer, C.; Ardia, D.R.; Vitousek, M.N.; Rosvall, K.A. Heat Shock Protein Gene Expression Varies among Tissues and Populations in Free-Living Birds. Ornithology 2022, 139, ukac018. [Google Scholar] [CrossRef]
- Tedeschi, J.N.; Kennington, W.J.; Tomkins, J.L.; Berry, O.; Whiting, S.; Meekan, M.G.; Mitchell, N.J. HeriTable Variation in Heat Shock Gene Expression: A Potential Mechanism for Adaptation to Thermal Stress in Embryos of Sea Turtles. Proc. R. Soc. B Biol. Sci. 2016, 283, 20152320. [Google Scholar] [CrossRef]
- McColl, G.; Hoffmann, A.A.; McKechnie, S.W. Response of Two Heat Shock Genes to Selection for Knockdown Heat Resistance in Drosophila Melanogaster. Genetics 1996, 143, 1615–1627. [Google Scholar] [CrossRef]
- Dixon, A.L.; Liang, L.; Moffatt, M.F.; Chen, W.; Heath, S.; Wong, K.C.C.; Taylor, J.; Burnett, E.; Gut, I.; Farrall, M.; et al. A Genome-Wide Association Study of Global Gene Expression. Nat. Genet. 2007, 39, 1202–1207. [Google Scholar] [CrossRef]
- Kapoor, A.; Dunn, E.; Kostaki, A.; Andrews, M.H.; Matthews, S.G. Fetal Programming of Hypothalamo-Pituitary-Adrenal Function: Prenatal Stress and Glucocorticoids. J. Physiol. 2006, 572, 31–44. [Google Scholar] [CrossRef]
- Groothuis, T.G.G.; Müller, W.; Von Engelhardt, N.; Carere, C.; Eising, C. Maternal Hormones as a Tool to Adjust Offspring Phenotype in Avian Species. Neurosci. Biobehav. Rev. 2005, 29, 329–352. [Google Scholar] [CrossRef] [PubMed]
- Lockwood, B.L.; Julick, C.R.; Montooth, K.L. Maternal Loading of a Small Heat Shock Protein Increases Embryo Thermal Tolerance in Drosophila Melanogaster. J. Exp. Biol. 2017, 220, 4492–4501. [Google Scholar] [CrossRef] [PubMed]
- Lim, M.Y.-T.; Bernier, N.J. Zebrafish Parental Progeny Investment in Response to Cycling Thermal Stress and Hypoxia: Deposition of Heat Shock Proteins but Not Cortisol. J. Exp. Biol. 2022, 225, jeb244715. [Google Scholar] [CrossRef] [PubMed]
- Galletta, L.; Craven, M.J.; Meillère, A.; Crowley, T.M.; Buchanan, K.L.; Mariette, M.M. Acute Exposure to High Temperature Affects Expression of Heat Shock Proteins in Altricial Avian Embryos. J. Therm. Biol. 2022, 110, 103347. [Google Scholar] [CrossRef]
- Vinoth, A.; Thirunalasundari, T.; Tharian, J.A.; Shanmugam, M.; Rajkumar, U. Effect of Thermal Manipulation during Embryogenesis on Liver Heat Shock Protein Expression in Chronic Heat Stressed Colored Broiler Chickens. J. Therm. Biol. 2015, 53, 162–171. [Google Scholar] [CrossRef]
- Hoffman, A.J.; Finger, J.W.; Kavazis, A.N.; Wada, H. Early Life Thermal Conditioning Alters Heat-Shock Protein Expression in Response to an Adult Thermal Stressor. J. Exp. Zool. A Ecol. Integr. Physiol. 2024, 341, 1030–1040. [Google Scholar] [CrossRef]
- Riddell, E.A.; Iknayan, K.J.; Hargrove, L.; Tremor, S.; Patton, J.L.; Ramirez, R.; Wolf, B.O.; Beissinger, S.R. Exposure to Climate Change Drives Stability or Collapse of Desert Mammal and Bird Communities. Science 2021, 371, 633–636. [Google Scholar] [CrossRef]
- Conradie, S.R.; Woodborne, S.M.; Wolf, B.O.; Pessato, A.; Mariette, M.M.; McKechnie, A.E. Avian Mortality Risk during Heat Waves Will Increase Greatly in Arid Australia during the 21st Century. Conserv. Physiol. 2020, 8, coaa048. [Google Scholar] [CrossRef]
