Novel DNA Aptamers to Dickkopf-1 Protein and Their Application in Colorimetric Sandwich Assays for Target Detection in Patients with Axial Spondyloarthritis
Abstract
:1. Introduction
2. Results
2.1. In Vitro Selection
2.1.1. Library Design
2.1.2. DNA SELEX
2.2. Aptamer Screening
2.3. Aptamers’ Truncation
2.4. Development of Colorimetric Sandwich System for DKK-1 Detection
2.5. Serum Samples Analysis
3. Discussion
4. Materials and Methods
4.1. Materials and Reagents
4.2. Synthesis of Oligonucleotides
4.3. In Vitro Selection of DNA Aptamers
4.4. Assessment of Enriched Library Affinity by Non-Denaturing Gel Electrophoresis
4.5. Illumina High-Throughput Sequencing and Data Analysis
4.6. Enzyme-Linked Aptamer Sorbent Assay (ELASA)
4.7. Sandwich Aptamer-Based Assay for DKK-1 Detection
4.8. DKK-1 Detection in Serum Samples
5. Conclusions
6. Patents
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
aPCR | asymmetric polymerase chain reaction |
AxSpA | axial spondyloarthritis |
BSA | bovine serum albumin |
CPG | controled pore glass |
DKK-1 | Dickkopf-1 protein |
EDC | N-(3-dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride |
ELASA | enzyme-linked aptamer sorbent assay |
ELONA | enzyme-linked oligonucleotide assay |
EMSA | electrophoretic mobility shift assay |
HRP | horseradish peroxidase |
HSA | human serum albumin |
NHS | N-hydroxysuccinimide |
PBS | Phosphate-Buffered Saline |
PEG | poly(ethylene glycol) |
SELEX | Systematic Evolution of Ligands by Exponential Enrichment |
TMB | 3,3′,5,5′-tetramethylbenzidine |
4PL | four-parameter logistic regression |
References
- Robinson, P.C.; Van Der Linden, S.; Khan, M.A.; Taylor, W.J. Axial Spondyloarthritis: Concept, Construct, Classification and Implications for Therapy. Nat. Rev. Rheumatol. 2021, 17, 109–118. [Google Scholar] [CrossRef] [PubMed]
- van der Heijde, D.; Molto, A.; Ramiro, S.; Braun, J.; Dougados, M.; van Gaalen, F.A.; Gensler, L.S.; Inman, R.D.; Landewé, R.B.M.; Marzo-Ortega, H.; et al. Goodbye to the Term ‘Ankylosing Spondylitis’, Hello ‘Axial Spondyloarthritis’: Time to Embrace the ASAS-Defined Nomenclature. Ann. Rheum. Dis. 2024, 83, 547–549. [Google Scholar] [CrossRef] [PubMed]
- Stolwijk, C.; Van Onna, M.; Boonen, A.; Van Tubergen, A. Global Prevalence of Spondyloarthritis: A Systematic Review and Meta-Regression Analysis. Arthritis Care Res. 2016, 68, 1320–1331. [Google Scholar] [CrossRef]
- Shaw, A.T.; Gravallese, E.M. Mediators of Inflammation and Bone Remodeling in Rheumatic Disease. Semin. Cell Dev. Biol. 2016, 49, 2–10. [Google Scholar] [CrossRef] [PubMed]
- Baum, R.; Gravallese, E.M. Bone as a Target Organ in Rheumatic Disease: Impact on Osteoclasts and Osteoblasts. Clin. Rev. Allergy Immunol. 2016, 51, 1–15. [Google Scholar] [CrossRef]
