Exploring Plant–Bacterial Symbiosis for Eco-Friendly Agriculture and Enhanced Resilience
Abstract
:1. Endophytes
Bacterial Endophytes
2. The Ramifications of Agricultural Practices on Soil and Crop Microflora
3. A Pathway to Holistic Pest Management and Regenerative Agriculture
3.1. Utilizing Bacterial Endophytes for Sustainable Agriculture
3.2. Bacterial Endophytes as Catalysts for Productive Agri-Food Systems
3.3. Bacterial Endophytes as Allies in Plant Growth and Stress Adaptation
3.4. Mycorrhizal–Bacterial Interactions
3.5. Bacterial Endophytes and the Role of Holobiome in Pathogen Protection
4. Direct Containment of Phytopathogens by Bacterial Endophytes
5. Unraveling Indirect Interactions and Induced Systemic Resistance by Bacterial Endophytes
6. Decoding the Function of Pathogenesis-Related Proteins and Antioxidant Enzymes
7. Impact on Secondary Metabolism and Plant Defense Pathways
8. Bacterial Endophytes as Enhancers of Plant Resilience to Abiotic Stress
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bacon, C.W.; White, J. Microbial Endophytes; CRC Press: Boca Raton, FL, USA, 2000. [Google Scholar]
- Omomowo, O.I.; Babalola, O.O. Bacterial and fungal endophytes: Tiny giants with immense beneficial potential for plant growth and sustainable agricultural productivity. Microorganisms 2019, 7, 481. [Google Scholar] [CrossRef]
- Aslam, M.M.; IDRIS, A.L.; Zhang, Q.; Weifeng, X.; KARANJA, J.K.; Wei, Y. Rhizosphere microbiomes can regulate plant drought tolerance. Pedosphere 2022, 32, 61–74. [Google Scholar] [CrossRef]
- Toju, H.; Peay, K.G.; Yamamichi, M.; Narisawa, K.; Hiruma, K.; Naito, K.; Fukuda, S.; Ushio, M.; Nakaoka, S.; Onoda, Y. Core microbiomes for sustainable agroecosystems. Nat. Plants 2018, 4, 247–257. [Google Scholar] [CrossRef] [PubMed]
- Zahoor, M.; Irshad, M.; Rahman, H.; Qasim, M.; Afridi, S.G.; Qadir, M.; Hussain, A. Alleviation of heavy metal toxicity and phytostimulation of Brassica campestris L. by endophytic Mucor sp. MHR-7. Ecotoxicol. Environ. Saf. 2017, 142, 139–149. [Google Scholar] [CrossRef] [PubMed]
- Vacher, C.; Hampe, A.; Porté, A.J.; Sauer, U.; Compant, S.; Morris, C.E. The phyllosphere: Microbial jungle at the plant–climate interface. Annu. Rev. Ecol. Evol. Syst. 2016, 47, 1–24. [Google Scholar] [CrossRef]
- Hussain, A.; Shah, M.; Hamayun, M.; Iqbal, A.; Qadir, M.; Alataway, A.; Dewidar, A.Z.; Elansary, H.O.; Lee, I.-J. Phytohormones producing rhizobacteria alleviate heavy metals stress in soybean through multilayered response. Microbiol. Res. 2023, 266, 127237. [Google Scholar]
- Miliute, I.; Buzaite, O.; Baniulis, D.; Stanys, V. Bacterial endophytes in agricultural crops and their role in stress tolerance: A review. Zemdirb. -Agric. 2015, 102, 465–478. [Google Scholar] [CrossRef]
- Qadir, M.; Hussain, A.; Hamayun, M.; Shah, M.; Iqbal, A.; Irshad, M.; Ahmad, A.; Lodhi, M.A.; Lee, I.-J. Phytohormones producing Acinetobacter bouvetii P1 mitigates chromate stress in sunflower by provoking host antioxidant response. Antioxidants 2021, 10, 1868. [Google Scholar] [CrossRef]
- Harman, G.E.; Uphoff, N. Symbiotic root-endophytic soil microbes improve crop productivity and provide environmental benefits. Scientifica 2019, 2019, 9106395. [Google Scholar] [CrossRef]
- Hamayun, M.; Khan, N.; Khan, M.N.; Qadir, M.; Hussain, A.; Iqbal, A.; Khan, S.A.; Rehman, K.U.; Lee, I.-J. Antimicrobial and plant growth-promoting activities of bacterial endophytes isolated from Calotropis procera (Ait.) WT Aiton. Biocell 2021, 45, 363. [Google Scholar] [CrossRef]
- Qadir, M.; Hussain, A.; Shah, M.; Hamayun, M.; Iqbal, A.; Nadia. Enhancement of chromate phytoremediation and soil reclamation potential of Brassica campestris L. by Aspergillus niger. Environ. Sci. Pollut. Res. 2023, 30, 9471–9482. [Google Scholar] [CrossRef] [PubMed]
- Bailly, A.; Weisskopf, L. The modulating effect of bacterial volatiles on plant growth: Current knowledge and future challenges. Plant Signal. Behav. 2012, 7, 79–85. [Google Scholar] [CrossRef] [PubMed]
- Qadir, M.; Hussain, A.; Shah, M.; Hamayun, M.; Iqbal, A.; Irshad, M.; Khan, Z.H.; Islam, B.; Elansary, H.O.; Mahmoud, E.A. Pantoea conspicua promoted sunflower growth and engulfed rhizospheric arsenate by secreting exopolysaccharide. Plant Physiol. Biochem. 2023, 201, 107826. [Google Scholar] [CrossRef]
- Di Benedetto, N.A.; Corbo, M.R.; Campaniello, D.; Cataldi, M.P.; Bevilacqua, A.; Sinigaglia, M.; Flagella, Z. The role of plant growth promoting bacteria in improving nitrogen use efficiency for sustainable crop production: A focus on wheat. AIMS Microbiol. 2017, 3, 413. [Google Scholar] [CrossRef]
- Gamalero, E.; Glick, B.R. Mechanisms used by plant growth-promoting bacteria. In Bacteria in Agrobiology: Plant Nutrient Management; Springer: Berlin/Heidelberg, Germany, 2011; pp. 17–46. [Google Scholar]
- Ismaila, A.H.; Qadira, M.; Husnaa, M.I.; Ahmadb, A.; Hamayuna, M. Endophytic fungi isolated from Citrullus colocynthesl. Leaves and Their potential for secretion of indole acetic acid and gibberellin. J. Appl. Environ. Biol. Sci. 2018, 8, 80–84. [Google Scholar]
- Chen, X.; Wicaksono, W.A.; Berg, G.; Cernava, T. Bacterial communities in the plant phyllosphere harbour distinct responders to a broad-spectrum pesticide. Sci. Total Environ. 2021, 751, 141799. [Google Scholar] [CrossRef]
- Regar, R.K.; Gaur, V.K.; Bajaj, A.; Tambat, S.; Manickam, N. Comparative microbiome analysis of two different long-term pesticide contaminated soils revealed the anthropogenic influence on functional potential of microbial communities. Sci. Total Environ. 2019, 681, 413–423. [Google Scholar] [CrossRef]
- Vida, C.; de Vicente, A.; Cazorla, F.M. The role of organic amendments to soil for crop protection: Induction of suppression of soilborne pathogens. Ann. Appl. Biol. 2020, 176, 1–15. [Google Scholar] [CrossRef]
- Patle, G.; Kharpude, S.; Dabral, P.; Kumar, V. Impact of organic farming on sustainable agriculture system and marketing potential: A review. Int. J. Environ. Clim. Change 2020, 10, 100–120. [Google Scholar] [CrossRef]
- Husna, H.; Hussain, A.; Shah, M.; Hamayun, M.; Iqbal, A.; Qadir, M.; Asim, S.; Lee, I.-J. Stemphylium lycopersici and Stemphylium solani improved antioxidant system of soybean under chromate stress. Front. Microbiol. 2022, 13, 1001847. [Google Scholar] [CrossRef]
- Jain, P.; Pundir, R.K. Potential role of endophytes in sustainable agriculture-recent developments and future prospects. In Endophytes: Biology and Biotechnology; Maheshwari, D.K., Ed.; Springer: Cham, Switzerland, 2017; Volume 15, pp. 145–169. [Google Scholar]
