Nutritional and Nutraceutical Support to the Failing Myocardium: A Possible Way of Potentiating the Current Treatment of Heart Failure
Abstract
:1. Introduction
1.1. Incidence of Heart Failure (HF) and Pathophysiological Mechanisms
1.2. Micronutrient Depletion in HF: Nutrition and Nutraceutical Supplementation
Micronutrient Depletion in HF | ||
---|---|---|
Clinical Trials | Properties | Ref. |
An inadequate micronutrient supply | Cause HF and exacerbate cardiac dysfunction; malfunctioning myocardium could be connected to oxidative stress | [11] |
Individuals with HF experience oxidative stress, improper dietary habits, changes in metabolism and gut function, and inflammation | Resulting in a shortage of essential nutrients (such as iron, selenium, and zinc) that impacts their outlook | [15] |
Low vitamin D levels | Higher likelihood of developing HF | [17] |
Level of vitamin D | Improved results in cardiopulmonary stress tests and longer distances in the six-minute walking test, but is negatively related to NYHA class Indicated a significant difference in vitamin D levels between severe HF patients admitted to the hospital for intravenous inotropic agents or left ventricular assist devices and those managed as outpatients | [19] |
Patients with HF have shown a deficiency in myocardial CoQ10 | Linked to the severity of symptoms and LVEF. | [20] |
Iron deficiency | Impacting 37–61% of patients, can be significant in CHF patients before anemia development impacting symptoms, quality of life, and mortality rates | [21] |
Iron deficiency is common in HFpEF | Decreased exercise capacity and quality of life, and becoming more prevalent as diastolic dysfunction worsens | [22] |
2. Lifestyle Modifications in HF Management
2.1. Exercise
2.1.1. Exercise and HF Management
Exercise Training (ET)
Interval Training and Continuous Training
2.1.2. Exercise-Based Cardiac Rehabilitation
2.2. HF Nutrition
2.2.1. Prevention of Excessive Salt and Fluid Consumption
2.2.2. Body Weight Management
2.3. The Link Between Addiction and HF Management
3. Nutritional Supplementation in Prevention and Therapy Support of HF
3.1. Supplementation with Ferric Carboxymaltose (FCM)
3.1.1. Iron Deficiency and HF
3.1.2. IV Iron Treatment in HF
3.1.3. IV FCM Treatment in HF
3.2. CoQ10 Supplementation
3.2.1. Coenzyme Q10 Activity
3.2.2. Coenzyme Q10 and Cardiovascular Disease
3.3. Polyunsaturated Fatty Acid (PUFA) Supplementation in Patients Suffering from HF
4. Recent Preclinical and Clinical Evidence in Nutraceutical Supplementation and HF
4.1. Malus Domestica Derivatives
4.2. Vitis vinifera L. Seed Extract
4.3. Citrus bergamia Polyphenolic Fraction
4.3.1. The Cardioprotective Role of BPF in Counteracting Doxorubicin-Induced Cardiotoxicity
4.3.2. BPF Supplementation Counteracts Endothelial Dysfunction and Lipid Profile
4.4. Olea europaea L. Extract
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Elendu, C.; Amaechi, D.C.; Elendu, T.C.; Ashna, M.; Ross-Comptis, J.; Ansong, S.O.; Egbunu, E.O.; Okafor, G.C.; Jingwa, K.A.; Akintunde, A.A.; et al. Heart failure and diabetes: Understanding the bidirectional relationship. Medicine 2023, 102, e34906. [Google Scholar] [CrossRef] [PubMed]
- Savarese, G.; Becher, P.M.; Lund, L.H.; Seferovic, P.; Rosano, G.M.C.; Coats, A.J.S. Global burden of heart failure: A comprehensive and updated review of epidemiology. Cardiovasc. Res. 2023, 118, 3272–3287. [Google Scholar] [CrossRef] [PubMed]
- Azad, N.; Lemay, G. Management of chronic heart failure in the older population. J. Geriatr. Cardiol. 2014, 11, 329–337. [Google Scholar] [CrossRef] [PubMed]