- Finger, J.W.; Hoffman, A.J.; Wada, H. Temporal Variation in Constitutive and Inducible Heat Shock Proteins in the Zebra Finch Taeniopygia Guttata. Ibis 2018, 160, 390–396. [Google Scholar] [CrossRef]
- Soleimani, A.F.; Zulkifli, I.; Omar, A.R.; Raha, A.R. Physiological Responses of 3 Chicken Breeds to Acute Heat Stress. Poult. Sci. 2011, 90, 1435–1440. [Google Scholar] [CrossRef]
- Altan, Ö.; Pabuçcuoǧlu, A.; Altan, A.; Konyalioǧlu, S.; Bayraktar, H. Effect of Heat Stress on Oxidative Stress, Lipid Peroxidation and Some Stress Parameters in Broilers. Br. Poult. Sci. 2003, 44, 545–550. [Google Scholar] [CrossRef] [PubMed]
- Prieto, M.T.; Campo, J.L. Effect of Heat and Several Additives Related to Stress Levels on Fluctuating Asymmetry, Heterophil: Lymphocyte Ratio, and Tonic Immobility Duration in White Leghorn Chicks. Poult. Sci. 2010, 89, 2071–2077. [Google Scholar] [CrossRef] [PubMed]
- Mariette, M.M.; Buchanan, K.L. Prenatal Acoustic Communication Programs Offspring for High Posthatching Temperatures in a Songbird. Science 2016, 353, 812–814. [Google Scholar] [CrossRef]
- Udino, E.; George, J.M.; McKenzie, M.; Pessato, A.; Crino, O.L.; Buchanan, K.L.; Mariette, M.M. Prenatal Acoustic Programming of Mitochondrial Function for High Temperatures in an Arid-Adapted Bird. Proc. R. Soc. B 2021, 288, 20211893. [Google Scholar] [CrossRef] [PubMed]
- Udino, E.; Oscos-Snowball, M.A.; Buchanan, K.L.; Mariette, M.M. A Prenatal Acoustic Signal of Heat Reduces a Biomarker of Chronic Stress at Adulthood across Seasons. Front. Physiol. 2024, 15, 1348993. [Google Scholar] [CrossRef] [PubMed]
- Pessato, A.; McKechnie, A.E.; Mariette, M.M. A Prenatal Acoustic Signal of Heat Affects Thermoregulation Capacities at Adulthood in an Arid-Adapted Bird. Sci. Rep. 2022, 12, 5842. [Google Scholar] [CrossRef]
- Gormally, B.M.G.; Romero, L.M. What Are You Actually Measuring? A Review of Techniques That Integrate the Stress Response on Distinct Time-scales. Funct. Ecol. 2020, 34, 2030–2044. [Google Scholar] [CrossRef]
- Udino, E.; Mariette, M.M. How to Stay Cool: Early Acoustic and Thermal Experience Alters Individual Behavioural Thermoregulation in the Heat. Front. Ecol. Evol. 2022, 10, 818278. [Google Scholar] [CrossRef]
- Katsis, A.C.; Buchanan, K.L.; Kleindorfer, S.; Mariette, M.M. Long-Term Effects of Prenatal Sound Experience on Songbird Behavior and Their Relation to Song Learning. Behav. Ecol. Sociobiol. 2021, 75, 18. [Google Scholar] [CrossRef]
- Mariette, M.M.; Clayton, D.F.; Buchanan, K.L. Acoustic Developmental Programming: A Mechanistic and Evolutionary Framework. Trends Ecol. Evol. 2021, 36, 722–736. [Google Scholar] [CrossRef]
- Meillère, A.; Buchanan, K.L.; Eastwood, J.R.; Mariette, M.M. Pre- and Postnatal Noise Directly Impairs Avian Development, with Fitness Consequences. Science 2024, 384, 475–480. [Google Scholar] [CrossRef] [PubMed]
- Morales, J.; Moreno, J.; Lobato, E.; Merino, S.; Tomás, G.; Puente, J.M.D.L.; Martínez, J. Higher Stress Protein Levels Are Associated with Lower Humoral and Cell-Mediated Immune Responses in Pied Flycatcher Females. Funct. Ecol. 2006, 20, 647–655. [Google Scholar] [CrossRef]
- Barras, A.G.; Niffenegger, C.A.; Candolfi, I.; Hunziker, Y.A.; Arlettaz, R. Nestling Diet and Parental Food Provisioning in a Declining Mountain Passerine Reveal High Sensitivity to Climate Change. J. Avian Biol. 2021, 52, jav.02649. [Google Scholar] [CrossRef]