- Qadir, M.; Hussain, A.; Shah, M.; Hamayun, M.; Al-Huqail, A.A.; Iqbal, A.; Ali, S. Improving sunflower growth and arsenic bioremediation in polluted environments: Insights from ecotoxicology and sustainable mitigation approaches. Heliyon 2024, 10, e33078. [Google Scholar] [CrossRef] [PubMed]
- Qadir, M.; Hussain, A.; Shah, M.; Hamayun, M.; Iqbal, A.; Irshad, M.; Ahmad, A.; Alrefaei, A.F.; Ali, S. Staphylococcus arlettae mediated defense mechanisms and metabolite modulation against arsenic stress in Helianthus annuus. Front. Plant Sci. 2024, 15, 1391348. [Google Scholar] [CrossRef]
- Wu, W.; Chen, W.; Liu, S.; Wu, J.; Zhu, Y.; Qin, L.; Zhu, B. Beneficial relationships between endophytic bacteria and medicinal plants. Front. Plant Sci. 2021, 12, 758. [Google Scholar] [CrossRef]
- Lockie, S. Going Organic: Mobilizing Networks for Environmentally Responsible Food Production; CABI: Wallingford, UK, 2006. [Google Scholar]
- Singh, S.P.; Bhattacharya, A.; Gupta, R.; Mishra, A.; Zaidi, F.; Srivastava, S. Endophytic Phytobiomes as Defense Elicitors: Current Insights and Future Prospects. In Phytobiomes: Current Insights and Future Vistas; Springer: Berlin/Heidelberg, Germany, 2020; pp. 299–334. [Google Scholar]
- Qadir, M.; Hussain, A.; Iqbal, A.; Shah, F.; Wu, W.; Cai, H. Microbial Utilization to Nurture Robust Agroecosystems for Food Security. Agronomy 2024, 14, 1891. [Google Scholar] [CrossRef]
- Long, H.H.; Schmidt, D.D.; Baldwin, I.T. Native bacterial endophytes promote host growth in a species-specific manner; phytohormone manipulations do not result in common growth responses. PLoS ONE 2008, 3, e2702. [Google Scholar] [CrossRef]
- Miotto-Vilanova, L.; Jacquard, C.; Courteaux, B.; Wortham, L.; Michel, J.; Clément, C.; Barka, E.A.; Sanchez, L. Burkholderia phytofirmans PsJN confers grapevine resistance against Botrytis cinerea via a direct antimicrobial effect combined with a better resource mobilization. Front. Plant Sci. 2016, 7, 1236. [Google Scholar] [CrossRef] [PubMed]
- Jha, Y. Endophytic bacteria as a modern tool for sustainable crop management under stress. In Biofertilizers for Sustainable Agriculture and Environment; Springer: Berlin/Heidelberg, Germany, 2019; pp. 203–223. [Google Scholar]
- Cohen, A.C.; Travaglia, C.N.; Bottini, R.; Piccoli, P.N. Participation of abscisic acid and gibberellins produced by endophytic Azospirillum in the alleviation of drought effects in maize. Botany 2009, 87, 455–462. [Google Scholar] [CrossRef]
- Van de Poel, B.; Van Der Straeten, D. 1-aminocyclopropane-1-carboxylic acid (ACC) in plants: More than just the precursor of ethylene! Front. Plant Sci. 2014, 5, 640. [Google Scholar] [CrossRef] [PubMed]
- Qin, S.; Feng, W.-W.; Zhang, Y.-J.; Wang, T.-T.; Xiong, Y.-W.; Xing, K. Diversity of bacterial microbiota of coastal halophyte Limonium sinense and amelioration of salinity stress damage by symbiotic plant growth-promoting actinobacterium Glutamicibacter halophytocola KLBMP 5180. Appl. Environ. Microbiol. 2018, 84, e01533-18. [Google Scholar] [CrossRef]
- Benizri, E.; Lopez, S.; Durand, A.; Kidd, P.S. Diversity and role of endophytic and rhizosphere microbes associated with hyperaccumulator plants during metal accumulation. In Agromining: Farming for Metals; Springer: Berlin/Heidelberg, Germany, 2021; pp. 239–279. [Google Scholar]
- Theocharis, A.; Bordiec, S.; Fernandez, O.; Paquis, S.; Dhondt-Cordelier, S.; Baillieul, F.; Clément, C.; Barka, E.A. Burkholderia phytofirmans PsJN primes Vitis vinifera L. and confers a better tolerance to low nonfreezing temperatures. Mol. Plant-Microbe Interact. 2012, 25, 241–249. [Google Scholar] [CrossRef]
- Berg, G. Plant–microbe interactions promoting plant growth and health: Perspectives for controlled use of microorganisms in agriculture. Appl. Microbiol. Biotechnol. 2009, 84, 11–18. [Google Scholar] [CrossRef] [PubMed]
- Pozo, M.J.; Van Der Ent, S.; Van Loon, L.; Pieterse, C.M. Transcription factor MYC2 is involved in priming for enhanced defense during rhizobacteria-induced systemic resistance in Arabidopsis thaliana. New Phytol. 2008, 180, 511–523. [Google Scholar] [CrossRef]
- Das, P.P.; Singh, K.R.B.; Nagpure, G.; Mansoori, A.; Singh, R.P.; Ghazi, I.A.; Kumar, A.; Singh, J. Plant-soil-microbes: A tripartite interaction for nutrient acquisition and better plant growth for sustainable agricultural practices. Environ. Res. 2022, 214, 113821. [Google Scholar] [CrossRef]
- Santoyo, G.; Moreno-Hagelsieb, G.; del Carmen Orozco-Mosqueda, M.; Glick, B.R. Plant growth-promoting bacterial endophytes. Microbiol. Res. 2016, 183, 92–99. [Google Scholar] [CrossRef]
- Santoyo, G.; Gamalero, E.; Glick, B.R. Mycorrhizal-Bacterial Amelioration of Plant Abiotic and Biotic Stress. Front. Sustain. Food Syst. 2021, 5, 672881. [Google Scholar] [CrossRef]
- Köhl, J.; Kolnaar, R.; Ravensberg, W.J. Mode of action of microbial biological control agents against plant diseases: Relevance beyond efficacy. Front. Plant Sci. 2019, 10, 845. [Google Scholar] [CrossRef]
- Stone, B.W.; Weingarten, E.A.; Jackson, C.R. The role of the phyllosphere microbiome in plant health and function. In Annual Plant Reviews Online; John Wiley\& Sons, Ltd.: Chichester, UK, 2018; pp. 533–556. [Google Scholar]
- Joe, M.M.; Islam, M.R.; Karthikeyan, B.; Bradeepa, K.; Sivakumaar, P.K.; Sa, T. Resistance responses of rice to rice blast fungus after seed treatment with the endophytic Achromobacter xylosoxidans AUM54 strains. Crop Prot. 2012, 42, 141–148. [Google Scholar] [CrossRef]
- Syed-Ab-Rahman, S.F.; Carvalhais, L.C.; Chua, E.; Xiao, Y.; Wass, T.J.; Schenk, P.M. Identification of soil bacterial isolates suppressing different Phytophthora spp. and promoting plant growth. Front. Plant Sci. 2018, 9, 1502. [Google Scholar] [CrossRef]
- Gong, Y.; Bai, J.-L.; Yang, H.-T.; Zhang, W.-D.; Xiong, Y.-W.; Ding, P.; Qin, S. Phylogenetic diversity and investigation of plant growth-promoting traits of actinobacteria in coastal salt marsh plant rhizospheres from Jiangsu, China. Syst. Appl. Microbiol. 2018, 41, 516–527. [Google Scholar] [CrossRef]
- Lin, Y.-S.; Saputra, F.; Chen, Y.-C.; Hu, S.-Y. Dietary administration of Bacillus amyloliquefaciens R8 reduces hepatic oxidative stress and enhances nutrient metabolism and immunity against Aeromonas hydrophila and Streptococcus agalactiae in zebrafish (Danio rerio). Fish Shellfish. Immunol. 2019, 86, 410–419. [Google Scholar] [CrossRef]