- Walsh, N.C.; Gravallese, E.M. Bone Remodeling in Rheumatic Disease: A Question of Balance. Immunol. Rev. 2010, 233, 301–312. [Google Scholar] [CrossRef]
- Lems, W.; Miceli-Richard, C.; Haschka, J.; Giusti, A.; Chistensen, G.L.; Kocijan, R.; Rosine, N.; Jørgensen, N.R.; Bianchi, G.; Roux, C. Bone Involvement in Patients with Spondyloarthropathies. Calcif. Tissue Int. 2022, 110, 393–420. [Google Scholar] [CrossRef]
- Pedersen, S.J.; Maksymowych, W.P. The Pathogenesis of Ankylosing Spondylitis: An Update. Curr. Rheumatol. Rep. 2019, 21, 58. [Google Scholar] [CrossRef]
- Liu, J.; Xiao, Q.; Xiao, J.; Niu, C.; Li, Y.; Zhang, X.; Zhou, Z.; Shu, G.; Yin, G. Wnt/β-Catenin Signalling: Function, Biological Mechanisms, and Therapeutic Opportunities. Signal Transduct. Target. Ther. 2022, 7, 3. [Google Scholar] [CrossRef]
- Daoussis, D.; Andonopoulos, A.P. The Emerging Role of Dickkopf-1 in Bone Biology: Is It the Main Switch Controlling Bone and Joint Remodeling? Semin. Arthritis Rheum. 2011, 41, 170–177. [Google Scholar] [CrossRef]
- Tao, S.-S.; Cao, F.; Sam, N.B.; Li, H.-M.; Feng, Y.-T.; Ni, J.; Wang, P.; Li, X.-M.; Pan, H.-F. Dickkopf-1 as a Promising Therapeutic Target for Autoimmune Diseases. Clin. Immunol. 2022, 245, 109156. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Zhang, Z.; Yu, Y.; Chu, H.Y.; Yu, S.; Yao, S.; Zhang, G.; Zhang, B.-T. Drug Discovery of DKK1 Inhibitors. Front. Pharmacol. 2022, 13, 847387. [Google Scholar] [CrossRef] [PubMed]
- Delgado-Calle, J.; Sato, A.Y.; Bellido, T. Role and Mechanism of Action of Sclerostin in Bone. Bone 2017, 96, 29–37. [Google Scholar] [CrossRef] [PubMed]
- Liao, H.-T.; Lin, Y.-F.; Tsai, C.-Y.; Chou, T.-C. Bone Morphogenetic Proteins and Dickkopf-1 in Ankylosing Spondylitis. Scand. J. Rheumatol. 2018, 47, 56–61. [Google Scholar] [CrossRef] [PubMed]
- Walsh, M.C.; Choi, Y. Biology of the RANKL-RANK-OPG System in Immunity, Bone, and Beyond. Front. Immunol. 2014, 5, 511. [Google Scholar] [CrossRef]
- Daoussis, D.; Kanellou, A.; Panagiotopoulos, E.; Papachristou, D. DKK-1 Is Underexpressed in Mesenchymal Stem Cells from Patients with Ankylosing Spondylitis and Further Downregulated by IL-17. Int. J. Mol. Sci. 2022, 23, 6660. [Google Scholar] [CrossRef]
- Yuliasih, Y.; Permatasari, A.; Rahmawati, L.D.; Wahyudi, M.I.; Nisa’, N. The Increasing Level of DKK-1 as a New Bone Formation Factor in Patients with Early Spondyloarthritis. Autoimmune Dis. 2023, 2023, 5543234. [Google Scholar] [CrossRef]
- Daoussis, D.; Liossis, S.N.C.; Solomou, E.E.; Tsanaktsi, A.; Bounia, K.; Karampetsou, M.; Yiannopoulos, G.; Andonopoulos, A.P. Evidence That Dkk-1 Is Dysfunctional in Ankylosing Spondylitis. Arthritis Rheum. 2010, 62, 150–158. [Google Scholar] [CrossRef]