- Sacks, D.; Baxter, B.; Campbell, B.C.V.; Carpenter, J.S.; Cognard, C.; Dippel, D.; Eesa, M.; Fischer, U.; Hausegger, K.; Hirsch, J.A.; et al. Multisociety Consensus Quality Improvement Revised Consensus Statement for Endovascular Therapy of Acute Ischemic Stroke. Int. J. Stroke 2018, 13, 612–632. [Google Scholar] [CrossRef]
- Lasica, R.; Djukanovic, L.; Vukmirovic, J.; Zdravkovic, M.; Ristic, A.; Asanin, M.; Simic, D. Clinical Review of Hypertensive Acute Heart Failure. Medicina 2024, 60, 133. [Google Scholar] [CrossRef]
- Ponikowski, P.; Anker, S.D.; AlHabib, K.F.; Cowie, M.R.; Force, T.L.; Hu, S.; Jaarsma, T.; Krum, H.; Rastogi, V.; Rohde, L.E.; et al. Heart failure: Preventing disease and death worldwide. ESC Heart Fail. 2014, 1, 4–25. [Google Scholar] [CrossRef]
- Camafort, M.; Park, S.M.; Kang, S.M. Lifestyle Modification in Heart Failure Management: Are We Using Evidence-Based Recommendations in Real World Practice? Int. J. Heart Fail. 2023, 5, 21–33. [Google Scholar] [CrossRef]
- Sharma, M.; CS, V.; Ojha, K.; BS, Y.; Singh, B.; Gupta, S.; Pandey, S.K. The Role of Functional Foods and Nutraceuticals in Disease Prevention and Health Promotion. Eur. J. Nutr. Food Saf. 2024, 16, 61–83. [Google Scholar] [CrossRef]
- Musolino, V.; Gliozzi, M.; Scarano, F.; Bosco, F.; Scicchitano, M.; Nucera, S.; Carresi, C.; Ruga, S.; Zito, M.C.; Maiuolo, J.; et al. Bergamot Polyphenols Improve Dyslipidemia and Pathophysiological Features in a Mouse Model of Non-Alcoholic Fatty Liver Disease. Sci. Rep. 2020, 10, 2565. [Google Scholar] [CrossRef]
- Bomer, N.; Pavez-Giani, M.G.; Grote Beverborg, N.; Cleland, J.G.F.; van Veldhuise, D.J.; van der Meer, P. Micronutrient deficiencies in heart failure: Mitochondrial dysfunction as a common pathophysiological mechanism? J. Intern. Med. 2022, 291, 713–731. [Google Scholar] [CrossRef]
- Torres, N.R.S.M.; Freire, F.L.A.; Dantas-Komatsu, R.C.S.; Silva, E.P.D.; Queiroz, S.I.M.L.; Lira, N.R.D.; Diniz, R.V.Z.; Lima, S.C.V.C.; Pedrosa, L.F.C.; Lopes, M.M.G.D.; et al. Lack of Association between Inadequate Micronutrient Intake and Prognosis in Outpatients with Heart Failure. Nutrients 2022, 14, 788. [Google Scholar] [CrossRef] [PubMed]
- Braunwald, E. Heart failure. JACC Heart Fail. 2013, 1, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Allard, M.L.; Jeejeebhoy, K.N.; Sole, M.J. The management of conditioned nutritional requirements in heart failure. Heart Fail. Rev. 2006, 11, 75–82. [Google Scholar] [CrossRef] [PubMed]
- Witte, K.K.; Clark, A.L. Micronutrients and their supplementation in chronic cardiac failure. An update beyond theoretical perspectives. Heart Fail. Rev. 2006, 11, 65–74. [Google Scholar] [CrossRef]
- Cvetinovic, N.; Loncar, G.; Isakovic, A.M.; von Haehling, S.; Doehner, W.; Lainscak, M.; Farkas, J. Micronutrient Depletion in Heart Failure: Common, Clinically Relevant and Treatable. Int. J. Mol. Sci. 2019, 20, 5627. [Google Scholar] [CrossRef]
- Parker, J.; Hashmi, O.; Dutton, D.; Mavrodaris, A.; Stranges, S.; Kandala, N.B.; Clarke, A.; Franco, O.H. Levels of vitamin D and cardiometabolic disorders: Systematic review and meta-analysis. Maturitas 2010, 65, 225–236. [Google Scholar] [CrossRef]
- Anderson, J.L.; May, H.T.; Horne, B.D.; Bair, T.L.; Hall, N.L.; Carlquist, J.F.; Lappé, D.L.; Muhlestein, J.B.; Intermountain Heart Collaborative (IHC) Study Group. Relation of vitamin D deficiency to cardiovascular risk factors, disease status, and incident events in a general healthcare population. Am. J. Cardiol. 2010, 106, 963–968. [Google Scholar] [CrossRef]
