Synergistic Effects of Dietary Tryptophan and Dip Vaccination in the Immune Response of European Seabass Juveniles
Abstract
:1. Introduction
2. Results
2.1. Short-Term Modulatory Effects of Dietary Tryptophan Supplementation for 3 Days on Fish Acute Response to Vaccination and Disease Resistance
2.2. Long-Term Synergistic Effects of Feeding Dietary Tryptophan for 6 Days and Dip Vaccination on Fish Immune Response
2.3. Overall Correlation Among Experimental Groups
3. Discussion
3.1. Effects of Short-Term Dietary Tryptophan Supplementation on Fish Response to Dip Vaccination and Disease Resistance
3.2. Synergistic Effects of Dietary Tryptophan Supplementation and Dip Vaccination on European Seabass Immune Response
4. Materials and Methods
4.1. Experimental Diets
4.2. Experimental Setup
4.3. Vaccination
4.4. Bacterial Culture and Inoculum Preparation
4.5. Haematological Profile
4.6. Assessment of Plasma Cortisol Levels and Immune Parameters
4.7. Liver Oxidative Stress
4.8. Gene Expression Analysis
4.9. Data Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kiron, V. Fish immune system and its nutritional modulation for preventive health care. Anim. Feed Sci. Technol. 2012, 173, 111–133. [Google Scholar] [CrossRef]
- Li, P.; Mai, K.; Trushenski, J.; Wu, G. New developments in fish amino acid nutrition: Towards functional and environmentally oriented aquafeeds. Amino Acids 2009, 37, 43–53. [Google Scholar] [CrossRef] [PubMed]
- Herrera, M.; Mancera, J.M.; Costas, B. The Use of Dietary Additives in Fish Stress Mitigation: Comparative Endocrine and Physiological Responses. Front. Endocrinol. 2019, 10, 447. [Google Scholar] [CrossRef]
- Wu, G. Functional amino acids in growth, reproduction, and health. Adv. Nutr. 2010, 1, 31–37. [Google Scholar] [CrossRef]
- Sakkas, P.; Jones, L.A.; Houdijk, J.G.; Athanasiadou, S.; Knox, D.P.; Kyriazakis, I. Leucine and methionine deficiency impairs immunity to gastrointestinal parasites during lactation. Br. J. Nutr. 2013, 109, 273–282. [Google Scholar] [CrossRef] [PubMed]
- Le Floc’h, N.; Otten, W.; Merlot, E. Tryptophan metabolism, from nutrition to potential therapeutic applications. Amino Acids 2011, 41, 1195–1205. [Google Scholar] [CrossRef]
- Hoseini, S.M.; Taheri Mirghaed, A.; Ghelichpour, M. Effects of dietary tryptophan levels and fish stocking density on immunological and antioxidant responses and bactericidal activity against Aeromonas hydrophilain rainbow trout (Oncorhynchus mykiss). Aquac. Res. 2019, 51, 1455–1463. [Google Scholar] [CrossRef]
- MacKenzie, C.R.; Heseler, K.; Müller, A.; Däubener, W. Role of Indoleamine 2,3-Dioxygenase in Antimicrobial Defence and Immuno-Regulation: Tryptophan Depletion Versus Production of Toxic Kynurenines. Curr. Drug Metab. 2007, 8, 237–244. [Google Scholar] [CrossRef]
- Melchior, D.; Sève, B.; Le Floc’h, N. Chronic lung inflammation affects plasma amino acid concentrations in pigs. J. Anim. Sci. 2004, 82, 1091–1099. [Google Scholar] [CrossRef]
- Azeredo, R.; Machado, M.; Martos-Sitcha, J.A.; Martinez-Rodriguez, G.; Moura, J.; Peres, H.; Oliva-Teles, A.; Afonso, A.; Mancera, J.M.; Costas, B. Dietary Tryptophan Induces Opposite Health-Related Responses in the Senegalese Sole (Solea senegalensis) Reared at Low or High Stocking Densities With Implications in Disease Resistance. Front. Physiol. 2019, 10, 508. [Google Scholar] [CrossRef]