- Păcurar, D.I.; Thordal-Christensen, H.; Păcurar, M.L.; Pamfil, D.; Botez, C.; Bellini, C. Agrobacterium tumefaciens: From crown gall tumors to genetic transformation. Physiol. Mol. Plant Pathol. 2011, 76, 76–81. [Google Scholar] [CrossRef]
- Munaganti, R.K.; Muvva, V.; Konda, S.; Naragani, K.; Mangamuri, U.K.; Dorigondla, K.R.; Akkewar, D. Antimicrobial profile of Arthrobacter kerguelensis VL-RK_09 isolated from Mango orchards. Braz. J. Microbiol. 2016, 47, 1030–1038. [Google Scholar] [CrossRef] [PubMed]
- Lin, W.; Okon, Y.; Hardy, R.W. Enhanced mineral uptake by Zea mays and Sorghum bicolor roots inoculated with Azospirillum brasilense. Appl. Environ. Microbiol. 1983, 45, 1775–1779. [Google Scholar] [CrossRef] [PubMed]
- Butcher, B.G.; Helmann, J.D. Identification of Bacillus subtilis σW-dependent genes that provide intrinsic resistance to antimicrobial compounds produced by Bacilli. Mol. Microbiol. 2006, 60, 765–782. [Google Scholar] [CrossRef]
- Choudhary, D.K.; Johri, B.N. Interactions of Bacillus spp. and plants–with special reference to induced systemic resistance (ISR). Microbiol. Res. 2009, 164, 493–513. [Google Scholar] [CrossRef]
- Zveushe, O.K.; de Dios, V.R.; Zhang, H.; Zeng, F.; Liu, S.; Shen, S.; Kang, Q.; Zhang, Y.; Huang, M.; Sarfaraz, A. Effects of Co-inoculating Saccharomyces spp. with bradyrhizobium japonicum on atmospheric nitrogen fixation in soybeans (Glycine max (L.)). Plants 2023, 12, 681. [Google Scholar] [CrossRef]
- Simonetti, E.; Roberts, I.N.; Montecchia, M.S.; Gutierrez-Boem, F.H.; Gomez, F.M.; Ruiz, J.A. A novel Burkholderia ambifaria strain able to degrade the mycotoxin fusaric acid and to inhibit Fusarium spp. growth. Microbiol. Res. 2018, 206, 50–59. [Google Scholar] [CrossRef]
- Schnell, S.; Steinman, H.M. Function and stationary-phase induction of periplasmic copper-zinc superoxide dismutase and catalase/peroxidase in Caulobacter crescentus. J. Bacteriol. 1995, 177, 5924–5929. [Google Scholar] [CrossRef]
- Kortman, G.A.; Boleij, A.; Swinkels, D.W.; Tjalsma, H. Iron availability increases the pathogenic potential of Salmonella typhimurium and other enteric pathogens at the intestinal epithelial interface. PLoS ONE 2012, 7, e29968. [Google Scholar] [CrossRef]
- da Silva, S.M.; Amaral, C.; Neves, S.S.; Santos, C.; Pimentel, C.; Rodrigues-Pousada, C. An HcpR paralog of Desulfovibrio gigas provides protection against nitrosative stress. FEBS Open Bio 2015, 5, 594–604. [Google Scholar] [CrossRef]
- Mukherjee, A.; Singh, B.K.; Verma, J.P. Harnessing chickpea (Cicer arietinum L.) seed endophytes for enhancing plant growth attributes and bio-controlling against Fusarium sp. Microbiol. Res. 2020, 237, 126469. [Google Scholar] [CrossRef]
- Ponce de León, I.; Oliver, J.P.; Castro, A.; Gaggero, C.; Bentancor, M.; Vidal, S. Erwinia carotovora elicitors and Botrytis cinerea activate defense responses in Physcomitrella patens. BMC Plant Biol. 2007, 7, 52. [Google Scholar] [CrossRef]
- Persello-Cartieaux, F.; Nussaume, L.; Robaglia, C. Tales from the underground: Molecular plant–rhizobacteria interactions. Plant Cell Environ. 2003, 26, 189–199. [Google Scholar] [CrossRef]
- Hashmi, I.; Bindschedler, S.; Junier, P. Firmicutes. In Beneficial Microbes in Agro-Ecology; Elsevier: Amsterdam, The Netherlands, 2020; pp. 363–396. [Google Scholar]
- Kim, J.-E.; Woo, O.-G.; Bae, Y.; Keum, H.L.; Chung, S.; Sul, W.J.; Lee, J.-H. Enhanced drought and salt stress tolerance in arabidopsis by Flavobacterium crocinum HYN0056 T. J. Plant Biol. 2020, 63, 63–71. [Google Scholar] [CrossRef]
- Hayat, R.; Ali, S.; Amara, U.; Khalid, R.; Ahmed, I. Soil beneficial bacteria and their role in plant growth promotion: A review. Ann. Microbiol. 2010, 60, 579–598. [Google Scholar] [CrossRef]
- Sharma, P. Influence of pesticide-treated seeds on survival of Mesorhizobium sp. Cicer, symbiotic efficiency and yield in chickpea. Plant Prot. Sci. 2012, 48, 37–43. [Google Scholar]
- Ardanov, P.; Sessitsch, A.; Häggman, H.; Kozyrovska, N.; Pirttilä, A.M. Methylobacterium-induced endophyte community changes correspond with protection of plants against pathogen attack. PLoS ONE 2012, 7, e46802. [Google Scholar] [CrossRef]
- Salomon, M.V.; Funes Pinter, I.; Piccoli, P.; Bottini, R. Use of plant growth-promoting rhizobacteria as biocontrol agents: Induced systemic resistance against biotic stress in plants. In Microbial Applications Vol. 2: Biomedicine, Agriculture and Industry; Springer: Berlin/Heidelberg, Germany, 2017; pp. 133–152. [Google Scholar]
- Meena, M.; Swapnil, P.; Divyanshu, K.; Kumar, S.; Harish; Tripathi, Y.N.; Zehra, A.; Marwal, A.; Upadhyay, R.S. PGPR-mediated induction of systemic resistance and physiochemical alterations in plants against the pathogens: Current perspectives. J. Basic Microbiol. 2020, 60, 828–861. [Google Scholar] [CrossRef]
- Li, Y.; Chen, S. Fusaricidin produced by Paenibacillus polymyxa WLY78 induces systemic resistance against Fusarium wilt of cucumber. Int. J. Mol. Sci. 2019, 20, 5240. [Google Scholar] [CrossRef]
- Torres, R.; Teixidó, N.; Usall, J.; Abadias, M.; Mir, N.; Larrigaudiere, C.; Viñas, I. Anti-oxidant activity of oranges after infection with the pathogen Penicillium digitatum or treatment with the biocontrol agent Pantoea agglomerans CPA-2. Biol. Control 2011, 57, 103–109. [Google Scholar] [CrossRef]
- Hernández-León, R.; Rojas-Solís, D.; Contreras-Pérez, M.; del Carmen Orozco-Mosqueda, M.; Macías-Rodríguez, L.I.; Reyes-de la Cruz, H.; Valencia-Cantero, E.; Santoyo, G. Characterization of the antifungal and plant growth-promoting effects of diffusible and volatile organic compounds produced by Pseudomonas fluorescens strains. Biol. Control 2015, 81, 83–92. [Google Scholar] [CrossRef]
- Haeder, S.; Wirth, R.; Herz, H.; Spiteller, D. Candicidin-producing Streptomyces support leaf-cutting ants to protect their fungus garden against the pathogenic fungus Escovopsis. Proc. Natl. Acad. Sci. USA 2009, 106, 4742–4746. [Google Scholar] [CrossRef] [PubMed]
- Nion, Y.A.; Toyota, K. Recent trends in control methods for bacterial wilt diseases caused by Ralstonia solanacearum. Microbes Environ. 2015, 30, 1–11. [Google Scholar]
- Bartsev, A.V.; Deakin, W.J.; Boukli, N.M.; McAlvin, C.B.; Stacey, G.; Malnoë, P.; Broughton, W.J.; Staehelin, C. NopL, an effector protein of Rhizobium sp. NGR234, thwarts activation of plant defense reactions. Plant Physiol. 2004, 134, 871–879. [Google Scholar] [CrossRef]
