Endothelial Dysfunction with Aging: Does Sex Matter?
Abstract
:1. Introduction
2. Results
2.1. Study Population
2.2. Hematological Variables
2.3. Lipoprotein–Lipid Profile
2.4. Endothelium-Specific Variables
2.5. Inflammatory Indices
3. Discussion
4. Materials and Methods
4.1. Study Population
4.2. Body Composition
4.3. Blood Sample Collection
4.4. Aerobic Capacity
4.5. Hematological Variables
4.6. Lipoprotein–Lipid Profile
4.7. Endothelium-Specific Variables
4.8. Inflammatory Indices
4.9. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ungvari, Z.; Tarantini, S.; Donato, A.J.; Galvan, V.; Csiszar, A. Mechanisms of Vascular Aging. Circ. Res. 2018, 123, 849–867. [Google Scholar] [CrossRef] [PubMed]
- Tylutka, A.; Morawin, B.; Gramacki, A.; Zembron-Lacny, A. Lifestyle exercise attenuates immunosenescence; flow cytometry analysis. BMC Geriatr. 2021, 21, 200. [Google Scholar] [CrossRef] [PubMed]
- Tylutka, A.; Morawin, B.; Gramacki, A.; Zembron-Lacny, A. Pre-Existing Hypertension Is Related with Disproportions in T-Lymphocytes in Older Age. J. Clin. Med. 2022, 11, 291. [Google Scholar] [CrossRef] [PubMed]
- Zhao, D.; Wang, Y.; Wong, N.D.; Wang, J. Impact of Aging on Cardiovascular Diseases: From Chronological Observation to Biological Insights: JACC Family Series. JACC Asia 2024, 4, 345–358. [Google Scholar] [CrossRef] [PubMed]
- Rodgers, J.L.; Jones, J.; Bolleddu, S.I.; Vanthenapalli, S.; Rodgers, L.E.; Shah, K.; Karia, K.; Panguluri, S.K. Cardiovascular Risks Associated with Gender and Aging. J. Cardiovasc. Dev. Dis. 2019, 6, 19. [Google Scholar] [CrossRef]
- 2024 Heart Disease and Stroke Statistics: A Report of US and Global Data From the American Heart Association. Available online: https://www.ahajournals.org/doi/10.1161/CIR.0000000000001209 (accessed on 26 October 2024).
- Donato, A.J.; Machin, D.R.; Lesniewski, L.A. Mechanisms of Dysfunction in the Aging Vasculature and Role in Age-Related Disease. Circ. Res. 2018, 123, 825–848. [Google Scholar] [CrossRef]
- Huang, A.; Qi, X.; Wei, L.; Zhang, M.; Zhou, S. Non-HDL-c/TC: A Novel Lipid-Related Marker in the Assessment of Severity of Coronary Artery Lesions and Cardiovascular Outcomes. Cardiol. Res. Pract. 2019, 2019, 5931975. [Google Scholar] [CrossRef]
- Sokolska, J.M.; Ponikowski, P. Global Rounds: Poland. Circulation 2024, 149, 174–176. [Google Scholar] [CrossRef]
- Demographic Yearbook of Poland 2022. Available online: https://stat.gov.pl/en/topics/statistical-yearbooks/statistical-yearbooks/demographic-yearbook-of-poland-2022,3,16.html (accessed on 26 October 2024).
- Lobo, R.; Jaffe, A.S. Sex-Specific Thresholds for Cardiac Biomarkers-We Need to Move Forward. Rev. Cardiovasc. Med. 2023, 24, 86. [Google Scholar] [CrossRef]
- Kemal, Y.; Yucel, I.; Ekiz, K.; Demirag, G.; Yilmaz, B.; Teker, F.; Ozdemir, M. Elevated serum neutrophil to lymphocyte and platelet to lymphocyte ratios could be useful in lung cancer diagnosis. Asian Pac. J. Cancer Prev. 2014, 15, 2651–2654. [Google Scholar] [CrossRef]
- Jarmuzek, P.; Kozlowska, K.; Defort, P.; Kot, M.; Zembron-Lacny, A. Prognostic Values of Systemic Inflammatory Immunological Markers in Glioblastoma: A Systematic Review and Meta-Analysis. Cancers 2023, 15, 3339. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Huang, Y.; Lin, T. Prognostic impact of elevated pre-treatment systemic immune-inflammation index (SII) in hepatocellular carcinoma: A meta-analysis. Medicine 2020, 99, 18571. [Google Scholar] [CrossRef] [PubMed]