- Machado, M.; Azeredo, R.; Domingues, A.; Fernandez-Boo, S.; Dias, J.; Conceicao, L.E.C.; Costas, B. Dietary tryptophan deficiency and its supplementation compromises inflammatory mechanisms and disease resistance in a teleost fish. Sci. Rep. 2019, 9, 7689. [Google Scholar] [CrossRef] [PubMed]
- Lepage, O.; Tottmar, O.; Winberg, S. Elevated dietary intake of L-tryptophan counteracts the stress-induced elevation of plasma cortisol in rainbow trout (Oncorhynchus mykiss). J. Exp. Biol. 2002, 205, 3679–3687. [Google Scholar] [CrossRef]
- Lepage, O.; Vilchez, I.M.; Pottinger, T.G.; Winberg, S. Time-course of the effect of dietary L-tryptophan on plasma cortisol levels in rainbow trout Oncorhynchus mykiss. J. Exp. Biol. 2003, 206, 3589–3599. [Google Scholar] [CrossRef]
- Machado, M.; Peixoto, D.; Santos, P.; Ricardo, A.; Duarte, I.; Carvalho, I.; Aragão, C.; Azeredo, R.; Costas, B. Tryptophan Modulatory Role in European Seabass (Dicentrarchus labrax) Immune Response to Acute Inflammation under Stressful Conditions. Int. J. Mol. Sci. 2022, 23, 12475. [Google Scholar] [CrossRef]
- Basic, D.; Krogdahl, Å.; Schjolden, J.; Winberg, S.; Vindas, M.A.; Hillestad, M.; Mayer, I.; Skjerve, E.; Höglund, E. Short- and long-term effects of dietary l-tryptophan supplementation on the neuroendocrine stress response in seawater-reared Atlantic salmon (Salmo salar). Aquaculture 2013, 388–391, 8–13. [Google Scholar] [CrossRef]
- Hoseini, S.M.; Hosseini, S.A. Effect of dietary L-tryptophan on osmotic stress tolerance in common carp, Cyprinus carpio, juveniles. Fish. Physiol. Biochem. 2010, 36, 1061–1067. [Google Scholar] [CrossRef]
- Tejpal, C.S.; Pal, A.K.; Sahu, N.P.; Ashish Kumar, J.; Muthappa, N.A.; Vidya, S.; Rajan, M.G. Dietary supplementation of L-tryptophan mitigates crowding stress and augments the growth in Cirrhinus mrigala fingerlings. Aquaculture 2009, 293, 272–277. [Google Scholar] [CrossRef]
- Peixoto, D.; Carvalho, I.; Machado, M.; Aragão, C.; Costas, B.; Azeredo, R. Dietary tryptophan intervention counteracts stress-induced transcriptional changes in a teleost fish HPI axis during inflammation. Sci. Rep. 2024, 14, 7354. [Google Scholar] [CrossRef]
- Yun, S.; Giri, S.S.; Kim, H.J.; Kim, S.G.; Kim, S.W.; Kang, J.W.; Han, S.J.; Kwon, J.; Oh, W.T.; Chi, C.; et al. Enhanced bath immersion vaccination through microbubble treatment in the cyprinid loach. Fish Shellfish Immunol. 2019, 91, 12–18. [Google Scholar] [CrossRef]
- Plant, K.P.; Lapatra, S.E. Advances in fish vaccine delivery. Dev. Comp. Immunol. 2011, 35, 1256–1262. [Google Scholar] [CrossRef]
- Liu, X.H.; Khansari, A.R.; Teles, M.; Martinez-Rodriguez, G.; Zhang, Y.G.; Mancera, J.M.; Reyes-Lopez, F.E.; Tort, L. Brain and Pituitary Response to Vaccination in Gilthead Seabream (Sparus aurata L.). Front. Physiol. 2019, 10, 717. [Google Scholar] [CrossRef] [PubMed]
- Muñoz-Atienza, E.; Díaz-Rosales, P.; Tafalla, C. Systemic and Mucosal B and T Cell Responses Upon Mucosal Vaccination of Teleost Fish. Front. Immunol. 2021, 11, 622377. [Google Scholar] [CrossRef] [PubMed]
- Bøgwald, J.; Dalmo, R.A. Review on Immersion Vaccines for Fish: An Update 2019. Microorganisms 2019, 7, 627. [Google Scholar] [CrossRef] [PubMed]