- Clements, T.; Ndlovu, T.; Khan, W. Broad-spectrum antimicrobial activity of secondary metabolites produced by Serratia marcescens strains. Microbiol. Res. 2019, 229, 126329. [Google Scholar] [CrossRef]
- Singh, R.P.; Jha, P.N. The PGPR Stenotrophomonas maltophilia SBP-9 augments resistance against biotic and abiotic stress in wheat plants. Front. Microbiol. 2017, 8, 1945. [Google Scholar] [CrossRef]
- Shimizu, M.; Meguro, A.; Hasegawa, S.; Nishimura, T.; Kunoh, H. Disease resistance induced by nonantagonistic endophytic Streptomyces spp. on tissue-cultured seedlings of rhododendron. J. Gen. Plant Pathol. 2006, 72, 351–354. [Google Scholar] [CrossRef]
- Han, J.-I.; Choi, H.-K.; Lee, S.-W.; Orwin, P.M.; Kim, J.; LaRoe, S.L.; Kim, T.-G.; O’Neil, J.; Leadbetter, J.R.; Lee, S.Y. Complete genome sequence of the metabolically versatile plant growth-promoting endophyte Variovorax paradoxus S110. J. Bacteriol. 2011, 193, 1183–1190. [Google Scholar] [CrossRef]
- Riera, N.; Wang, H.; Li, Y.; Li, J.; Pelz-Stelinski, K.; Wang, N. Induced systemic resistance against citrus canker disease by rhizobacteria. Phytopathology 2018, 108, 1038–1045. [Google Scholar] [CrossRef]
- Sood, M.; Kumar, V.; Rawal, R. Seed biopriming a novel method to control seed borne diseases of crops. In Biocontrol Agents and Secondary Metabolites; Elsevier: Amsterdam, The Netherlands, 2021; pp. 181–223. [Google Scholar]
- Arrebola, E.; Jacobs, R.; Korsten, L. Iturin A is the principal inhibitor in the biocontrol activity of Bacillus amyloliquefaciens PPCB004 against postharvest fungal pathogens. J. Appl. Microbiol. 2010, 108, 386–395. [Google Scholar] [CrossRef]
- Kumar, J.; Singh, D.; Ghosh, P.; Kumar, A. Endophytic and epiphytic modes of microbial interactions and benefits. In Plant-Microbe Interactions in Agro-Ecological Perspectives; Springer: Berlin/Heidelberg, Germany, 2017; pp. 227–253. [Google Scholar]
- Hussein, W.; Fahim, S. Detection of synthetases genes involved in non ribosomal lipopeptides (NRLPs) biosynthesis from Bacillus species by bioinformatics and PCR degenerated primers and estimation of their production. Int. J. Pharma Bio Sci. 2017, 8, 116–125. [Google Scholar]
- Shaheen, M.; Li, J.; Ross, A.C.; Vederas, J.C.; Jensen, S.E. Paenibacillus polymyxa PKB1 produces variants of polymyxin B-type antibiotics. Chem. Biol. 2011, 18, 1640–1648. [Google Scholar] [CrossRef] [PubMed]
- Swiontek Brzezinska, M.; Jankiewicz, U.; Burkowska, A.; Walczak, M. Chitinolytic microorganisms and their possible application in environmental protection. Curr. Microbiol. 2014, 68, 71–81. [Google Scholar] [CrossRef] [PubMed]
- Santra, H.K.; Banerjee, D. Natural products as fungicide and their role in crop protection. In Natural Bioactive Products in Sustainable Agriculture; Springer: Berlin/Heidelberg, Germany, 2020; pp. 131–219. [Google Scholar]
- Krishnaraj, M.; Mathivanan, V. Actinomycetes: Diversity, distribution, economic importance and their role in plant protection. Annu. Rev. Plant Pathol. 2014, 1, 269. [Google Scholar]
- Ashajyothi, M.; Kumar, A.; Sheoran, N.; Ganesan, P.; Gogoi, R.; Subbaiyan, G.K.; Bhattacharya, R. Black pepper (Piper nigrum L.) associated endophytic Pseudomonas putida BP25 alters root phenotype and induces defense in rice (Oryza sativa L.) against blast disease incited by Magnaporthe oryzae. Biol. Control 2020, 143, 104181. [Google Scholar] [CrossRef]
- Madhaiyan, M.; Poonguzhali, S.; Sa, T. Characterization of 1-aminocyclopropane-1-carboxylate (ACC) deaminase containing Methylobacterium oryzae and interactions with auxins and ACC regulation of ethylene in canola (Brassica campestris). Planta 2007, 226, 867–876. [Google Scholar] [CrossRef]
- Ghosh, S.; Bhagwat, T.; Webster, T.J. Endophytic microbiomes and their plant growth-promoting attributes for plant health. In Current Trends in Microbial Biotechnology for Sustainable Agriculture; Springer: Berlin/Heidelberg, Germany, 2021; pp. 245–278. [Google Scholar]
- Achari, G.A.; Ramesh, R. Recent advances in quorum quenching of plant pathogenic bacteria. In Advances in Biological Science Research; Elsevier: Amsterdam, The Netherlands, 2019; pp. 233–245. [Google Scholar]
- Oukala, N.; Aissat, K.; Pastor, V. Bacterial endophytes: The hidden actor in plant immune responses against biotic stress. Plants 2021, 10, 1012. [Google Scholar] [CrossRef]
- Verma, V.; Ravindran, P.; Kumar, P.P. Plant hormone-mediated regulation of stress responses. BMC Plant Biol. 2016, 16, 86. [Google Scholar] [CrossRef]
- Anwar, A.; Shahnaz, E. Sustainable induction of systemic resistance in response to potential biological control agents in crops. In New and Future Developments in Microbial Biotechnology and Bioengineering; Elsevier: Amsterdam, The Netherlands, 2022; pp. 151–176. [Google Scholar]
- Eid, A.M.; Fouda, A.; Abdel-Rahman, M.A.; Salem, S.S.; Elsaied, A.; Oelmüller, R.; Hijri, M.; Bhowmik, A.; Elkelish, A.; Hassan, S.E.-D. Harnessing bacterial endophytes for promotion of plant growth and biotechnological applications: An overview. Plants 2021, 10, 935. [Google Scholar] [CrossRef]
- Leubner-Metzger, G.; Meins, F. Functions and regulation of plant ß-1, 3-glucanases (PR-2). In Pathogenesis-Related Proteins in Plants; CRC Press: Boca Raton, FL, USA, 1999; pp. 49–76. [Google Scholar]
- Jiang, X.; Lin, H.; Lin, M.; Chen, Y.; Wang, H.; Lin, Y.; Shi, J.; Lin, Y. A novel chitosan formulation treatment induces disease resistance of harvested litchi fruit to Peronophythora litchii in association with ROS metabolism. Food Chem. 2018, 266, 299–308. [Google Scholar] [CrossRef]
- Miljaković, D.; Marinković, J.; Balešević-Tubić, S. The significance of Bacillus spp. in disease suppression and growth promotion of field and vegetable crops. Microorganisms 2020, 8, 1037. [Google Scholar] [CrossRef] [PubMed]
- Wani, Z.A.; Ashraf, N.; Mohiuddin, T.; Riyaz-Ul-Hassan, S. Plant-endophyte symbiosis, an ecological perspective. Appl. Microbiol. Biotechnol. 2015, 99, 2955–2965. [Google Scholar] [CrossRef]
- Großkinsky, D.K.; van der Graaff, E.; Roitsch, T. Phytoalexin transgenics in crop protection—Fairy tale with a happy end? Plant Sci. 2012, 195, 54–70. [Google Scholar] [CrossRef] [PubMed]
- van de Mortel, J.E.; de Vos, R.C.H.; Dekkers, E.; Pineda, A.; Guillod, L.; Bouwmeester, K.; van Loon, J.J.A.; Dicke, M.; Raaijmakers, J.M. Metabolic and transcriptomic changes induced in Arabidopsis by the rhizobacterium Pseudomonas fluorescens SS101. Plant Physiol. 2012, 160, 2173–2188. [Google Scholar] [CrossRef] [PubMed]