- Seyit, M.; Avci, E.; Nar, R.; Senol, H.; Yilmaz, A.; Ozen, M.; Oskay, A.; Aybek, H. Neutrophil to lymphocyte ratio, lymphocyte to monocyte ratio and platelet to lymphocyte ratio to predict the severity of COVID-19. Am. J. Emerg. Med. 2021, 40, 110–114. [Google Scholar] [CrossRef] [PubMed]
- Kudlinski, B.; Zgoła, D.; Stolińska, M.; Murkos, M.; Kania, J.; Nowak, P.; Noga, A.; Wojciech, M.; Zaborniak, G.; Zembron-Lacny, A. Systemic Inflammatory Predictors of In-Hospital Mortality in COVID-19 Patients: A Retrospective Study. Diagnostics 2022, 12, 859. [Google Scholar] [CrossRef]
- Erdal, E.; İnanir, M. Platelet-to-lymphocyte ratio (PLR) and Plateletcrit (PCT) in young patients with morbid obesity. Rev. Assoc. Med. Bras. 2019, 65, 1182–1187. [Google Scholar] [CrossRef]
- Furuncuoğlu, Y.; Tulgar, S.; Dogan, A.N.; Cakar, S.; Tulgar, Y.K.; Cakiroglu, B. How obesity affects the neutrophil/lymphocyte and platelet/lymphocyte ratio, systemic immune-inflammatory index and platelet indices: A retrospective study. Eur. Rev. Med. Pharmacol. Sci. 2016, 20, 1300–1306. [Google Scholar]
- Schneider, D.J. Factors contributing to increased platelet reactivity in people with diabetes. Diabetes Care 2009, 32, 525–527. [Google Scholar] [CrossRef]
- Kurtul, A.; Yarlioglues, M.; Murat, S.N.; Ergun, G.; Duran, M.; Kasapkara, H.A.; Demircelik, M.B.; Cetin, M.; Ocek, A.H. Usefulness of the platelet-to-lymphocyte ratio in predicting angiographic reflow after primary percutaneous coronary intervention in patients with acute ST-segment elevation myocardial infarction. Am. J. Cardiol. 2014, 114, 342–347. [Google Scholar] [CrossRef]
- Zhang, C.; Li, M.; Liu, L.; Deng, L.; Yulei, X.; Zhong, Y.; Liao, B.; Yu, L.; Feng, J. Systemic immune-inflammation index as a novel predictor of major adverse cardiovascular events in patients undergoing percutaneous coronary intervention: A meta-analysis of cohort studies. BMC Cardiovasc. Disord. 2024, 24, 189. [Google Scholar] [CrossRef]
- Luo, H.; Kou, T.; Yin, L. High-Sensitivity C-Reactive Protein to HDL-C Ratio. Int. Heart J. 2021, 62, 1221–1229. [Google Scholar] [CrossRef]
- Kosmas, C.E.; Rodriguez Polanco, S.; Bousvarou, M.D.; Papakonstantinou, E.J.; Peña Genao, E.; Guzman, E.; Kostara, C.E. The Triglyceride/High-Density Lipoprotein Cholesterol (TG/HDL-C) Ratio as a Risk Marker for Metabolic Syndrome and Cardiovascular Disease. Diagnostics 2023, 13, 929. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Ying, A.; Lin, Y.; Yu, J.; Luo, J.; Zeng, Y.; Lin, Y. Neutrophil-to-lymphocyte ratio, hyperglycemia, and outcomes in ischemic stroke patients treated with intravenous thrombolysis. Brain Behav. 2020, 10, 01741. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Wang, R.; Shi, J.; Zhang, Y.; Huang, Z.; You, S.; Xiao, G.; Wang, D.; Cao, Y. Baseline Neutrophil Counts and Neutrophil Ratio May Predict a Poor Clinical Outcome in Minor Stroke Patients with intravenous Thrombolysis. J. Stroke Cerebrovasc. Dis. 2019, 28, 104340. [Google Scholar] [CrossRef] [PubMed]
- Luo, H.; He, L.; Zhang, G.; Yu, J.; Chen, Y.; Yin, H.; Goyal, H.; Zhang, G.M.; Xiao, Y.; Gu, C.; et al. Normal Reference Intervals of Neutrophil-To-Lymphocyte Ratio, Platelet-To-Lymphocyte Ratio, Lymphocyte-To-Monocyte Ratio, and Systemic Immune Inflammation Index in Healthy Adults: A Large Multi-Center Study from Western China. Clin. Lab. 2019, 1, 65. [Google Scholar] [CrossRef] [PubMed]