- Adams, A. Progress, challenges and opportunities in fish vaccine development. Fish Shellfish Immunol. 2019, 90, 210–214. [Google Scholar] [CrossRef] [PubMed]
- Valdenegro-Vega, V.A.; Crosbie, P.; Vincent, B.; Cain, K.D.; Nowak, B.F. Effect of immunization route on mucosal and systemic immune response in Atlantic salmon (Salmo salar). Vet. Immunol. Immunopathol. 2013, 151, 113–123. [Google Scholar] [CrossRef]
- Funk, V.A.; Jones, S.R.; Kim, E.; Kreiberg, H.; Taylor, K.; Wu, S.; Young, C. The effect of vaccination and sea water entry on immunocompetence and susceptibility to Kudoa thyrsites in Atlantic salmon (Salmo salar L.). Fish Shellfish Immunol. 2004, 17, 375–387. [Google Scholar] [CrossRef]
- Skinner, L.A.; LaPatra, S.E.; Adams, A.; Thompson, K.D.; Balfry, S.K.; McKinley, R.S.; Schulte, P.M. Supra-physiological levels of cortisol suppress lysozyme but not the antibody response in Atlantic salmon, Salmo salar L., following vaccine injection. Aquaculture 2010, 300, 223–230. [Google Scholar] [CrossRef]
- Khansari, A.R.; Wallbom, N.; Sundh, H.; Sandblom, E.; Tort, L.; Jonsson, E. Sea water acclimation of rainbow trout (Oncorhynchus mykiss) modulates the mucosal transcript immune response induced by Vibrio anguillarum and Aeromonas salmonicida vaccine, and prevents further transcription of stress-immune genes in response to acute stress. Fish Shellfish Immunol. 2024, 152, 109733. [Google Scholar] [CrossRef]
- Li, P.; Lewis, D.H.; Gatlin, D.M., 3rd. Dietary oligonucleotides from yeast RNA influence immune responses and resistance of hybrid striped bass (Morone chrysops x Morone saxatilis) to Streptococcus iniae infection. Fish Shellfish Immunol. 2004, 16, 561–569. [Google Scholar] [CrossRef]
- Sealey, W.M.; Gatlin, D.M., 3rd. Dietary vitamin C and vitamin E interact to influence growth and tissue composition of juvenile hybrid striped bass (Morone chrysops (female) x M. saxatilis (male)) but have limited effects on immune responses. J. Nutr. 2002, 132, 748–755. [Google Scholar] [CrossRef]
- Montero, D.; Torrecillas, S.; Serradell, A.; Nedoluzhko, A.; Fernández-Montero, Á.; Makol, A.; Monzón-Atienza, L.; Valdenegro, V.; Sanahuja, I.; Galindo-Villegas, J.; et al. Phytogenics enhance welfare and vaccine efficacy against Vibrio anguillarum in European seabass (Dicentrarchus labrax) juveniles. Aquaculture 2024, 585, 740714. [Google Scholar] [CrossRef]
- Pohlenz, C.; Buentello, A.; Criscitiello, M.F.; Mwangi, W.; Smith, R.; Gatlin, D.M., 3rd. Synergies between vaccination and dietary arginine and glutamine supplementation improve the immune response of channel catfish against Edwardsiella ictaluri. Fish Shellfish Immunol. 2012, 33, 543–551. [Google Scholar] [CrossRef] [PubMed]
- Machado, M.; Azeredo, R.; Díaz-Rosales, P.; Afonso, A.; Peres, H.; Oliva-Teles, A.; Costas, B. Dietary tryptophan and methionine as modulators of European seabass (Dicentrarchus labrax) immune status and inflammatory response. Fish Shellfish Immunol. 2015, 42, 353–362. [Google Scholar] [CrossRef]
- Guo, H.; Dixon, B. Understanding acute stress-mediated immunity in teleost fish. Fish Shellfish Immunol. Rep. 2021, 2, 100010. [Google Scholar] [CrossRef] [PubMed]