- Oswald, K.N.; Smit, B.; Lee, A.T.K.; Peng, C.L.; Brock, C.; Cunningham, S.J. Higher Temperatures Are Associated with Reduced Nestling Body Condition in a Range-Restricted Mountain Bird. J. Avian Biol. 2021, 52, e02756. [Google Scholar] [CrossRef]
- Hanafi, S.A.; Zulkifli, I.; Ramiah, S.K.; Chung, E.L.T.; Kamil, R.; Awad, E.A. Prenatal Auditory Stimulation Induces Physiological Stress Responses in Developing Embryos and Newly Hatched Chicks. Poult. Sci. 2023, 102, 102390. [Google Scholar] [CrossRef]
- Mariette, M.M. Developmental Programming by Prenatal Sounds: Insights into Possible Mechanisms. J. Exp. Biol. 2024, 227, jeb246696. [Google Scholar] [CrossRef]
- Noguera, J.C.; Velando, A. Bird Embryos Perceive Vibratory Cues of Predation Risk from Clutch Mates. Nat. Ecol. Evol. 2019, 3, 1225–1232. [Google Scholar] [CrossRef]
- Noguera, J.C.; Velando, A. Reduced Telomere Length in Embryos Exposed to Predator Cues. J. Exp. Biol. 2019, 222, jeb.216176. [Google Scholar] [CrossRef]
- Fangue, N.A.; Richards, J.G.; Schulte, P.M. Do Mitochondrial Properties Explain Intraspecific Variation in Thermal Tolerance? J. Exp. Biol. 2009, 212, 514–522. [Google Scholar] [CrossRef] [PubMed]
- Lindquist, S. The Heat-Shock Response. Annu. Rev. Biochem. 1986, 55, 1151–1191. [Google Scholar] [CrossRef]
- Pawar, S.S.; Kurade, N.P.; Bhendarkar, M.P.; Bhosale, S.V.; Nirmale, A.V.; Kochewad, S.A. Modulation of Heat Shock Protein 70 (HSP70) Gene Expression Ex Vivo in Response to Heat Stress in Chicken. Anim. Biotechnol. 2023, 34, 5168–5172. [Google Scholar] [CrossRef] [PubMed]
- Olfati, A.; Mojtahedin, A.; Sadeghi, T.; Akbari, M.; Martínez-Pastor, F. Comparison of Growth Performance and Immune Responses of Broiler Chicks Reared under Heat Stress, Cold Stress and Thermoneutral Conditions. Span. J. Agric. Res. 2018, 16, e0505. [Google Scholar] [CrossRef]
- Gladbach, A.; Gladbach, D.J.; Quillfeldt, P. Variations in Leucocyte Profiles and Plasma Biochemistry Are Related to Different Aspects of Parental Investment in Male and Female Upland Geese Chloephaga Picta Leucoptera. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2010, 156, 269–277. [Google Scholar] [CrossRef] [PubMed]
- Wada, H.; Kriengwatana, B.; Allen, N.; Schmidt, K.L.; Soma, K.K.; MacDougall-Shackleton, S.A. Transient and Permanent Effects of Suboptimal Incubation Temperatures on Growth, Metabolic Rate, Immune Function and Adrenocortical Responses in Zebra Finches. J. Exp. Biol. 2015, 218, 2847–2855. [Google Scholar] [CrossRef]
- Crino, O.L.; Driscoll, S.C.; Brandl, H.B.; Buchanan, K.L.; Griffith, S.C. Under the Weather: Corticosterone Levels in Wild Nestlings Are Associated with Ambient Temperature and Wind. Gen. Comp. Endocrinol. 2020, 285, 113247. [Google Scholar] [CrossRef]
- Cooper, C.E.; Hurley, L.L.; Deviche, P.; Griffith, S.C. Physiological Responses of Wild Zebra Finches (Taeniopygia guttata) to Heatwaves. J. Exp. Biol. 2020, 223, jeb225524. [Google Scholar] [CrossRef]
- Müller, C.; Jenni-Eiermann, S.; Jenni, L. Heterophils/Lymphocytes-Ratio and Circulating Corticosterone Do Not Indicate the Same Stress Imposed on Eurasian Kestrel Nestlings. Funct. Ecol. 2011, 25, 566–576. [Google Scholar] [CrossRef]