- Heiland, G.R.; Appel, H.; Poddubnyy, D.; Zwerina, J.; Hueber, A.; Haibel, H.; Baraliakos, X.; Listing, J.; Rudwaleit, M.; Schett, G.; et al. High Level of Functional Dickkopf-1 Predicts Protection from Syndesmophyte Formation in Patients with Ankylosing Spondylitis. Ann. Rheum. Dis. 2012, 71, 572–574. [Google Scholar] [CrossRef]
- Fang, X.; Chen, C.; Wang, Z.-X.; Zhao, Y.; Jiang, L.-Q.; Fang, Y.; Zhang, R.-D.; Pan, H.-F.; Tao, S.-S. Serum DKK-1 Level in Ankylosing Spondylitis: Insights from Meta-Analysis and Mendelian Randomization. Front. Immunol. 2023, 14, 1193357. [Google Scholar] [CrossRef]
- Zhang, Y.; Lai, B.S.; Juhas, M. Recent Advances in Aptamer Discovery and Applications. Molecules 2019, 24, 941. [Google Scholar] [CrossRef] [PubMed]
- Xiao, X.; Li, H.; Zhao, L.; Zhang, Y.; Liu, Z. Oligonucleotide Aptamers: Recent Advances in Their Screening, Molecular Conformation and Therapeutic Applications. Biomed. Pharmacother. 2021, 143, 112232. [Google Scholar] [CrossRef]
- Bradbury, A.; Plückthun, A. Reproducibility: Standardize Antibodies Used in Research. Nature 2015, 518, 27–29. [Google Scholar] [CrossRef]
- Weller, M.G. Quality Issues of Research Antibodies. Anal. Chem. Insights 2016, 11, 21–27. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, W.; Tseng, Y.; Zhang, J.; Liu, J. Developing Slow-off Dickkopf-1 Aptamers for Early-Diagnosis of Hepatocellular Carcinoma. Talanta 2019, 194, 422–429. [Google Scholar] [CrossRef]
- Ruff, K.M.; Snyder, T.M.; Liu, D.R. Enhanced Functional Potential of Nucleic Acid Aptamer Libraries Patterned to Increase Secondary Structure. J. Am. Chem. Soc. 2010, 132, 9453–9464. [Google Scholar] [CrossRef]
- Zuker, M. Mfold Web Server for Nucleic Acid Folding and Hybridization Prediction. Nucleic Acids Res. 2003, 31, 3406–3415. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Li, D.Q.; Zhong, J.; Wu, X.L.; Chen, Q.; Peng, H.; Liu, S.Q. IL-17RA Aptamer-Mediated Repression of IL-6 Inhibits Synovium Inflammation in a Murine Model of Osteoarthritis. Osteoarthr. Cartil. 2011, 19, 711–718. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Zhu, J.; Shen, G.; Deng, Y.; Geng, X.; Wang, L. Improving Aptamer Performance: Key Factors and Strategies. Mikrochim. Acta 2023, 190, 255. [Google Scholar] [CrossRef]
- Zavyalova, E.; Legatova, V.; Alieva, R.; Zalevsky, A.; Tashlitsky, V.; Arutyunyan, A.; Kopylov, A. Putative Mechanisms Underlying High Inhibitory Activities of Bimodular DNA Aptamers to Thrombin. Biomolecules 2019, 9, 41. [Google Scholar] [CrossRef]