- Minciullo, P.L.; Catalano, A.; Mandraffino, G.; Casciaro, M.; Crucitti, A.; Maltese, G.; Morabito, N.; Lasco, A.; Gangemi, S.; Basile, G. Inflammaging and Anti-Inflammaging: The Role of Cytokines in Extreme Longevity. Arch. Immunol. Ther. Exp. 2016, 64, 111–126. [Google Scholar] [CrossRef]
- Yasmin; McEniery, C.M.; Wallace, S.; Mackenzie, I.S.; Cockcroft, J.R.; Wilkinson, I.B. C-reactive protein is associated with arterial stiffness in apparently healthy individuals. Arterioscler. Thromb. Vasc. Biol. 2004, 24, 969–974. [Google Scholar] [CrossRef]
- Cavanagh, M.M.; Weyand, C.M.; Goronzy, J.J. Chronic inflammation and aging: DNA damage tips the balance. Curr. Opin. Immunol. 2012, 24, 488–493. [Google Scholar] [CrossRef]
- Tylutka, A.; Morawin, B.; Wawrzyniak-Gramacka, E.; Wacka, E.; Nowicka, W.; Hiczkiewicz, J.; Zembron-Lacny, A. Immunosenescence in Aging-Related Vascular Dysfunction. Int. J. Mol. Sci. 2022, 23, 13269. [Google Scholar] [CrossRef]
- Volpe, M.; Battistoni, A.; Rubattu, S.; Tocci, G. Hypertension in the elderly: Which are the blood pressure threshold values? Eur. Heart J. Suppl. 2019, 21, B105–B106. [Google Scholar] [CrossRef]
- Middleton, A.; Fritz, S.L.; Lusardi, M. Walking speed: The functional vital sign. J. Aging Phys. Act. 2015, 23, 314–322. [Google Scholar] [CrossRef]
- Zielińska-Więczkowska, H.; Kędziora-Kornatowska, K.; Ciemnoczołowski, W. Evaluation of quality of life (QoL) of students of the University of Third Age (U3A) on the basis of socio-demographic factors and health status. Arch. Gerontol. Geriatr. 2011, 53, e198–e202. [Google Scholar] [CrossRef] [PubMed]
- Zakai, N.A.; Katz, R.; Hirsch, C.; Shlipak, M.G.; Chaves, P.H.; Newman, A.B.; Cushman, M. A prospective study of anemia status, hemoglobin concentration, and mortality in an elderly cohort: The Cardiovascular Health Study. Arch. Intern. Med. 2005, 165, 2214–2220. [Google Scholar] [CrossRef] [PubMed]
- Culleton, B.F.; Manns, B.J.; Zhang, J.; Tonelli, M.; Klarenbach, S.; Hemmelgarn, B.R. Impact of anemia on hospitalization and mortality in older adults. Blood 2006, 107, 3841–3846. [Google Scholar] [CrossRef] [PubMed]
- Wagner, K.H.; Cameron-Smith, D.; Wessner, B.; Franzke, B. Biomarkers of Aging: From Function to Molecular Biology. Nutrients 2016, 8, 338. [Google Scholar] [CrossRef] [PubMed]
- Poznyak, A.V.; Nikiforov, N.G.; Markin, A.M.; Kashirskikh, D.A.; Myasoedova, V.A.; Gerasimova, E.V.; Orekhov, A.N. Overview of OxLDL and Its Impact on Cardiovascular Health: Focus on Atherosclerosis. Front. Pharmacol. 2021, 11, 613780. [Google Scholar] [CrossRef]
- Bencsik, P.; Sasi, V.; Kiss, K.; Kupai, K.; Kolossváry, M.; Maurovich-Horvat, P.; Csont, T.; Ungi, I.; Merkely, B.; Ferdinandy, P. Serum lipids and cardiac function correlate with nitrotyrosine and MMP activity in coronary artery disease patients. Eur. J. Clin. Investig. 2015, 45, 692–701. [Google Scholar] [CrossRef]
- Yoder, M.C. Human endothelial progenitor cells. Cold Spring Harb. Perspect. Med. 2012, 2, 006692. [Google Scholar] [CrossRef]
- Klune, J.R.; Dhupar, R.; Cardinal, J.; Billiar, T.R.; Tsung, A. HMGB1: Endogenous danger signaling. Mol. Med. 2008, 14, 476–484. [Google Scholar] [CrossRef]
- Pearson, T.A.; Mensah, G.A.; Alexander, R.W.; Anderson, J.L.; Cannon, R.O., 3rd; Criqui, M.; Fadl, Y.Y.; Fortmann, S.P.; Hong, Y.; Myers, G.L.; et al. Centers for Disease Control and Prevention; American Heart Association. Markers of inflammation and cardiovascular disease: Application to clinical and public health practice: A statement for healthcare professionals from the Centers for Disease Control and Prevention and the American Heart Association. Circulation 2003, 107, 499–511. [Google Scholar] [CrossRef]