- Gruson, D.; Ferracin, B.; Ahn, S.A.; Zierold, C.; Blocki, F.; Hawkins, D.M.; Bonelli, F.; Rousseau, M.F. 1,25-Dihydroxyvitamin D to PTH(1-84) Ratios Strongly Predict Cardiovascular Death in Heart Failure. PLoS ONE 2015, 10, e0135427. [Google Scholar] [CrossRef]
- Shane, E.; Mancini, D.; Aaronson, K.; Silverberg, S.J.; Seibel, M.J.; Addesso, V.; McMahon, D.J. Bone mass, vitamin D deficiency, and hyperparathyroidism in congestive heart failure. Am. J. Med. 1997, 103, 197–207. [Google Scholar] [CrossRef]
- Folkers, K.; Vadhanavikit, S.; Mortensen, S.A. Biochemical rationale and myocardial tissue data on the effective therapy of cardiomyopathy with coenzyme Q10. Proc. Natl. Acad. Sci. USA 1985, 82, 901–904. [Google Scholar] [CrossRef]
- Klip, I.T.; Comin-Colet, J.; Voors, A.A.; Ponikowski, P.; Enjuanes, C.; Banasiak, W.; Lok, D.J.; Rosentryt, P.; Torrens, A.; Polonski, L.; et al. Iron deficiency in chronic heart failure: An international pooled analysis. Am. Heart J. 2013, 165, 575–582.e3. [Google Scholar] [CrossRef] [PubMed]
- Bekfani, T.; Pellicori, P.; Morris, D.; Ebner, N.; Valentova, M.; Sandek, A.; Doehner, W.; Cleland, J.G.; Lainscak, M.; Schulze, P.C.; et al. Iron deficiency in patients with heart failure with preserved ejection fraction and its association with reduced exercise capacity, muscle strength and quality of life. Clin. Res. Cardiol. 2019, 108, 203–211. [Google Scholar] [CrossRef] [PubMed]
- Rosato, V.; Temple, N.J.; La Vecchia, C.; Castellan, G.; Tavani, A.; Guercio, V. Mediterranean diet and cardiovascular disease: A systematic review and meta-analysis of observational studies. Eur. J. Nutr. 2019, 58, 173–191. [Google Scholar] [CrossRef]
- Mollazadeh, H.; Tavana, E.; Fanni, G.; Bo, S.; Banach, M.; Pirro, M.; von Haehling, S.; Jamialahmadi, T.; Sahebkar, A. Effects of statins on mitochondrial pathways. J. Cachexia Sarcopenia Muscle 2021, 12, 237–251. [Google Scholar] [CrossRef]
- Alves, Q.L.; Camargo, S.B.; Silva, D.F. Role of Nutraceuticals in the Prevention and Treatment of Hypertension and Cardiovascular Diseases. J. Hypertens. Manag. 2019, 5, 037. [Google Scholar] [CrossRef]
- Sapna, F.; Raveena, F.; Chandio, M.; Bai, K.; Sayyar, M.; Varrassi, G.; Khatri, M.; Kumar, S.; Mohamad, T. Advancements in Heart Failure Management: A Comprehensive Narrative Review of Emerging Therapies. Cureus 2023, 15, e46486. [Google Scholar] [CrossRef]
- Dhungana, R.R.; Pedisic, Z.; de Courten, M. Implementation of non-pharmacological interventions for the treatment of hypertension in primary care: A narrative review of effectiveness, cost-effectiveness, barriers, and facilitators. BMC Prim. Care 2022, 23, 298. [Google Scholar] [CrossRef]
- Stefanaki, C.; Pervanidou, P.; Boschiero, D.; Chrousos, G.P. Chronic stress and body composition disorders: Implications for health and disease. Hormones 2018, 17, 33–43. [Google Scholar] [CrossRef]
- Pandey, A.; Kitzman, D.W.; Nelson, M.B.; Pastva, A.M.; Duncan, P.; Whellan, D.J.; Mentz, R.J.; Chen, H.; Upadhya, B.; Reeves, G.R. Frailty and Effects of a Multidomain Physical Rehabilitation Intervention Among Older Patients Hospitalized for Acute Heart Failure: A Secondary Analysis of a Randomized Clinical Trial. JAMA Cardiol. 2023, 8, 167–176. [Google Scholar] [CrossRef]
- Aung, T.; Qin, Y.; Tay, W.T.; Binte Salahudin Bamadhaj, N.S.; Chandramouli, C.; Ouwerkerk, W.; Tromp, J.; Anand, I.; Richards, A.M.; Hung, C.L.; et al. Prevalence and Prognostic Significance of Frailty in Asian Patients with Heart Failure: Insights From ASIAN-HF. JACC Asia 2021, 1, 303–313. [Google Scholar] [CrossRef]
- Mudge, A.M.; Pelecanos, A.; Adsett, J.A. Frailty implications for exercise participation and outcomes in patients with heart failure. J. Am. Geriatr. Soc. 2021, 69, 2476–2485. [Google Scholar] [CrossRef] [PubMed]