- Gopinath, S.C.B.; Lakshmipriya, T.; Md Arshad, M.K.; Voon, C.H.; Adam, T.; Hashim, U.; Singh, H.; Chinni, S.V. Shortening Full-Length Aptamer by Crawling Base Deletion—Assisted by Mfold Web Server Application. J. Assoc. Arab. Univ. Basic Appl. Sci. 2017, 23, 37–42. [Google Scholar] [CrossRef]
- Seo, H.B.; Gu, M.B. Aptamer-Based Sandwich-Type Biosensors. J. Biol. Eng. 2017, 11, 11. [Google Scholar] [CrossRef] [PubMed]
- Ochsner, U.A.; Green, L.S.; Gold, L.; Janjic, N. Systematic Selection of Modified Aptamer Pairs for Diagnostic Sandwich Assays. Biotechniques 2014, 56, 125–133. [Google Scholar] [CrossRef]
- Komarova, N.; Panova, O.; Titov, A.; Kuznetsov, A. Aptamers Targeting Cardiac Biomarkers as an Analytical Tool for the Diagnostics of Cardiovascular Diseases: A Review. Biomedicines 2022, 10, 1085. [Google Scholar] [CrossRef] [PubMed]
- Tolnai, Z.J.; András, J.; Szeitner, Z.; Percze, K.; Simon, L.F.; Gyurcsányi, R.E.; Mészáros, T. Spiegelmer-Based Sandwich Assay for Cardiac Troponin I Detection. Int. J. Mol. Sci. 2020, 21, 4963. [Google Scholar] [CrossRef] [PubMed]
- Vorobyeva, M.; Davydova, A.; Vorobjev, P.; Pyshnyi, D.; Venyaminova, A. Key Aspects of Nucleic Acid Library Design for in Vitro Selection. Int. J. Mol. Sci. 2018, 19, 470. [Google Scholar] [CrossRef]
- Descamps, E.; Molto, A.; Borderie, D.; Lories, R.; Richard, C.M.; Pons, M.; Roux, C.; Briot, K. Changes in Bone Formation Regulator Biomarkers in Early Axial Spondyloarthritis. Rheumatology 2021, 60, 1185–1194. [Google Scholar] [CrossRef]
- Edgar, R.C. UNOISE2: Improved Error-Correction for Illumina 16S and ITS Amplicon Sequencing. BioRxiv 2016. [Google Scholar] [CrossRef]
- Davydova, A.; Vorobyeva, M.; Bashmakova, E.; Vorobjev, P.; Krasheninina, O.; Tupikin, A.; Kabilov, M.; Krasitskaya, V.; Frank, L.; Venyaminova, A. Development and Characterization of Novel 2′-F-RNA Aptamers Specific to Human Total and Glycated Hemoglobins. Anal. Biochem. 2019, 570, 43–50. [Google Scholar] [CrossRef]
Initial Pattern | YRYRYRYRYRNNNNNYRYRYRYRYRNNNNNYRYRYRYRYR | |
---|---|---|
ID | Randomized Region Sequence 5′->3′ | % * |
DK1 | CATGTATCTGGCTGCTGAGTGTACGATTCCAGTATATATG | 2.29 |
DK2 | TGTACCCGCATAGACCCTGCGTCCGCTGTATGTACACGTA | 2.17 |
DK3 | CATGACGTTAGGCTGCATCAGTACGATTCCTACACGCATG | 1.84 |
DK4 | AGTGCGTACAGCAAGCACATATGTGCTCTCCCAGAGCGTG | 1.52 |
DK5 | TGTATGCTGAGCAGGCGCGAGTGGGGACCCCCCGGGCACG | 1.36 |
DK6 | CGTATGAACGGGGACCCTATGGGCGTTTGCTATGCACATA | 1.24 |
DK7 | CGTGCATACGAGCCGCATGTACACATTCTCTGTATGTACG | 1.04 |
DK8 | CACGTGCGAAGTGGTTAACCATGGCCTAGTCCCGCAAGTG | 1.01 |
DK9 | CAGGGACACGGGGACCCTACGGGCGTGTCTCATATACATG | 1.00 |
DK10 | CATATATGAGAGCCGCGTAATTATACTCTCTGCATGTATG | 0.97 |
DK11 | CGTGCATGTAAGCCGCGTATACATACTCTTCACTTGCACG | 0.95 |
DK12 | CGTGGATATAGCCGCAACGTCCATAGTTTCTAGATACACG | 0.94 |