- Faught, E.; Vijayan, M.M. Mechanisms of cortisol action in fish hepatocytes. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2016, 199, 136–145. [Google Scholar] [CrossRef] [PubMed]
- Espinoza, M.B.; Aedo, J.E.; Zuloaga, R.; Valenzuela, C.; Molina, A.; Valdes, J.A. Cortisol Induces Reactive Oxygen Species Through a Membrane Glucocorticoid Receptor in Rainbow Trout Myotubes. J. Cell Biochem. 2017, 118, 718–725. [Google Scholar] [CrossRef]
- Flaherty, R.L.; Owen, M.; Fagan-Murphy, A.; Intabli, H.; Healy, D.; Patel, A.; Allen, M.C.; Patel, B.A.; Flint, M.S. Glucocorticoids induce production of reactive oxygen species/reactive nitrogen species and DNA damage through an iNOS mediated pathway in breast cancer. Breast Cancer Res. 2017, 19, 35. [Google Scholar] [CrossRef]
- Jiang, W.D.; Wen, H.L.; Liu, Y.; Jiang, J.; Kuang, S.Y.; Wu, P.; Zhao, J.; Tang, L.; Tang, W.N.; Zhang, Y.A.; et al. The tight junction protein transcript abundance changes and oxidative damage by tryptophan deficiency or excess are related to the modulation of the signalling molecules, NF-kappaB p65, TOR, caspase-(3,8,9) and Nrf2 mRNA levels, in the gill of young grass carp (Ctenopharyngodon idellus). Fish Shellfish Immunol. 2015, 46, 168–180. [Google Scholar] [CrossRef]
- Jiang, W.D.; Wen, H.L.; Liu, Y.; Jiang, J.; Wu, P.; Zhao, J.; Kuang, S.Y.; Tang, L.; Tang, W.N.; Zhang, Y.A.; et al. Enhanced muscle nutrient content and flesh quality, resulting from tryptophan, is associated with anti-oxidative damage referred to the Nrf2 and TOR signalling factors in young grass carp (Ctenopharyngodon idella): Avoid tryptophan deficiency or excess. Food Chem. 2016, 199, 210–219. [Google Scholar] [CrossRef]
- Liu, X.H.; Teles, M.; Tvarijonaviciute, A.; Brandts, I.; Zhang, Y.G.; Tort, L.; Balasch, J.C. Immune and stress regulation under light and dark conditions in both central neuroendocrine and peripheral tissues of gilthead seabream (Sparus aurata L.) after vaccination. Aquaculture 2022, 560, 738602. [Google Scholar] [CrossRef]
- Steevels, T.A.; van Avondt, K.; Westerlaken, G.H.; Stalpers, F.; Walk, J.; Bont, L.; Coffer, P.J.; Meyaard, L. Signal inhibitory receptor on leukocytes-1 (SIRL-1) negatively regulates the oxidative burst in human phagocytes. Eur. J. Immunol. 2013, 43, 1297–1308. [Google Scholar] [CrossRef] [PubMed]
- Tkachenko, H.; Kurhaluk, N.; Grudniewska, J.; Andriichuk, A. Tissue-specific responses of oxidative stress biomarkers and antioxidant defenses in rainbow trout Oncorhynchus mykiss during a vaccination against furunculosis. Fish. Physiol. Biochem. 2014, 40, 1289–1300. [Google Scholar] [CrossRef] [PubMed]
- Tkaczenko, H.; Grudniewska, J.; Pękala-Safińska, A.; Terech-Majewska, E.; Kurhaluk, N. Time-dependent changes in oxidative stress biomarkers and activities of lysosomal and antioxidant enzymes in hepatic tissue of rainbow trout (Oncorhynchus mykiss Walbaum) following vaccination against Yersinia ruckeri. Fish. Aquat. Life 2023, 31, 133–146. [Google Scholar] [CrossRef]
- Vargas, R.; Balasch, J.C.; Brandts, I.; Reyes-Lopez, F.; Tort, L.; Teles, M. Variations in the immune and metabolic response of proactive and reactive Sparus aurata under stimulation with Vibrio anguillarum vaccine. Sci. Rep. 2018, 8, 17352. [Google Scholar] [CrossRef] [PubMed]