- Morawin, B.; Tylutka, A.; Bielewicz, F.; Zembron-Lacny, A. Diagnostics of inflammaging in relation to sarcopenia. Front. Public Health 2023, 11, 1162385. [Google Scholar] [CrossRef]
- Nauli, A.M.; Matin, S. Why Do Men Accumulate Abdominal Visceral Fat? Front. Physiol. 2019, 10, 1486. [Google Scholar] [CrossRef] [PubMed]
- Tylutka, A.; Morawin, B.; Walas, Ł.; Zembron-Lacny, A. Does excess body weight accelerate immune aging? Exp. Gerontol. 2024, 187, 112377. [Google Scholar] [CrossRef] [PubMed]
- Grauer, W.O.; Moss, A.A.; Cann, C.E.; Goldberg, H.I. Quantification of body fat distribution in the abdomen using computed tomography. Am. J. Clin. Nutr. 1984, 39, 631–637. [Google Scholar] [CrossRef] [PubMed]
- Michaud, M.; Balardy, L.; Moulis, G.; Gaudin, C.; Peyrot, C.; Vellas, B.; Cesari, M.; Nourhashemi, F. Proinflammatory cytokines, aging, and age-related diseases. J. Am. Med. Dir. Assoc. 2013, 14, 877–882. [Google Scholar] [CrossRef] [PubMed]
- Koster, A.; Murphy, R.A.; Eiriksdottir, G.; Aspelund, T.; Sigurdsson, S.; Lang, T.F.; Gudnason, V.; Launer, L.J.; Harris, T.B. Fat distribution and mortality: The AGES-Reykjavik Study. Obesity 2015, 23, 893–897. [Google Scholar] [CrossRef]
- Mårin, P.; Lönn, L.; Andersson, B.; Odén, B.; Olbe, L.; Bengtsson, B.A.; Björntorp, P. Assimilation of triglycerides in subcutaneous and intraabdominal adipose tissues in vivo in men: Effects of testosterone. J. Clin. Endocrinol. Metab. 1996, 81, 1018–1022. [Google Scholar] [CrossRef]
- Votruba, S.B.; Mattison, R.S.; Dumesic, D.A.; Koutsari, C.; Jensen, M.D. Meal fatty acid uptake in visceral fat in women. Diabetes 2007, 56, 2589–2597. [Google Scholar] [CrossRef]
- Conlon, D.M.; Welty, F.K.; Reyes-Soffer, G.; Amengual, J. Sex-Specific Differences in Lipoprotein Production and Clearance. Arterioscler. Thromb. Vasc. Biol. 2023, 43, 1617–1625. [Google Scholar] [CrossRef]
- Velez-Carrasco, W.; Lichtenstein, A.H.; Li, Z.; Dolnikowski, G.G.; Lamon-Fava, S.; Welty, F.K.; Schaefer, E.J. Apolipoprotein A-I and A-II kinetic parameters as assessed by endogenous labeling with [2H3]leucine in middle-aged and elderly men and women. Arterioscler. Thromb. Vasc. Biol. 2000, 20, 801–806. [Google Scholar] [CrossRef]
- Yuefeng, Y.; Zhiqi, L.; Yi, C.; Keyu, Z.; Heng, W.; Yuying, W.; Ningjian, W.; Yuetian, Y.; Xinjie, G.; Yihao, Z.; et al. Testosterone Deficiency Promotes Hypercholesteremia and Attenuates Cholesterol Liver Uptake via AR/PCSK9/LDLR Pathways. Int. J. Endocrinol. 2022, 13, 7989751. [Google Scholar] [CrossRef]
- TG/HDL Ratio as Surrogate Marker for Insulin Resistance. Available online: https://www.escardio.org/Journals/E-Journal-of-Cardiology-Practice/Volume-8/TG-HDL-ratio-as-surrogate-marker-for-insulin-resistance (accessed on 26 October 2024).
- Signorelli, S.S.; Neri, S.; Sciacchitano, S.; Pino, L.D.; Costa, M.P.; Marchese, G.; Celotta, G.; Cassibba, N.; Pennisi, G.; Caschetto, S. Behaviour of some indicators of oxidative stress in postmenopausal and fertile women. Maturitas 2006, 53, 77–82. [Google Scholar] [CrossRef] [PubMed]
- Kassi, E.; Dalamaga, M.; Faviou, E.; Hroussalas, G.; Kazanis, K.; Nounopoulos, C.; Dionyssiou-Asteriou, A. Circulating oxidized LDL levels, current smoking and obesity in postmenopausal women. Atherosclerosis 2009, 205, 279–283. [Google Scholar] [CrossRef] [PubMed]