- Ogbe, A.A.; Finnie, J.F.; Van Staden, J. The role of endophytes in secondary metabolites accumulation in medicinal plants under abiotic stress. S. Afr. J. Bot. 2020, 134, 126–134. [Google Scholar] [CrossRef]
- Da Mota, F.F.; Castro, D.P.; Vieira, C.S.; Gumiel, M.; De Albuquerque, J.P.; Carels, N.; Azambuja, P. In vitro trypanocidal activity, genomic analysis of isolates, and in vivo transcription of type VI secretion system of Serratia marcescens belonging to the microbiota of Rhodnius prolixus digestive tract. Front. Microbiol. 2019, 9, 3205. [Google Scholar] [CrossRef]
- Ahmed, B.; Shahid, M.; Syed, A.; Rajput, V.D.; Elgorban, A.M.; Minkina, T.; Bahkali, A.H.; Lee, J. Drought tolerant Enterobacter sp./Leclercia adecarboxylata secretes indole-3-acetic acid and other biomolecules and enhances the biological attributes of Vigna radiata (L.) R. Wilczek in water deficit conditions. Biology 2021, 10, 1149. [Google Scholar] [CrossRef]
- Husna; Hussain, A.; Shah, M.; Hamayun, M.; Iqbal, A.; Murad, W.; Irshad, M.; Qadir, M.; Kim, H.-Y. Pseudocitrobacter anthropi reduces heavy metal uptake and improves phytohormones and antioxidant system in Glycine max L. World J. Microbiol. Biotechnol. 2021, 37, 195. [Google Scholar] [CrossRef]
- Husna; Hussain, A.; Shah, M.; Hamayun, M.; Qadir, M.; Iqbal, A. Heavy metal tolerant endophytic fungi Aspergillus welwitschiae improves growth, ceasing metal uptake and strengthening antioxidant system in Glycine max L. Environ. Sci. Pollut. Res. 2021, 29, 15501–15515. [Google Scholar] [CrossRef]
- Adams, D.G.; Bergman, B.; Nierzwicki-Bauer, S.A.; Rai, A.N.; Schüßler, A.N. Cyanobacterial-Plant Symbioses. In The Prokaryotes; Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, K.H., Stackebrandt, E., Eds.; Sprigner: New York, NY, USA, 2006; pp. 331–363. [Google Scholar]
- Chukwuneme, C.F. Actinomycetes Impacts on Drought Stress in Maize (Zea mays L.). Ph.D. Thesis, North-West University, Potchefstroom, South Africa, 2018. [Google Scholar]
- Naveed, M.; Hussain, M.B.; Zahir, Z.A.; Mitter, B.; Sessitsch, A. Drought stress amelioration in wheat through inoculation with Burkholderia phytofirmans strain PsJN. Plant Growth Regul. 2014, 73, 121–131. [Google Scholar] [CrossRef]
- Corsini, A.; Colombo, M.; Gardana, C.; Zecchin, S.; Simonetti, P.; Cavalca, L. Characterization of As(III) oxidizing Achromobacter sp. strain N2: Effects on arsenic toxicity and translocation in rice. Ann. Microbiol. 2018, 68, 295–304. [Google Scholar] [CrossRef]
- Ho, Y.-N.; Mathew, D.C.; Hsiao, S.-C.; Shih, C.-H.; Chien, M.-F.; Chiang, H.-M.; Huang, C.-C. Selection and application of endophytic bacterium Achromobacter xylosoxidans strain F3B for improving phytoremediation of phenolic pollutants. J. Hazard. Mater. 2012, 219–220, 43–49. [Google Scholar] [CrossRef]
- Danish, S.; Zafar-Ul-Hye, M.; Hussain, S.; Riaz, M.; Qayyum, M.F. Mitigation of drought stress in maize through inoculation with drought tolerant ACC deaminase containing PGPR under axenic conditions. Pak. J. Bot. 2020, 52, 49–60. [Google Scholar] [CrossRef] [PubMed]
- Selim, S.; Hassan, Y.M.; Saleh, A.M.; Habeeb, T.H.; AbdElgawad, H. Actinobacterium isolated from a semi-arid environment improves the drought tolerance in maize (Zea mays L.). Plant Physiol. Biochem. 2019, 142, 15–21. [Google Scholar] [CrossRef]
- Parmar, N.; Singh, K.H.; Sharma, D.; Singh, L.; Kumar, P.; Nanjundan, J.; Khan, Y.J.; Chauhan, D.K.; Thakur, A.K. Genetic engineering strategies for biotic and abiotic stress tolerance and quality enhancement in horticultural crops: A comprehensive review. 3 Biotech 2017, 7, 239. [Google Scholar] [CrossRef]
- Sodhi, K.K.; Kumar, M.; Singh, D.K. Multi-metal resistance and potential of Alcaligenes sp. MMA for the removal of heavy metals. SN Appl. Sci. 2020, 2, 1885. [Google Scholar] [CrossRef]
- Escaray, F.J.; Menendez, A.B.; Garriz, A.; Pieckenstain, F.L.; Estrella, M.J.; Castagno, L.N.; Carrasco, P.; Sanjuan, J.; Ruiz, O.A. Ecological and agronomic importance of the plant genus Lotus. Its application in grassland sustainability and the amelioration of constrained and contaminated soils. Plant Sci. 2012, 182, 121–133. [Google Scholar] [CrossRef] [PubMed]
- Narayanan, M.; Devarajan, N.; He, Z.; Kandasamy, S.; Ashokkumar, V.; Raja, R.; Carvalho, I.S. Assessment of microbial diversity and enumeration of metal tolerant autochthonous bacteria from tailings of magnesite and bauxite mines. Mater. Today Proc. 2020, 33, 4391–4401. [Google Scholar] [CrossRef]
- Steiner, F.; da Silva Oliveira, C.E.; Zoz, T.; Zuffo, A.M.; de Freitas, R.S. Co-Inoculation of Common Bean with Rhizobium and Azospirillum Enhance the Drought Tolerance. Russ. J. Plant Physiol. 2020, 67, 923–932. [Google Scholar] [CrossRef]
- Kumaravel, S.; Thankappan, S.; Raghupathi, S.; Uthandi, S. Draft genome sequence of plant growth-promoting and drought-tolerant Bacillus altitudinis FD48, isolated from rice phylloplane. Genome Announc. 2018, 6, 10–1128. [Google Scholar] [CrossRef]
- Vardharajula, S.; Zulfikar Ali, S.; Grover, M.; Reddy, G.; Bandi, V. Drought-tolerant plant growth promoting Bacillus spp.: Effect on growth, osmolytes, and antioxidant status of maize under drought stress. J. Plant Interact. 2011, 6, 1–14. [Google Scholar] [CrossRef]
- Bakhtiyarifar, M.; Enayatizamir, N.; Mehdi Khanlou, K. Biochemical and molecular investigation of non-rhizobial endophytic bacteria as potential biofertilisers. Arch. Microbiol. 2021, 203, 513–521. [Google Scholar] [CrossRef] [PubMed]
- Chanda, D.; Sharma, G.; Jha, D.; Hijri, M. Tolerance of microorganisms in soil contaminated with trace metals: An overview. In Recent Advances in Applied Microbiology; Springer: Berlin/Heidelberg, Germany, 2017; pp. 165–193. [Google Scholar]
- Majewska, M.; Wdowiak-Wróbel, S.; Marek-Kozaczuk, M.; Nowak, A.; Tyśkiewicz, R. Cadmium-resistant Chryseobacterium sp. DEMBc1 strain: Characteristics and potential to assist phytoremediation and promote plant growth. Environ. Sci. Pollut. Res. 2022, 29, 83567–83579. [Google Scholar] [CrossRef] [PubMed]
- Latif, M.; Bukhari, S.A.H.; Alrajhi, A.A.; Alotaibi, F.S.; Ahmad, M.; Shahzad, A.N.; Dewidar, A.Z.; Mattar, M.A. Inducing Drought Tolerance in Wheat through Exopolysaccharide-Producing Rhizobacteria. Agronomy 2022, 12, 1140. [Google Scholar] [CrossRef]
- Kim, Y.N.; Khan, M.A.; Kang, S.M.; Hamayun, M.; Lee, I.J. Enhancement of Drought-Stress Tolerance of Brassica oleracea var. italica L. by Newly Isolated Variovorax sp. YNA59. J. Microbiol. Biotechnol. 2020, 30, 1500–1509. [Google Scholar] [CrossRef] [PubMed]