- Ibáñez-Álamo, J.D.; Jimeno, B.; Gil, D.; Thomson, R.L.; Aguirre, J.I.; Díez-Fernández, A.; Faivre, B.; Tieleman, B.I.; Figuerola, J. Physiological Stress Does Not Increase with Urbanization in European Blackbirds: Evidence from Hormonal, Immunological and Cellular Indicators. Sci. Total Environ. 2020, 721, 137332. [Google Scholar] [CrossRef]
- Breuner, C.W.; Delehanty, B.; Boonstra, R. Evaluating Stress in Natural Populations of Vertebrates: Total CORT Is Not Good Enough. Funct. Ecol. 2013, 27, 24–36. [Google Scholar] [CrossRef]
- Telemeco, R.S.; Gangloff, E.J. Analyzing Stress as a Multivariate Phenotype. Integr. Comp. Biol. 2020, 60, 70–78. [Google Scholar] [CrossRef]
- Crino, O.L.; Buchanan, K.L.; Trompf, L.; Mainwaring, M.C.; Griffith, S.C. Stress Reactivity, Condition, and Foraging Behavior in Zebra Finches: Effects on Boldness, Exploration, and Sociality. Gen. Comp. Endocrinol. 2017, 244, 101–107. [Google Scholar] [CrossRef] [PubMed]
- Bradford, M.M. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef] [PubMed]
- Campbell, T.W. (Ed.) Exotic Animal Hematology and Cytology, 4th ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2015; ISBN 978-1-118-99370-5. [Google Scholar]
- Zuur, A.F.; Ieno, E.N.; Elphick, C.S. A Protocol for Data Exploration to Avoid Common Statistical Problems. Methods Ecol. Evol. 2010, 1, 3–14. [Google Scholar] [CrossRef]
- Masello, J.F.; Choconi, R.G.; Helmer, M.; Kremberg, T.; Lubjuhn, T.; Quillfeldt, P. Do Leucocytes Reflect Condition in Nestling Burrowing Parrots Cyanoliseus Patagonus in the Wild? Comp. Biochem. Physiol.—A Mol. Integr. Physiol. 2009, 152, 176–181. [Google Scholar] [CrossRef] [PubMed]
- Colominas-Ciuró, R.; Masero, J.A.; Benzal, J.; Bertellotti, M.; Barbosa, A. Oxidative Status and Stress during Highly Energetic Life-History Stages of Chinstrap Penguins: Breeding versus Molting. J. Field Ornithol. 2019, 90, 190–199. [Google Scholar] [CrossRef]
- Skwarska, J. Variation of Heterophil-to-Lymphocyte Ratio in the Great Tit Parus Major—A Review. Acta Ornithol. 2019, 53, 103. [Google Scholar] [CrossRef]
Response Variable | Fixed Effect | Est. 3 | SE 4 | t Value | p-Value 5 |
---|---|---|---|---|---|
In-nest condition | |||||
HSP90α (N = 35) * | intercept | 1.27 | 0.03 | 42.93 | <0.001 |
playback (heat-calls) | −0.04 | 0.04 | −0.88 | 0.388 | |
12D-Tnest | 0.08 | 0.03 | 2.41 | 0.022 | |
playback × 12D-Tnest | −0.09 | 0.04 | −2.04 | 0.050 | |
HSC70 (N = 35) | intercept | 1.73 | 0.04 | 42.32 | <0.001 |
playback (heat-calls) | 0.07 | 0.05 | 1.31 | 0.202 | |
12D-Tnest | 0.08 | 0.04 | 1.78 | 0.085 | |
playback × 12D-Tnest | −0.15 | 0.06 | −2.76 | 0.010 | |
CORT (N = 25) * | intercept | 0.68 | 0.09 | 7.58 | <0.001 |
playback (heat-calls) | 0.02 | 0.12 | 0.18 | 0.860 | |
12D-Tnest | 0.01 | 0.06 | 0.18 | 0.860 | |
H/L ratio (N = 23) * | intercept | −0.23 | 0.06 | −3.93 | 0.001 |
playback (heat-calls) | −0.16 | 0.08 | −1.94 | 0.066 | |
12D-Tnest | 0.05 | 0.04 | 1.09 | 0.289 | |
Heat-challenge condition | |||||
HSP90α (N = 38) | intercept | 1.26 | 0.04 | 33.62 | <0.001 |
playback (heat-calls) | 0.02 | 0.05 | 25.14 | 0.656 | |
12D-Tnest | 0.01 | 0.03 | 20.75 | 0.799 | |
HSC70 (N = 38) * | intercept | 1.78 | 0.04 | 44.77 | <0.001 |
playback (heat-calls) | 0.00 | 0.06 | 0.07 | 0.949 | |