- Kork, F.; Jankowski, V.; Just, A.R.; Pfeilschifter, J.; Tepel, M.; Zidek, W.; Jankowski, J. Oxidized low-density lipoprotein in postmenopausal women. J. Hypertens. 2014, 32, 1444–1449. [Google Scholar] [CrossRef] [PubMed]
- Jing, J.; Ding, N.; Wang, D.; Ge, X.; Ma, J.; Ma, R.; Huang, X.; Jueraitetibaike, K.; Liang, K.; Wang, S.; et al. Oxidized-LDL inhibits testosterone biosynthesis by affecting mitochondrial function and the p38 MAPK/COX-2 signaling pathway in Leydig cells. Cell Death Dis. 2020, 11, 626. [Google Scholar] [CrossRef]
- Munno, M.; Mallia, A.; Greco, A.; Modafferi, G.; Banfi, C.; Eligini, S. Radical Oxygen Species, Oxidized Low-Density Lipoproteins, and Lectin-like Oxidized Low-Density Lipoprotein Receptor 1: A Vicious Circle in Atherosclerotic Process. Antioxidants 2024, 13, 583. [Google Scholar] [CrossRef]
- Linton, M.F.; Yancey, P.G.; Davies, S.S.; Jerome, W.G.; Linton, E.F.; Song, W.L.; Doran, A.C.; Vickers, K.C. The Role of Lipids and Lipoproteins in Atherosclerosis; Feingold, K.R., Anawalt, B., Blackman, M.R., Boyce, A., Chrousos, G., Corpas, E., de Herder, W.W., Dhatariya, K., Dungan, K., Hofland, J., et al., Eds.; MDText.com, Inc.: South Dartmouth, MA, USA, 2000. [Google Scholar]
- Smith, F.B.; Lowe, G.D.; Fowkes, F.G.; Rumley, A.; Rumley, A.G.; Donnan, P.T.; Housley, E. Smoking, haemostatic factors and lipid peroxides in a population case control study of peripheral arterial disease. Atherosclerosis 1993, 102, 155–162. [Google Scholar] [CrossRef]
- Tsimikas, S.; Kiechl, S.; Willeit, J.; Mayr, M.; Miller, E.R.; Kronenberg, F.; Xu, Q.; Bergmark, C.; Weger, S.; Oberhollenzer, F.; et al. Oxidized phospholipids predict the presence and progression of carotid and femoral atherosclerosis and symptomatic cardiovascular disease: Five-year prospective results from the Bruneck study. J. Am. Coll. Cardiol. 2006, 47, 2219–2228. [Google Scholar] [CrossRef]
- Münzel, T.; Daiber, A. Vascular Redox Signaling, Endothelial Nitric Oxide Synthase Uncoupling, and Endothelial Dysfunction in the Setting of Transportation Noise Exposure or Chronic Treatment with Organic Nitrates. Antioxid. Redox Signal. 2023, 38, 1001–1021. [Google Scholar] [CrossRef]
- Förstermann, U. Nitric oxide and oxidative stress in vascular disease. Pflugers. Arch. 2010, 459, 923–939. [Google Scholar] [CrossRef]
- Förstermann, U.; Xia, N.; Li, H. Roles of Vascular Oxidative Stress and Nitric Oxide in the Pathogenesis of Atherosclerosis. Circ. Res. 2017, 120, 713–735. [Google Scholar] [CrossRef]
- Liguori, I.; Russo, G.; Curcio, F.; Bulli, G.; Aran, L.; Della-Morte, D.; Gargiulo, G.; Testa, G.; Cacciatore, F.; Bonaduce, D.; et al. Oxidative stress, aging, and diseases. Clin. Interv. Aging 2018, 26, 757–772. [Google Scholar] [CrossRef] [PubMed]
- Daiber, A.; Hahad, O.; Andreadou, I.; Steven, S.; Daub, S.; Münzel, T. Redox-related biomarkers in human cardiovascular disease—classical footprints and beyond. Redox Biol. 2021, 42, 101875. [Google Scholar] [CrossRef] [PubMed]
- Jiang, M.; Zhao, X.M.; Jiang, Z.S.; Wang, G.X.; Zhang, D.W. Protein tyrosine nitration in atherosclerotic endothelial dysfunction. Clin. Chim. Acta 2022, 529, 34–41. [Google Scholar] [CrossRef] [PubMed]
- Daiber, A.; Münzel, T. Increased circulating levels of 3-nitrotyrosine autoantibodies: Marker for or maker of cardiovascular disease? Circulation 2012, 126, 2371–2373. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Malik, A.B.; Rehman, J. Endothelial progenitor cells and vascular repair. Curr. Opin. Hematol. 2014, 21, 224–228. [Google Scholar] [CrossRef]