- Vega-Celedón, P.; Bravo, G.; Velásquez, A.; Cid, F.P.; Valenzuela, M.; Ramírez, I.; Vasconez, I.-N.; Álvarez, I.; Jorquera, M.A.; Seeger, M. Microbial Diversity of Psychrotolerant Bacteria Isolated from Wild Flora of Andes Mountains and Patagonia of Chile towards the Selection of Plant Growth-Promoting Bacterial Consortia to Alleviate Cold Stress in Plants. Microorganisms 2021, 9, 538. [Google Scholar] [CrossRef]
- Banach, A.M.; Kuźniar, A.; Grządziel, J.; Wolińska, A. Azolla filiculoides L. as a source of metal-tolerant microorganisms. PLoS ONE 2020, 15, e0232699. [Google Scholar] [CrossRef] [PubMed]
- Talaat, N.B.; Shawky, B.T. Microbe-mediated induced abiotic stress tolerance responses in plants. In Plant-Microbe Interactions in Agro-Ecological Perspectives; Singh, D., Singh, H., Prabha, R., Eds.; Springer: Singapore, 2017; pp. 101–133. [Google Scholar]
- Saleem, M.; Nawaz, F.; Hussain, M.B.; Ikram, R.M. Comparative Effects of Individual and Consortia Plant Growth Promoting Bacteria on Physiological and Enzymatic Mechanisms to Confer Drought Tolerance in Maize (Zea mays L.). J. Soil Sci. Plant Nutr. 2021, 21, 3461–3476. [Google Scholar] [CrossRef]
- Kasan, H.C.; Baecker, A.A.W. Activated Sludge Treatment of Coal-Gasification Effluent in a Petrochemical Plant—II. Metal Accumulation by Heterotrophic Bacteria. In Water Pollution Research and Control Brighton; Lijklema, L., Imhoff, K.R., Ives, K.J., Jenkins, D., Ludwig, R.G., Suzuki, M., Toerien, D.F., Wheatland, A.B., Milburn, A., Izod, E.J., Eds.; Pergamon: Oxford, UK, 1988; pp. 297–303. [Google Scholar]
- Zhang, L.; Zhong, J.; Liu, H.; Xin, K.; Chen, C.; Li, Q.; Wei, Y.; Wang, Y.; Chen, F.; Shen, X. Complete genome sequence of the drought resistance-promoting endophyte Klebsiella sp. LTGPAF-6F. J. Biotechnol. 2017, 246, 36–39. [Google Scholar] [CrossRef]
- Afridi, M.S.; Van Hamme, J.d.; Bundschuh, J.; Sumaira; Khan, M.N.; Salam, A.; Waqar, M.; Munis, M.F.H.; Chaudhary, H.J. Biotechnological approaches in agriculture and environmental management-bacterium Kocuria rhizophila 14ASP as heavy metal and salt-tolerant plant growth-promoting strain. Biologia 2021, 76, 3091–3105. [Google Scholar] [CrossRef]
- Eke, P.; Kumar, A.; Sahu, K.P.; Wakam, L.N.; Sheoran, N.; Ashajyothi, M.; Patel, A.; Fekam, F.B. Endophytic bacteria of desert cactus (Euphorbia trigonas Mill) confer drought tolerance and induce growth promotion in tomato (Solanum lycopersicum L.). Microbiol. Res. 2019, 228, 126302. [Google Scholar] [CrossRef] [PubMed]
- Rousseau, R.; Santaella, C.; Achouak, W.; Godon, J.J.; Bonnafous, A.; Bergel, A.; Délia, M.L. Correlation of the electrochemical kinetics of high-salinity-tolerant bioanodes with the structure and microbial composition of the biofilm. ChemElectroChem 2014, 1, 1966–1975. [Google Scholar] [CrossRef]
- Ofek, M.; Hadar, Y.; Minz, D. Ecology of root colonizing Massilia (Oxalobacteraceae). PLoS ONE 2012, 7, e40117. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, T.; Ayabe, Y.; Horinouchi, M.; Habe, H.; Nojiri, H.; Omori, T. Improved conditions for the transformation by electroporation of the extracellular polysaccharide-producing methylotroph Methylobacillus sp. Biotechnol. Lett. 2001, 23, 787–791. [Google Scholar] [CrossRef]
- Gourion, B.; Francez-Charlot, A.; Vorholt, J.A. PhyR is involved in the general stress response of Methylobacterium extorquens AM1. J. Bacteriol. 2008, 190, 1027–1035. [Google Scholar] [CrossRef]
- Luvuyo, N.; Nwodo, U.U.; Mabinya, L.V.; Okoh, A.I. Studies on bioflocculant production by a mixed culture of Methylobacterium sp. Obi and Actinobacterium sp. Mayor. BMC Biotechnol. 2013, 13, 62. [Google Scholar] [CrossRef]
- Karmakar, J.; Goswami, S.; Pramanik, K.; Maiti, T.K.; Kar, R.K.; Dey, N. Growth promoting properties of Mycobacterium and Bacillus on rice plants under induced drought. Plant Sci. Today 2021, 8, 49–57. [Google Scholar] [CrossRef]
- Yun, C.; Matsuda, H.; Kawamukai, M. Directed evolution to enhance secretion efficiency and thermostability of chitosanase from Mitsuaria chitosanitabida 3001. Biosci. Biotechnol. Biochem. 2006, 70, 559–563. [Google Scholar] [CrossRef]
- Lee, S.; Lee, Y.-Y.; Cho, K.-S. Inoculation effect of heavy metal tolerant and plant growth promoting rhizobacteria for rhizoremediation. Int. J. Environ. Sci. Technol. 2023, 21, 1419–1434. [Google Scholar] [CrossRef]
- Vives-Peris, V.; Gómez-Cadenas, A.; Pérez-Clemente, R.M. Salt stress alleviation in citrus plants by plant growth-promoting rhizobacteria Pseudomonas putida and Novosphingobium sp. Plant Cell Rep. 2018, 37, 1557–1569. [Google Scholar] [CrossRef]
- Pandey, S.; Ghosh, P.K.; Ghosh, S.; De, T.K.; Maiti, T.K. Role of heavy metal resistant Ochrobactrum sp. and Bacillus spp. strains in bioremediation of a rice cultivar and their PGPR like activities. J. Microbiol. 2013, 51, 11–17. [Google Scholar] [CrossRef] [PubMed]
- Kour, D.; Rana, K.L.; Yadav, A.N.; Yadav, N.; Kumar, V.; Kumar, A.; Sayyed, R.Z.; Hesham, A.E.-L.; Dhaliwal, H.S.; Saxena, A.K. Drought-Tolerant Phosphorus-Solubilizing Microbes: Biodiversity and Biotechnological Applications for Alleviation of Drought Stress in Plants. In Plant Growth Promoting Rhizobacteria for Sustainable Stress Management: Volume 1: Rhizobacteria in Abiotic Stress Management; Sayyed, R.Z., Arora, N.K., Reddy, M.S., Eds.; Springer: Singapore, 2019; pp. 255–308. [Google Scholar]
- Meena, V.S.; Bahadur, I.; Maurya, B.R.; Kumar, A.; Meena, R.K.; Meena, S.K.; Verma, J.P. Potassium-Solubilizing Microorganism in Evergreen Agriculture: An Overview. In Potassium Solubilizing Microorganisms for Sustainable Agriculture; Meena, V.S., Maurya, B.R., Verma, J.P., Meena, R.S., Eds.; Springer: New Delhi, India, 2016; pp. 1–20. [Google Scholar]
- Koda, N.; AsAEDA, T.; Yamade, K.; Kawahara, H.; Obata, H. A novel cryoprotective protein (CRP) with high activity from the ice-nucleating bacterium, Pantoea agglomerans IFO12686. Biosci. Biotechnol. Biochem. 2001, 65, 888–894. [Google Scholar] [CrossRef] [PubMed]
- Torres, R.; Nunes, C.; García, J.M.; Abadias, M.; Viñas, I.; Manso, T.; Olmo, M.; Usall, J. Application of Pantoea agglomerans CPA-2 in combination with heated sodium bicarbonate solutions to control the major postharvest diseases affecting citrus fruit at several Mediterranean locations. Eur. J. Plant Pathol. 2007, 118, 73–83. [Google Scholar] [CrossRef]