- Tkachenko, H.; Grudniewska, J.; Pękala, A.; Paździor, E. Effects of vaccination against Yersinia ruckeri on oxidative stress biomarkers and liver and heart biochemistry in rainbow trout (Oncorhynchus mykiss). Arch. Pol. Fish. 2016, 24, 33–46. [Google Scholar] [CrossRef]
- Fraser, T.W.; Ronneseth, A.; Haugland, G.T.; Fjelldal, P.G.; Mayer, I.; Wergeland, H.I. The effect of triploidy and vaccination on neutrophils and B-cells in the peripheral blood and head kidney of 0+ and 1+ Atlantic salmon (Salmo salar L.) post-smolts. Fish Shellfish Immunol 2012, 33, 60–66. [Google Scholar] [CrossRef]
- Erdal, J.I.; Reitan, L.J. Immune response and protective immunity after vaccination of Atlantic salmon (Salmo salar L.) against furunculosis. Fish Shellfish Immunol. 1992, 2, 99–108. [Google Scholar] [CrossRef]
- Leiva-Rebollo, R.; Gemez-Mata, J.; Castro, D.; Borrego, J.J.; Labella, A.M. Immune response of DNA vaccinated-gilthead seabream (Sparus aurata) against LCDV-Sa infection: Relevance of the inflammatory process. Front. Immunol. 2023, 14, 1209926. [Google Scholar] [CrossRef]
- Hoseini, S.M.; Pérez-Jiménez, A.; Costas, B.; Azeredo, R.; Gesto, M. Physiological roles of tryptophan in teleosts: Current knowledge and perspectives for future studies. Rev. Aquac. 2019, 11, 3–24. [Google Scholar] [CrossRef]
- Mabrok, M.; Machado, M.; Serra, C.R.; Afonso, A.; Valente, L.M.; Costas, B. Tenacibaculosis induction in the Senegalese sole (Solea senegalensis) and studies of Tenacibaculum maritimum survival against host mucus and plasma. J. Fish. Dis. 2016, 39, 1445–1455. [Google Scholar] [CrossRef]
- Ferreira, I.A.; Peixoto, D.; Losada, A.P.; Quiroga, M.I.; do Vale, A.; Costas, B. Early innate immune responses in European sea bass (Dicentrarchus labrax L.) following Tenacibaculum maritimum infection. Front. Immunol. 2023, 14, 1254677. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, T.; Kawai, K.; Oshima, S. Evaluation of an Experimental Immersion Infection Method with Tenacibaculum maritimum in Japanese Flounder Paralichthys olivaceus. Aquac. Sci. 2010, 58, 481–489. [Google Scholar] [CrossRef]
- Avendaño-Herrera, R.; Magariños, B.; Moriñigo, M.A.; Romalde, J.L.; Toranzo, A.E. A novel O-serotype in Tenacibaculum maritimum strains isolated from cultured sole (Solea senegalensis). Bull. Eur. Ass. Fish. Pathol. 2005, 25, 70. [Google Scholar]
- Peixoto, D.; Machado, M.; Azeredo, R.; Costas, B. Chronic Inflammation Modulates Opioid Receptor Gene Expression and Triggers Respiratory Burst in a Teleost Model. Biology 2022, 11, 764. [Google Scholar] [CrossRef]
- Afonso, A.; Silva, J.; Lousada, S.; Ellis, A.; Silva, M. Uptake of neutrophils and neutrophilic components by macrophages in the inflamed peritoneal cavity of rainbow trout (Oncorhynchus mykiss). Fish Shellfish Immunol. 1998, 8, 319–338. [Google Scholar] [CrossRef]
- Azeredo, R.; Machado, M.; Afonso, A.; Fierro-Castro, C.; Reyes-Lopez, F.E.; Tort, L.; Gesto, M.; Conde-Sieira, M.; Miguez, J.M.; Soengas, J.L.; et al. Neuroendocrine and Immune Responses Undertake Different Fates following Tryptophan or Methionine Dietary Treatment: Tales from a Teleost Model. Front. Immunol. 2017, 8, 1226. [Google Scholar] [CrossRef]
- Sunyer, J.; Tort, L. Natural hemolytic and bactericidal activities of sea bream Sparus aurata serum are effected by the alternative complement pathway. Vet. Immunol. Immunopathol. 1995, 45, 333–345. [Google Scholar] [CrossRef]