- Tilling, L.; Chowienczyk, P.; Clapp, B. Progenitors in motion: Mechanisms of mobilization of endothelial progenitor cells. Br. J. Clin. Pharmacol. 2009, 68, 484–492. [Google Scholar] [CrossRef]
- Morishita, T.; Uzui, H.; Nakano, A.; Mitsuke, Y.; Geshi, T.; Ueda, T.; Lee, J.D. Number of endothelial progenitor cells in peripheral artery disease as a marker of severity and association with pentraxin-3, malondialdehyde-modified low-density lipoprotein and membrane type-1 matrix metalloproteinase. J. Atheroscler. Thromb. 2012, 19, 149–158. [Google Scholar] [CrossRef]
- Hebbel, R.P.; Wei, P.; Milbauer, L.; Corban, M.T.; Solovey, A.; Kiley, J.; Pattee, J.; Lerman, L.O.; Pan, W.; Lerman, A. Abnormal Endothelial Gene Expression Associated With Early Coronary Atherosclerosis. J. Am. Heart Assoc. 2020, 9, 016134. [Google Scholar] [CrossRef]
- Huo, X.; Su, B.; Qin, G.; Zhao, L. HMGB1 promotes Ox-LDL-induced endothelial cell damage by inhibiting PI3K/Akt signaling pathway. BMC Cardiovasc. Disord. 2022, 22, 555. [Google Scholar] [CrossRef]
- Inoue, K.; Kawahara, K.; Biswas, K.K.; Ando, K.; Mitsudo, K.; Nobuyoshi, M.; Maruyama, I. HMGB1 expression by activated vascular smooth muscle cells in advanced human atherosclerosis plaques. Cardiovasc. Pathol. 2007, 16, 136–143. [Google Scholar] [CrossRef]
- Wolfson, R.K.; Chiang, E.T.; Garcia, J.G. HMGB1 induces human lung endothelial cell cytoskeletal rearrangement and barrier disruption. Microvasc. Res. 2011, 81, 189–197. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.; Liu, Y.; Li, L.; Zhang, R.; Liu, W.; Wu, J.; Mao, E.; Tang, Y. HMGB1 increases permeability of the endothelial cell monolayer via RAGE and Src family tyrosine kinase pathways. Inflammation 2012, 35, 350–362. [Google Scholar] [CrossRef] [PubMed]
- Venkatraghavan, L.; Tan, T.P.; Mehta, J.; Arekapudi, A.; Govindarajulu, A.; Siu, E. Neutrophil Lymphocyte Ratio as a predictor of systemic inflammation—A cross-sectional study in a pre-admission setting. F1000Research 2015, 4, 123. [Google Scholar] [CrossRef] [PubMed]
- Angkananard, T.; Anothaisintawee, T.; McEvoy, M.; Attia, J.; Thakkinstian, A. Neutrophil Lymphocyte Ratio and Cardiovascular Disease Risk: A Systematic Review and Meta-Analysis. BioMed Res. Int. 2018, 2018, 2703518. [Google Scholar] [CrossRef] [PubMed]
- Belice, T.; Demir, I.; Yüksel, A. Role of neutrophil-lymphocyte-ratio in the mortality of males diagnosed with COVID-19. Iran. J. Microbiol. 2020, 12, 194–197. [Google Scholar] [CrossRef]
- Yi, Y.; Zhou, L.; Zuo, S.; Yin, W.; Li, D.; Wang, J. Gender-specific association between neutrophil-to-lymphocyte ratio and arterial stiffness in an apparently healthy population undergoing a health examination. Vascular 2019, 27, 668–676. [Google Scholar] [CrossRef]
- Tsioumpekou, M.; Krijgsman, D.; Leusen, J.H.W.; Olofsen, P.A. The Role of Cytokines in Neutrophil Development, Tissue Homing, Function and Plasticity in Health and Disease. Cells 2023, 12, 1981. [Google Scholar] [CrossRef]
- Van Avondt, K.; Strecker, J.K.; Tulotta, C.; Minnerup, J.; Schulz, C.; Soehnlein, O. Neutrophils in aging and aging-related pathologies. Immunol. Rev. 2023, 314, 357–375. [Google Scholar] [CrossRef]
- Kolaczkowska, E. The older the faster: Aged neutrophils in inflammation. Blood 2016, 128, 2280–2282. [Google Scholar] [CrossRef]