- Heipieper, H.J.; Meulenbeld, G.; van Oirschot, Q.; de Bont, J. Effect of Environmental Factors on the trans/cis Ratio of Unsaturated Fatty Acids in Pseudomonas putida S12. Appl. Environ. Microbiol. 1996, 62, 2773–2777. [Google Scholar] [CrossRef]
- Rajkumar, M.; Bruno, L.B.; Banu, J.R. Alleviation of environmental stress in plants: The role of beneficial Pseudomonas spp. Crit. Rev. Environ. Sci. Technol. 2017, 47, 372–407. [Google Scholar] [CrossRef]
- Abdel-Wahab, A.M.; Shabeb, M.S.A.; Younis, M.A.M. Studies on the effect of salinity, drought stress and soil type on nodule activities of Lablab purpureus (L.) sweet (Kashrangeeg). J. Arid. Environ. 2002, 51, 587–602. [Google Scholar] [CrossRef]
- Manzanera, M.; García-Fontana, C.; Vílchez, J.I.; González-López, J. Genome sequence of Rhodococcus sp. 4J2A2, a desiccation-tolerant bacterium involved in biodegradation of aromatic hydrocarbons. Genome Announc. 2015, 3. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.R.; Park, G.-S.; Asaf, S.; Hong, S.-J.; Jung, B.K.; Shin, J.-H. Complete genome analysis of Serratia marcescens RSC-14: A plant growth-promoting bacterium that alleviates cadmium stress in host plants. PLoS ONE 2017, 12, e0171534. [Google Scholar] [CrossRef]
- Getahun, A.; Muleta, D.; Assefa, F.; Kiros, S. Plant Growth-Promoting Rhizobacteria Isolated from Degraded Habitat Enhance Drought Tolerance of Acacia (Acacia abyssinica Hochst. ex Benth.) Seedlings. Int. J. Microbiol. 2020, 2020, 8897998. [Google Scholar] [CrossRef]
- Zotta, T.; Ricciardi, A.; Ciocia, F.; Rossano, R.; Parente, E. Diversity of stress responses in dairy thermophilic streptococci. Int. J. Food Microbiol. 2008, 124, 34–42. [Google Scholar] [CrossRef]
- Warrad, M.; Hassan, Y.M.; Mohamed, M.S.M.; Hagagy, N.; Al-Maghrabi, O.A.; Selim, S.; Saleh, A.M.; AbdElgawad, H. A Bioactive Fraction from Streptomyces sp. Enhances Maize Tolerance against Drought Stress. J. Microbiol. Biotechnol. 2020, 30, 1156–1168. [Google Scholar] [CrossRef]
- Schumann, W. Regulation of bacterial heat shock stimulons. Cell Stress Chaperones 2016, 21, 959–968. [Google Scholar] [CrossRef] [PubMed]
- Basharat, T.; Ali, F.; Das, T.; Bakar, T.B.; Mishi, N.T.; Ferdouse, J.; Uddin, M.S.; Hossain, T.J. Phosphate solubilizing rhizobacteria of rice: Analysis of plant growth promoting activity and environmental stress tolerance. Ann. Agri. Bio. Res. 2023, 28, 197–208. [Google Scholar] [CrossRef]
- Abdul Rahman, N.S.N.; Abdul Hamid, N.W.; Nadarajah, K. Effects of Abiotic Stress on Soil Microbiome. Int. J. Mol. Sci. 2021, 22, 9036. [Google Scholar] [CrossRef] [PubMed]
- Passioura, J. Roots and drought resistance. In Developments in Agricultural and Managed Forest Ecology; Elsevier: Amsterdam, The Netherlands, 1983; Volume 12, pp. 265–280. [Google Scholar]
- Bashan, Y.; De-Bashan, L.E. How the plant growth-promoting bacterium Azospirillum promotes plant growth—A critical assessment. Adv. Agron. 2010, 108, 77–136. [Google Scholar]
- Paul, D.; Lade, H. Plant-growth-promoting rhizobacteria to improve crop growth in saline soils: A review. Agron. Sustain. Dev. 2014, 34, 737–752. [Google Scholar] [CrossRef]
- Singh, R.; Flowers, T. 36 The Physiology and Molecular Biology of the Effects of Salinity on Rice. In Handbook of Plant and Crop Stress; CRC Press Boca: Raton, FL, USA, 2010. [Google Scholar]
- Fouda, A.; Hassan, S.E.D.; Eid, A.M.; El-Din Ewais, E. The interaction between plants and bacterial endophytes under salinity stress. In Endophytes Secondary Metabolites; Springer: Cham, Switzerland, 2019; pp. 1–18. [Google Scholar]
- Ismail, I.; Mehmood, A.; Qadir, M.; Husna, A.I.; Hamayun, M.; Khan, N. Thermal stress alleviating potential of endophytic fungus rhizopus oryzae inoculated to sunflower (Helianthus annuus L.) and soybean (Glycine max L.). Pak. J. Bot. 2020, 52, 1857–1865. [Google Scholar] [CrossRef]
- Rodriguez, R.J.; Redman, R.S.; Henson, J.M. The role of fungal symbioses in the adaptation of plants to high stress environments. Mitig. Adapt. Strateg. Glob. Change 2004, 9, 261–272. [Google Scholar] [CrossRef]
- Eid, A.M.; Salim, S.S.; Hassan, S.E.-D.; Ismail, M.A.; Fouda, A. Role of endophytes in plant health and abiotic stress management. In Microbiome in Plant Health and Disease; Springer: Berlin/Heidelberg, Germany, 2019; pp. 119–144. [Google Scholar]
- Gaiero, J.R.; McCall, C.A.; Thompson, K.A.; Day, N.J.; Best, A.S.; Dunfield, K.E. Inside the root microbiome: Bacterial root endophytes and plant growth promotion. Am. J. Bot. 2013, 100, 1738–1750. [Google Scholar] [CrossRef]
- Qadir, M.; Hussain, A.; Hamayun, M.; Shah, M.; Iqbal, A.; Husna; Murad, W. Phytohormones producing rhizobacterium alleviates chromium toxicity in Helianthus annuus L. by reducing chromate uptake and strengthening antioxidant system. Chemosphere 2020, 258, 127386. [Google Scholar] [CrossRef]
- Qadir, M.; Hussain, A.; Shah, M.; Lee, I.J.; Iqbal, A.; Irshad, M.; Ismail; Sayyed, A.; Husna; Ahmad, A.; et al. Comparative assessment of chromate bioremediation potential of Pantoea conspicua and Aspergillus niger. J. Hazard. Mater. 2022, 424, 127314. [Google Scholar] [CrossRef] [PubMed]
- Zhao, D.; Li, T.; Wang, J.; Zhao, Z. Diverse strategies conferring extreme cadmium (Cd) tolerance in the dark septate endophyte (DSE), Exophiala pisciphila: Evidence from RNA-seq data. Microbiol. Res. 2015, 170, 27–35. [Google Scholar] [CrossRef] [PubMed]
S. No. | Bacterial Endophyte | Role in Pathogen Protection | References |
---|---|---|---|
1 | Achromobacter spp. | Enhances nutrient uptake, induces systemic resistance | [45] |
2 | Acinetobacter spp. | Promotes plant growth, reduces pathogen infection | [46] |
3 | Actinobacteria spp. | Diverse roles, antibiotics production, and plant growth promotion | [47] |
4 | Aeromonas spp. | Enhances stress tolerance, reduces pathogen infection | [48] |
5 | Agrobacterium tumefaciens | Causes crown gall disease but can be used in genetic engineering | [49] |
6 | Arthrobacter spp. | Produces antifungal and antibacterial metabolites | [50] |
7 | Azospirillum spp. | Enhances root growth, improves nutrient uptake | [51] |
8 | Bacillus pumilus | Produces antimicrobial compounds, improves stress tolerance | [52] |
9 | Bacillus subtilis | Produces antibiotics, induces systemic resistance | [53] |
10 | Bradyrhizobium spp. | Nitrogen fixation influences plant health | [54] |
11 | Burkholderia spp. | Produces antifungal metabolites, enhances root growth | [55] |