- Peixoto, D.; Pinto, W.; Gonçalves, A.T.; Machado, M.; Reis, B.; Silva, J.; Navalho, J.; Dias, J.; Conceição, L.E.C.; Costas, B. Microalgal biomasses have potential as ingredients in microdiets for Senegalese sole (Solea senegalensis) post-larvae. J. Appl. Phycol. 2021, 33, 2241–2250. [Google Scholar] [CrossRef]
- Costas, B.; Couto, A.; Azeredo, R.; Machado, M.; Krogdahl, A.; Oliva-Teles, A. Gilthead seabream (Sparus aurata) immune responses are modulated after feeding with purified antinutrients. Fish Shellfish Immunol. 2014, 41, 70–79. [Google Scholar] [CrossRef]
- Hamre, K.; Penglase, S.J.; Rasinger, J.D.; Skjaerven, K.H.; Olsvik, P.A. Ontogeny of redox regulation in Atlantic cod (Gadus morhua) larvae. Free Radic. Biol. Med. 2014, 73, 337–348. [Google Scholar] [CrossRef]
- Tietze, F. Enzymic method for quantitative determination of nanogram amounts of total and oxidized glutathione: Applications to mammalian blood and other tissues. Anal. Biochesmistry 1969, 27, 502–522. [Google Scholar] [CrossRef] [PubMed]
- Almeida, J.R.; Oliveira, C.; Gravato, C.; Guilhermino, L. Linking behavioural alterations with biomarkers responses in the European seabass Dicentrarchus labrax L. exposed to the organophosphate pesticide fenitrothion. Ecotoxicology 2010, 19, 1369–1381. [Google Scholar] [CrossRef] [PubMed]
- Lima, I.; Moreira, S.M.; Osten, J.R.; Soares, A.M.; Guilhermino, L. Biochemical responses of the marine mussel Mytilus galloprovincialis to petrochemical environmental contamination along the North-western coast of Portugal. Chemosphere 2007, 66, 1230–1242. [Google Scholar] [CrossRef] [PubMed]
- Clairborne, A. Catalase Activity; Greenwald, R., Ed.; CRC Press: Boca Raton, FL, USA, 1985. [Google Scholar]
- Babicki, S.; Arndt, D.; Marcu, A.; Liang, Y.; Grant, J.R.; Maciejewski, A.; Wishart, D.S. Heatmapper: Web-enabled heat mapping for all. Nucleic Acids Res. 2016, 44, W147–W153. [Google Scholar] [CrossRef]
- Peixoto, D.; Torreblanca, A.; Pereira, S.; Vieira, M.N.; Varo, I. Effect of short-term exposure to fluorescent red polymer microspheres on Artemia franciscana nauplii and juveniles. Environ. Sci. Pollut. Res. Int. 2022, 29, 6080–6092. [Google Scholar] [CrossRef]
Ingredients (%) | CTRL | TRP1 | TRP2 |
---|---|---|---|
Tuna fish meal 1 | 7.00 | 7.00 | 7.00 |
CPSP 90 2 | 3.00 | 3.00 | 3.00 |
Fish gelatin 3 | 2.00 | 2.00 | 2.00 |
Pea protein concentrate 72 (SP) 4 | 3.50 | 3.45 | 3.00 |
Corn gluten meal 5 | 35.00 | 35.00 | 35.00 |
Rapeseed meal 6 | 8.00 | 8.00 | 8.00 |
Sunflower meal 40 7 | 15.00 | 15.00 | 15.00 |
Wheat meal 8 | 6.80 | 6.80 | 6.80 |
Vit & Min Premix PV01 9 | 1.00 | 1.00 | 1.00 |
Antioxidant powder (Verdilox) 10 | 0.20 | 0.20 | 0.20 |
Sodium propionate 11 | 0.10 | 0.10 | 0.10 |
MAP (Monoammonium phosphate) 12 | 1.60 | 1.60 | 1.60 |
L-Lysine HCl 99% 13 | 1.20 | 1.20 | 1.20 |
L-Tryptophan 98% 14 | 0 | 0.05 | 0.5 |
DL-Methionine 15 | 0.10 | 0.10 | 0.10 |
Soy lecithin—Powder 16 | 1.00 | 1.00 | 1.00 |
Fish oil—MIXTURE 17 | 8.5 | 8.5 | 8.5 |
Fish oil—COATING 18 | 6.00 | 6.00 | 6.00 |
Total | 100 | 100 | 100 |
Proximate analysis (% dry weight) | |||
Crude protein | 47.20 | 46.80 | 47.40 |