- Strindhall, J.; Skog, M.; Ernerudh, J.; Bengner, M.; Löfgren, S.; Matussek, A.; Nilsson, B.O.; Wikby, A. The inverted CD4/CD8 ratio and associated parameters in 66-year-old individuals: The Swedish HEXA immune study. Age 2013, 35, 985–991. [Google Scholar] [CrossRef]
- Jarmuzek, P.; Kot, M.; Defort, P.; Stawicki, J.; Komorzycka, J.; Nowak, K.; Tylutka, A.; Zembron-Lacny, A. Prognostic Values of Combined Ratios of White Blood Cells in Glioblastoma: A Retrospective Study. J. Clin. Med. 2022, 11, 3397. [Google Scholar] [CrossRef] [PubMed]
- Jarmuzek, P.; Defort, P.; Kot, M.; Wawrzyniak-Gramacka, E.; Morawin, B.; Zembron-Lacny, A. Cytokine Profile in Development of Glioblastoma in Relation to Healthy Individuals. Int. J. Mol. Sci. 2023, 24, 16206. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Wang, M.; Wang, R.; Jiang, J.; Hu, Y.; Wang, W.; Wang, Y.; Li, H. The predictive value of the hs-CRP/HDL-C ratio, an inflammation-lipid composite marker, for cardiovascular disease in middle-aged and elderly people: Evidence from a large national cohort study. Lipids Health Dis. 2024, 1, 66. [Google Scholar] [CrossRef] [PubMed]
- Holland, A.E.; Spruit, M.A.; Troosters, T.; Puhan, M.A.; Pepin, V.; Saey, D.; McCormack, M.C.; Carlin, B.W.; Sciurba, F.C.; Pitta, F.; et al. An official European Respiratory Society/American Thoracic Society technical standard: Field walking tests in chronic respiratory disease. Eur. Respir. J. 2014, 44, 1428–1446. [Google Scholar] [CrossRef]
- Piani, F.; Baffoni, L.; Strocchi, E.; Borghi, C. Gender-Specific Medicine in the European Society of Cardiology Guidelines from 2018 to 2023: Where Are We Going? J. Clin. Med. 2024, 13, 4026. [Google Scholar] [CrossRef]
Female n = 145 | Male n = 50 | p Value | |||
---|---|---|---|---|---|
Mean ± SD | Me (Min; Max) | Mean ± SD | Me (Min; Max) | ||
Age (years) | 70.6 ± 6.7 | 69.0 (60.0; 93.0) | 77.3 ± 8.0 | 77.5 (66.0; 96.0) | <0.001 |
Weight (kg) | 67.9 ± 8.9 | 67.6 (44.8; 97.2) | 79.2 ± 12.4 | 78.3 (44.8; 102.0) | <0.001 |
Height (cm) | 159.4 ± 5.5 | 159.0 (143.0; 172.5) | 168.0 ± 6.9 | 168.6 (150.0; 179.5) | <0.001 |
BMI (kg/m2) | 26.8 ± 3.5 | 26.8 (18.6; 38.8) | 28.1 ± 3.9 | 28.3 (19.9; 40.8) | 0.031 |
VFC (VF unit) | 9.7 ± 1.9 | 9.0 (5.0; 15.0) | 15.6 ± 3.6 | 16.0 (8.0; 25.0) | <0.001 |
FM (kg) | 24.2 ± 6.1 | 23.7 (8.8; 48.7) | 20.4 ± 6.7 | 21.3 (7.7; 36.0) | 0.002 |
FM% | 34.9 ± 5.2 | 35.2 (17.4; 45.6) | 25.0 ± 5.7 | 25.7 (12.1; 35.6) | <0.001 |
FFM (kg) | 43.9 ± 4.5 | 43.5 (33.7; 63.3) | 59.0 ± 7.2 | 59.9 (36.6; 73.0) | <0.001 |
SBP (mmHg) | 146.5 ± 20.5 | 144.0 (95.0; 213.0) | 147.5 ± 20.6 | 149.0 (99.0; 195.0) | 0.324 |
DBP (mmHg) | 80.9 ± 11.7 | 79.0 (55.0; 119.0) | 82.3 ± 12.6 | 81.5 (55.0; 109.0) | 0.210 |
6MWT (m) | 454 ± 75 | 450 (265; 720) | 438 ± 64 | 445 (320; 570) | 0.363 |
Gait speed (m/s) | 1.3 ± 0.2 | 1.3 (0.7; 2.0) | 1.2 ± 0.2 | 1.2 (0.9; 1.6) | 0.354 |
Female n = 145 | Male n = 50 | p Value | |||
---|---|---|---|---|---|
Mean ± SD | Me (Min; Max) | Mean ± SD | Me (Min; Max) | ||
WBC (103/µL) | 6.25 ± 2.00 | 5.86 (2.90; 5.73) | 6.65 ± 1.89 | 6.52 (2.48; 13.36) | 0.116 |
Neutrophils (103/µL) | 4.00 ± 1.58 | 3.60 (1.52; 10.61) | 4.45 ± 1.57 | 4.06 (1.75; 9.93) | 0.012 |
Lymphocytes (103/µL) | 2.12 ± 0.79 | 2.04 (0.20; 5.63) | 1.83 ± 0.66 | 1.77 (0.39; 3.42) | 0.013 |
Monocytes (103/µL) | 0.45 ± 0.21 | 0.40 (0.07; 1.25) | 0.43 ± 0.26 | 0.38 (0.10; 1.69) | 0.356 |
Platelets (103/µL) | 260 ± 64 | 255 (37; 469) | 226 ± 54 | 214 (125; 346) | <0.0001 |
RBC (103/µL) | 4.70 ± 0.42 | 4.76 (2.90; 5.73) | 4.71 ± 0.77 | 4.66 (2.88; 8.28) | 0.843 |