12 | Caulobacter crescentus | Improves nutrient uptake, pathogen protection | [56] |
13 | Citrobacter spp. | Enhances nutrient availability, may reduce pathogen infection | [57] |
14 | Desulfovibrio spp. | Role in pathogen protection not well understood | [58] |
15 | Enterobacter cloacae | Enhances plant growth, may inhibit pathogens | [59] |
16 | Erwinia spp. | Causes disease but some strains can trigger plant defenses | [60] |
17 | Eubacterium spp. | May influence plant health indirectly | [61] |
18 | Firmicutes spp. | Nitrogen fixation and production of antimicrobial compounds | [62] |
19 | Flavobacterium spp. | Produces antimicrobial compounds, enhances stress tolerance | [63] |
20 | Klebsiella spp. | Nitrogen fixation, enhances plant growth, may inhibit pathogens | [64] |
21 | Mesorhizobium spp. | Nitrogen fixation influences plant health | [65] |
22 | Methylobacterium spp. | Enhances stress tolerance, reduces pathogen infection | [66] |
23 | Microbacterium spp. | Induces systemic resistance, produces antimicrobial compounds | [67] |
24 | Mycobacterium spp. | Some strains may induce plant defense mechanisms | [68] |
25 | Paenibacillus spp. | Induces systemic resistance, produces antimicrobial compounds | [69] |
26 | Pantoea agglomerans | Triggers plant defenses, reduces pathogen infection | [70] |
27 | Pseudomonas fluorescens | Antifungal compounds, induces plant defense mechanisms | [71] |
28 | Pseudonocardia spp. | Some strains may protect plants from pathogens | [72] |
29 | Ralstonia spp. | Some strains can induce plant resistance | [73] |
30 | Rhizobium spp. | Nitrogen fixation, induces plant defense responses | [74] |
31 | Serratia marcescens | Produces antifungal and antibacterial compounds | [75] |
32 | Stenotrophomonas maltophilia | Induces systemic resistance, improves nutrient uptake | [76] |
33 | Streptomyces spp. | Produces antibiotics, induces plant resistance | [77] |
34 | Variovorax paradoxus | Enhances plant growth, may compete with pathogens | [78] |
35 | Xanthomonas citri | Induces systemic resistance against certain pathogens | [79] |
S. No. | Bacterial Endophyte | Abiotic Stress | References |
---|---|---|---|
1 | Achromobacter spp. | Osmotic stress, heavy metals | [110,111] |
2 | Achromobacter xylosoxidans | Drought tolerance, osmotic stress | [112] |
3 | Actinobacteria spp. | Drought tolerance, secondary metabolite production | [113] |
4 | Agrobacterium spp. | Genetic modification, stress resistance | [114] |
5 | Alcaligenes spp. | Metal tolerance, stress resistance | [115] |
6 | Aminobacter aminovorans | Drought tolerance, metal tolerance | [116] |
7 | Aminobacter spp. | Drought tolerance, metal tolerance | [116,117] |
8 | Azospirillum spp. | Nitrogen fixation, drought resistance | [118] |
9 | Bacillus altitudinis | Drought tolerance, growth promotion | [119] |
10 | Bacillus spp. | Drought resistance, growth promotion | [120] |
11 | Brevundimonas spp. | Osmotic stress, growth promotion | [121] |
12 | Chitinophaga spp. | Metal tolerance, organic matter degradation | [122] |
13 | Chryseobacterium spp. | Drought tolerance, metal accumulation | [123,124] |
14 | Curtobacterium spp. | Drought tolerance, cold resistance | [125,126] |
15 | Dyella spp. | Metal tolerance, stress resistance | [127] |
16 | Enterobacter cloacae | Drought tolerance, metal detoxification | [128] |
17 | Erwinia spp. | Drought resistance, plant growth promotion | [129] |
18 | Flavobacterium spp. | Salinity, metal tolerance | [130] |
19 | Klebsiella oxytoca | Drought resistance, salinity tolerance | [131] |
20 | Kocuria spp. | Drought tolerance, growth promotion | [132] |
21 | Lysinibacillus spp. | Drought tolerance, growth promotion | [133] |
22 | Marinobacter spp. | Salinity tolerance, osmotic stress | [134] |
23 | Massilia spp. | Metal tolerance, stress resistance | [135] |
24 | Methylobacillus spp. | Cold, heat tolerance, growth promotion | [136] |
25 | Methylobacterium extorquens | Drought, salt tolerance, stress resistance | [137] |
26 | Methylobacterium spp. | Cold tolerance, stress protection | [138] |
27 | Microbacterium spp. | Drought tolerance, plant growth promotion | [139] |
28 | Mitsuaria chitosanitabida | Cold tolerance, plant growth promotion | [140] |
29 | Novosphingobium spp. | Drought tolerance, metal resistance | [141,142] |
30 | Ochrobactrum spp. | Metal tolerance, plant growth promotion | [143] |
31 | Ochrobactrum spp. | Drought tolerance, metal tolerance | [104,143] |
32 | Paenibacillus spp. | Drought tolerance, nutrient solubilization | [144,145] |
33 | Pantoea agglomerans | Heat, cold, drought resistance | [144,145,146,147] |
34 | Pseudomonas putida | Salinity, heavy metals, osmotic stress | [148] |
35 | Pseudomonas spp. | Drought, salinity, heavy metals | [149] |
36 | Rhizobium spp. | Drought, salinity, nutrient stress | [145,150] |
37 | Rhodococcus spp. | Drought tolerance, biodegradation | [151] |
38 | Serratia marcescens | Drought resistance, heavy metals | [152,153] |
39 | Streptococcus spp. | Cold, heat tolerance, stress resistance | [154] |
40 | Streptomyces spp. | Drought, heat, salinity resistance | [155,156] |
41 | Variovorax spp. | Drought tolerance, biodegradation | [125] |
42 | Weissella spp. | Heat, cold tolerance, plant growth promotion | [157] |
43 | Xanthomonadaceae | Abiotic stress mitigation, biocontrol | [158] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qadir, M.; Iqbal, A.; Hussain, A.; Hussain, A.; Shah, F.; Yun, B.-W.; Mun, B.-G. Exploring Plant–Bacterial Symbiosis for Eco-Friendly Agriculture and Enhanced Resilience. Int. J. Mol. Sci. 2024, 25, 12198. https://doi.org/10.3390/ijms252212198
Qadir M, Iqbal A, Hussain A, Hussain A, Shah F, Yun B-W, Mun B-G. Exploring Plant–Bacterial Symbiosis for Eco-Friendly Agriculture and Enhanced Resilience. International Journal of Molecular Sciences. 2024; 25(22):12198. https://doi.org/10.3390/ijms252212198
Chicago/Turabian StyleQadir, Muhammad, Amjad Iqbal, Anwar Hussain, Adil Hussain, Farooq Shah, Byung-Wook Yun, and Bong-Gyu Mun. 2024. "Exploring Plant–Bacterial Symbiosis for Eco-Friendly Agriculture and Enhanced Resilience" International Journal of Molecular Sciences 25, no. 22: 12198. https://doi.org/10.3390/ijms252212198
APA StyleQadir, M., Iqbal, A., Hussain, A., Hussain, A., Shah, F., Yun, B. -W., & Mun, B. -G. (2024). Exploring Plant–Bacterial Symbiosis for Eco-Friendly Agriculture and Enhanced Resilience. International Journal of Molecular Sciences, 25(22), 12198. https://doi.org/10.3390/ijms252212198