12D-Tnest | −0.02 | 0.03 | −0.59 | 0.557 | |
CORT (N = 28) * | intercept | 0.68 | 0.07 | 9.72 | <0.001 |
playback (heat-calls) | −0.03 | 0.10 | −0.27 | 0.789 | |
12D-Tnest | −0.02 | 0.05 | −0.49 | 0.632 | |
H/L ratio (N = 21) | intercept | −0.10 | 0.10 | −1.057 | 0.305 |
playback (heat-calls) | −0.07 | 0.14 | −0.512 | 0.615 | |
12D-Tnest | 0.04 | 0.08 | 0.485 | 0.634 |
Physiological Predictor | Fixed Effect | Est. 1 | SE 2 | t Value | p-Value 3 | Variance [brood-ID 4] (±SE) |
---|---|---|---|---|---|---|
In-nest condition | ||||||
HSC70 and HSP90α (N = 35) | Intercept | 9.26 | 0.21 | 43.82 | <0.001 | 0.722 (±0.850) |
HSC70 | −0.27 | 0.18 | −1.48 | 0.151 | ||
HSP90α | 0.04 | 0.17 | 0.26 | 0.801 | ||
CORT and H/L ratio (N =17) | Intercept | 9.52 | 0.28 | 34.14 | <0.001 | 0.674 (±0.822) |
CORT | 0.20 | 0.26 | 0.75 | 0.464 | ||
H/L ratio | −0.29 | 0.23 | −1.24 | 0.252 | ||
Heat-challenge condition | ||||||
HSC70 and HSP90α (N = 35) | Intercept | 9.45 | 0.17 | 55.55 | <0.001 | 0.121 (±0.348) |
HSC70 | 0.37 | 0.17 | 2.25 | 0.031 | ||
HSP90α | −0.28 | 0.17 | −1.64 | 0.109 | ||
CORT and H/L ratio (N = 17) | Intercept | 9.68 | 0.26 | 37.80 | <0.001 | null (removed) |
CORT | −0.02 | 0.28 | −0.09 | 0.930 | ||
H/L ratio | −0.54 | 0.28 | −1.95 | 0.072 |
Response Variable | Fixed Effect | Est. 2 | SE 3 | t | p-Value 4 | Variance [brood-ID 5] (±SE) |
---|---|---|---|---|---|---|
CORT 6 (N = 53) | intercept | 0.70 | 0.05 | 12.92 | <0.001 | null (removed) |
experiment (heat-challenge) | −0.03 | 0.07 | −0.37 | 0.712 | ||
HSC70 7 (N = 73) | intercept | 1.76 | 0.03 | 58.26 | <0.001 | 0.003 (±0.05) |
experiment (heat-challenge) | 0.02 | 0.04 | 0.53 | 0.596 | ||
HSP90α 8 (N = 73) | intercept | 1.24 | 0.03 | 48.75 | <0.001 | null (removed) |
experiment (heat-challenge) | 0.03 | 0.04 | 0.95 | 0.344 | ||
H/L ratio 9 (N = 44) | intercept | −0.33 | 0.06 | −5.70 | <0.001 | 0.03 (±0.19) |
experiment (heat-challenge) | 0.21 | 0.08 | 2.76 | 0.009 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Udino, E.; Pessato, A.; Addison, B.; Crino, O.L.; Buchanan, K.L.; Mariette, M.M. Prenatal Acoustic Signals Influence Nestling Heat Shock Protein Response to Heat and Heterophil-to-Lymphocyte Ratio in a Desert Bird. Int. J. Mol. Sci. 2024, 25, 12194. https://doi.org/10.3390/ijms252212194
Udino E, Pessato A, Addison B, Crino OL, Buchanan KL, Mariette MM. Prenatal Acoustic Signals Influence Nestling Heat Shock Protein Response to Heat and Heterophil-to-Lymphocyte Ratio in a Desert Bird. International Journal of Molecular Sciences. 2024; 25(22):12194. https://doi.org/10.3390/ijms252212194
Chicago/Turabian StyleUdino, Eve, Anaïs Pessato, BriAnne Addison, Ondi L. Crino, Katherine L. Buchanan, and Mylene M. Mariette. 2024. "Prenatal Acoustic Signals Influence Nestling Heat Shock Protein Response to Heat and Heterophil-to-Lymphocyte Ratio in a Desert Bird" International Journal of Molecular Sciences 25, no. 22: 12194. https://doi.org/10.3390/ijms252212194
APA StyleUdino, E., Pessato, A., Addison, B., Crino, O. L., Buchanan, K. L., & Mariette, M. M. (2024). Prenatal Acoustic Signals Influence Nestling Heat Shock Protein Response to Heat and Heterophil-to-Lymphocyte Ratio in a Desert Bird. International Journal of Molecular Sciences, 25(22), 12194. https://doi.org/10.3390/ijms252212194