Crude fat | 18.50 | 18.9 | 19.2 |
Fiber | 2.90 | 3.00 | 3.00 |
Total carbohydrates | 23.4 | 22.7 | 23.6 |
Ash | 5.60 | 5.60 | 5.70 |
Energy (kJ g−1) | 18.83 | 18.80 | 19.16 |
Amino Acids (% Dry Weight) | CTRL | TRP1 | TRP2 |
---|---|---|---|
Arginine | 2.39 | 2.26 | 2.29 |
Histidine | 0.99 | 1.03 | 0.97 |
Lysine | 2.60 | 2.57 | 2.62 |
Threonine | 1.57 | 1.62 | 1.60 |
Isoleucine | 1.73 | 1.71 | 1.61 |
Leucine | 5.11 | 5.08 | 5.03 |
Valine | 2.60 | 2.04 | 2.03 |
Tryptophan | 0.37 | 0.41 | 0.83 |
Methionine | 1.03 | 1.06 | 1.10 |
Phenylalanine | 2.36 | 2.36 | 2.29 |
Cysteine | 0.67 | 0.66 | 0.68 |
Tyrosine | 1.70 | 1.67 | 1.62 |
Aspartic acid | 3.32 | 3.37 | 3.21 |
Glutamic acid | 8.77 | 8.47 | 8.23 |
Alanine | 3.25 | 3.23 | 3.13 |
Glycine | 2.48 | 2.45 | 2.41 |
Proline | 3.52 | 3.42 | 2.36 |
Serine | 2.13 | 2.20 | 2.10 |
Hydroxyproline | 0.22 | 0.31 | <0.2 |
Ornithine | <0.05 | <0.05 | <0.05 |
Gene | Acronym | GenBank ID | E | Ta (°C) | Product Size (bp) | Primer Sequence (5′–3′) |
---|---|---|---|---|---|---|
Elongation factor 1 alpha | ef1α | AJ866727.1 | 2.35 | 57 | 144 | F: AACTTCAACGCCCAGGTCAT R: CTTCTTGCCAGAACGACGGT |
40s ribosomal protein | 40s | HE978789.1 | 2.48 | 60 | 79 | F: TGATTGTGACAGACCCTCGTG R: CACAGAGCAATGGTGGGGAT |
Tryptophan 5-hydroxylase-like alpha | tph1α | DLAgn_00154580 1 | 2.01 | 60 | 114 | F: CGCATAGACTTCACAACAGAGG R: CAGCAGAGGGAGGTTCTTCA |
Indoleamine-dioxygenase 2 | ido2 | DLAgn_00014730 1 | 2.08 | 55 | 74 | F: TGAAGGTGTGAGCAATGAGC R: CAAAGCACTGAATGGCTGAA |
Complement factor 3 | c3 | HM563078.1 | 2.11 | 57 | 165 | F: CAGTGGGAATCTGTGGGCTT R: GGCAAACACCTTGGCAAC |
Immunoglobulin M | igm | FN908858 | 2.00 | 60 | 285 | F: AGGACAGGACTGCTGCTGTT R: CACCTGCTGTCTGCTGTTGT |
Interleukin 10 | il10 | AM268529.1 | 2.06 | 55 | 164 | F: ACCCCGTTCGCTTGCCA R: CATCTGGTGACATCACTC |
Interleukin 1 beta | il1β | AJ269472.1 | 2.17 | 57 | 105 | F: AGCGACATGGTGCGATTTCT R: CTCCTCTGCTGTGCTGATGT |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peixoto, D.; Carvalho, I.; Cunha, A.; Santos, P.; Ramos-Pinto, L.; Machado, M.; Azeredo, R.; Costas, B. Synergistic Effects of Dietary Tryptophan and Dip Vaccination in the Immune Response of European Seabass Juveniles. Int. J. Mol. Sci. 2024, 25, 12200. https://doi.org/10.3390/ijms252212200
Peixoto D, Carvalho I, Cunha A, Santos P, Ramos-Pinto L, Machado M, Azeredo R, Costas B. Synergistic Effects of Dietary Tryptophan and Dip Vaccination in the Immune Response of European Seabass Juveniles. International Journal of Molecular Sciences. 2024; 25(22):12200. https://doi.org/10.3390/ijms252212200
Chicago/Turabian StylePeixoto, Diogo, Inês Carvalho, André Cunha, Paulo Santos, Lourenço Ramos-Pinto, Marina Machado, Rita Azeredo, and Benjamín Costas. 2024. "Synergistic Effects of Dietary Tryptophan and Dip Vaccination in the Immune Response of European Seabass Juveniles" International Journal of Molecular Sciences 25, no. 22: 12200. https://doi.org/10.3390/ijms252212200
APA StylePeixoto, D., Carvalho, I., Cunha, A., Santos, P., Ramos-Pinto, L., Machado, M., Azeredo, R., & Costas, B. (2024). Synergistic Effects of Dietary Tryptophan and Dip Vaccination in the Immune Response of European Seabass Juveniles. International Journal of Molecular Sciences, 25(22), 12200. https://doi.org/10.3390/ijms252212200