DK13 | CACATATGCAGCCGCTGTGTATGCACATCTGACATGTGTG | 0.88 |
DK14 | CGGGTGGATACCAGCTGCGTGTAAACTCTGTGTACCCCCG | 0.82 |
DK15 | CATGAGTGTGGTTGCCGCATGTAAATTCAACCCATCCATG | 0.82 |
DK16 | CACGTGTATGAAAGCCGCGTATATACTCTTTACTTCCGTG | 0.80 |
DK17 | CATAGGTATACGCGCTGCGTCTACGCAACGTACACTCATG | 0.74 |
DK18 | TACCTGAGCAGGGGTTGGACGGGGACCCTCTGGGCGTACT | 0.71 |
DK19 | CACATACGTCAGCCGCATGTGTATACATTCTGTGTTTGTG | 0.70 |
DK20 | CATATGTCTGCCGGGGTCCCTTATGGGCGGCACGTCTATG | 0.67 |
ID | Kd, nM |
---|---|
DK1 | 1.3 ± 1 |
DK2 | 1.8 ± 1 |
DK3 | 3.7 ± 3 |
DK4 | 1.8 ± 0.5 |
DK1_48t | 10 ± 6 |
DK2_58t | 3.6 ± 2 |
DK2_48t | 3.3 ± 2 |
DK4_50t | 6.1 ± 2 |
DK4_41t | 5.6 ± 3 |
TD10 | 7 ± 5 |
ID | Truncated Sequence |
---|---|
DK1_48t | CGGCATGTATCTGGCTGCTGAGTGTACGATTCCAGTATATATGAGCCG |
DK2_58t | CGACTCGGTGTACCCGCATAGACCCTGCGTCCGCTGTATGTACACGTAAGCCCTGTCG |
DK2_48t | CGGTGTACCCGCATAGACCCTGCGTCCGCTGTATGTACACGTAAGCCG |
DK4_50t | CACGACTCGGAGTGCGTACAGCAAGCACATATGTGCTCTCCCAGAGCGTG |
DK4_41t | CCTCGGAGTGCGTACAGCAAGCACATATGTGCTCTCCCAGG |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shatunova, E.A.; Rychkova, A.S.; Meschaninova, M.I.; Kabilov, M.R.; Tupikin, A.E.; Kurochkina, Y.D.; Korolev, M.A.; Vorobyeva, M.A. Novel DNA Aptamers to Dickkopf-1 Protein and Their Application in Colorimetric Sandwich Assays for Target Detection in Patients with Axial Spondyloarthritis. Int. J. Mol. Sci. 2024, 25, 12214. https://doi.org/10.3390/ijms252212214
Shatunova EA, Rychkova AS, Meschaninova MI, Kabilov MR, Tupikin AE, Kurochkina YD, Korolev MA, Vorobyeva MA. Novel DNA Aptamers to Dickkopf-1 Protein and Their Application in Colorimetric Sandwich Assays for Target Detection in Patients with Axial Spondyloarthritis. International Journal of Molecular Sciences. 2024; 25(22):12214. https://doi.org/10.3390/ijms252212214
Chicago/Turabian StyleShatunova, Elizaveta A., Anastasia S. Rychkova, Mariya I. Meschaninova, Marsel R. Kabilov, Alexey E. Tupikin, Yuliya D. Kurochkina, Maksim A. Korolev, and Mariya A. Vorobyeva. 2024. "Novel DNA Aptamers to Dickkopf-1 Protein and Their Application in Colorimetric Sandwich Assays for Target Detection in Patients with Axial Spondyloarthritis" International Journal of Molecular Sciences 25, no. 22: 12214. https://doi.org/10.3390/ijms252212214
APA StyleShatunova, E. A., Rychkova, A. S., Meschaninova, M. I., Kabilov, M. R., Tupikin, A. E., Kurochkina, Y. D., Korolev, M. A., & Vorobyeva, M. A. (2024). Novel DNA Aptamers to Dickkopf-1 Protein and Their Application in Colorimetric Sandwich Assays for Target Detection in Patients with Axial Spondyloarthritis. International Journal of Molecular Sciences, 25(22), 12214. https://doi.org/10.3390/ijms252212214