Hb (g/dL) | 13.50 ± 3.87 | 13.65 (8.80; 16.10) | 13.59 ± 1.56 | 13.45 (9.20; 18.60) | 0.864 |
Hct% | 38.28 ± 3.21 | 38.60 (26.82; 46.58) | 38.31 ± 5.17 | 37.82 (23.63; 56.56) | 0.996 |
MCV fL | 81.67 ± 4.09 | 81.00 (68.0; 97.0) | 81.68± 4.56 | 80.00 (68.0; 96.0) | 0.252 |
MCH (pg/RBC) | 28.79 ± 1.47 | 28.75 (24.40; 35.90) | 29.09 ± 1.77 | 29.00 (22.50; 32.70) | 0.164 |
MCHC (g/dL) | 35.28 ± 1.00 | 35.40 (31.10; 38.10) | 35.59 ± 1.27 | 35.65 (32.30; 38.90) | 0.045 |
RDW% | 13.06 ± 1.14 | 12.90 (27.70; 59.20) | 13.54 ± 2.29 | 13.15 (11.60; 27.80) | 0.012 |
Female n = 145 | Male n = 50 | p Value | |||
---|---|---|---|---|---|
Mean ± SD | Me (Min; Max) | Mean ± SD | Me (Min; Max) | ||
TG (mg/dL) | 138.26 ± 46.32 | 132.31 (44.72; 381.40) | 120.55 ± 46.17 | 116.16 (36.90; 271.98) | <0.001 |
TC (mg/dL) | 240.16 ± 52.29 | 236.14 (129.40; 421.75) | 193.47 ± 44.57 | 193.60 (105.00; 298.75) | <0.001 |
LDL (mg/dL) | 86.51 ± 29.96 | 82.41 (33.22; 210.44) | 91.39 ± 34.56 | 90.00 (26.08; 178.24) | 0.375 |
HDL (mg/dL) | 78.01 ± 16.59 | 77.94 (22.30; 154.02) | 64.30 ± 17.88 | 60.35 (29.70; 108.25) | <0.001 |
non-HDL (mg/dL) | 162.69 ± 53.88 | 154.99 (61.50; 344.80) | 129.16 ± 41.37 | 121.35 (36.20; 235.04) | <0.001 |
oxLDL (mg/dL) | 0.066 ± 0.052 | 0.066 (0.004; 0.240) | 0.019 ± 0.014 | 0.016 (0.003; 0.075) | <0.001 |
TG/HDL | 1.926 ± 1.157 | 1.645 (0.575; 9.394) | 2.188 ± 1.138 | 2.052 (0.702; 5.474) | 0.435 |
Female n = 145 | Male n = 50 | p Value | |||
---|---|---|---|---|---|
Mean ± SD | Me (Min; Max) | Mean ± SD | Me (Min; Max) | ||
H2O2 (ng/mL) | 672 ± 573 | 389 (171; 1988) | 359 ± 103 | 297 (273; 588) | 0.014 |
NO (μmol/L) | 331 ± 250 | 226 (19; 1006) | 135 ± 43 | 138 (36; 211) | <0.001 |
3-NitroT (nmol/mL) | 1.88 ± 1.84 | 1.00 (0.60; 9.08) | 1.01 ± 0.50 | 0.74 (0.62; 2.21) | <0.001 |
EPCs (ng/mL) | 19.53 ± 16.43 | 11.67 (3.57; 70.55) | 11.81 ± 7.39 | 10.73 (3.22; 50.12) | 0.396 |
HMGB1 ng/mL | 50.77 ± 19.15 | 43.98 (28.48; 98.74) | 39.58 ± 9.84 | 38.63 (28.15; 58.89) | 0.099 |
AUC | Cut-Off | Specificity (%) | Sensitivity (%) | OR | 95% CI | p Value | |
---|---|---|---|---|---|---|---|
NLR | 0.655 | 1.67 | 77.2 | 53.3 | 3.87 | 1.911–7.829 | <0.001 |
SII | 0.627 | 350 | 86.0 | 34.1 | 3.17 | 1.383–7.244 | 0.003 |
NHR | 0.636 | 0.064 | 52.6 | 77.6 | 3.82 | 1.991–7.451 | 0.004 |
CHR | 0.980 | 0.038 | 94.7 | 93.3 | 252 | 65–967 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wojtacha, J.J.; Morawin, B.; Wawrzyniak-Gramacka, E.; Tylutka, A.; Freitas, A.K.E.d.; Zembron-Lacny, A. Endothelial Dysfunction with Aging: Does Sex Matter? Int. J. Mol. Sci. 2024, 25, 12203. https://doi.org/10.3390/ijms252212203
Wojtacha JJ, Morawin B, Wawrzyniak-Gramacka E, Tylutka A, Freitas AKEd, Zembron-Lacny A. Endothelial Dysfunction with Aging: Does Sex Matter? International Journal of Molecular Sciences. 2024; 25(22):12203. https://doi.org/10.3390/ijms252212203
Chicago/Turabian StyleWojtacha, Jakub Jozue, Barbara Morawin, Edyta Wawrzyniak-Gramacka, Anna Tylutka, Ana Karyn Ehrenfried de Freitas, and Agnieszka Zembron-Lacny. 2024. "Endothelial Dysfunction with Aging: Does Sex Matter?" International Journal of Molecular Sciences 25, no. 22: 12203. https://doi.org/10.3390/ijms252212203
APA StyleWojtacha, J. J., Morawin, B., Wawrzyniak-Gramacka, E., Tylutka, A., Freitas, A. K. E. d., & Zembron-Lacny, A. (2024). Endothelial Dysfunction with Aging: Does Sex Matter? International Journal of Molecular Sciences, 25(22), 12203. https://doi.org/10.3390/ijms252212203