- McDonagh, T.A.; Metra, M.; Adamo, M.; Gardner, R.S.; Baumbach, A.; Böhm, M.; Burri, H.; Butler, J.; Čelutkienė, J.; Chioncel, O.; et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: Developed by the Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). With the special contribution of the Heart Failure Association (HFA) of the ESC. Eur. J. Heart Fail. 2022, 24, 4–131. [Google Scholar] [CrossRef] [PubMed]
- Heidenreich, P.A.; Bozkurt, B.; Aguilar, D.; Allen, L.A.; Byun, J.J.; Colvin, M.M.; Deswal, A.; Drazner, M.H.; Dunlay, S.M.; Evers, L.R.; et al. 2022 AHA/ACC/HFSA Guideline for the Management of Heart Failure: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation 2022, 145, e895–e1032. [Google Scholar] [CrossRef] [PubMed]
- Kittleson, M.M.; Breathett, K.; Ziaeian, B.; Aguilar, D.; Blumer, V.; Bozkurt, B.; Diekemper, R.L.; Dorsch, M.P.; Heidenreich, P.A.; Jurgens, C.Y.; et al. 2024 Update to the 2020 ACC/AHA Clinical Performance and Quality Measures for Adults with Heart Failure: A Report of the American Heart Association/American College of Cardiology Joint Committee on Performance Measures. Circ. Cardiovasc. Qual. Outcomes 2024, 17, e000132. [Google Scholar] [CrossRef]
- Bozkurt, B.; Fonarow, G.C.; Goldberg, L.R.; Guglin, M.; Josephson, R.A.; Forman, D.E.; Lin, G.; Lindenfeld, J.; O’Connor, C.; Panjrath, G.; et al. Cardiac Rehabilitation for Patients with Heart Failure: JACC Expert Panel. J. Am. Coll. Cardiol. 2021, 77, 1454–1469. [Google Scholar] [CrossRef]
- Palevičiūtė, E.; Šimbelytė, T.; Eichstaedt, C.A.; Benjamin, N.; Egenlauf, B.; Grünig, E.; Čelutkienė, J. The effect of exercise training and physiotherapy on left and right heart function in heart failure with preserved ejection fraction: A systematic literature review. Heart Fail. Rev. 2023, 28, 193–206. [Google Scholar] [CrossRef]
- Li, D.; Chen, P.; Zhu, J. The Effects of Interval Training and Continuous Training on Cardiopulmonary Fitness and Exercise Tolerance of Patients with Heart Failure-A Systematic Review and Meta-Analysis. Int. J. Environ. Res. Public Health 2021, 18, 6761. [Google Scholar] [CrossRef]
- Gomes-Neto, M.; Durães, A.R.; Conceição, L.S.R.; Roever, L.; Liu, T.; Tse, G.; Biondi-Zoccai, G.; Goes, A.L.B.; Alves, I.G.N.; Ellingsen, Ø.; et al. Effect of Aerobic Exercise on Peak Oxygen Consumption, VE/VCO2 Slope, and Health-Related Quality of Life in Patients with Heart Failure with Preserved Left Ventricular Ejection Fraction: A Systematic Review and Meta-Analysis. Curr. Atheroscler. Rep. 2019, 21, 45. [Google Scholar] [CrossRef]
- Li, J.; Chen, L.; Wang, L. Impact of Different Exercise Modalities on Physical Function and Quality of Life in Patients with Heart Failure. J. Multidiscip. Healthc. 2024, 17, 2551–2559. [Google Scholar] [CrossRef]
- Taylor, R.S.; Dalal, H.M.; Zwisler, A.D. Cardiac rehabilitation for heart failure: ‘Cinderella’ or evidence-based pillar of care? Eur. Heart J. 2023, 44, 1511–1518. [Google Scholar] [CrossRef]
- Ito, R.; Hiraiwa, H.; Araki, T.; Mizutani, T.; Kazama, S.; Kimura, Y.; Oishi, H.; Kuwayama, T.; Kondo, T.; Morimoto, R.; et al. Prognostic value of malnutrition evaluated using the Global Leadership Initiative on Malnutrition criteria and its association with psoas muscle volume in non-ischemic dilated cardiomyopathy. Heart Vessel. 2022, 37, 2002–2012. [Google Scholar] [CrossRef] [PubMed]
- Busa, V.; Dardeir, A.; Marudhai, S.; Patel, M.; Valaiyaduppu Subas, S.; Ghani, M.R.; Cancarevic, I. Role of Vitamin D Supplementation in Heart Failure Patients with Vitamin D Deficiency and Its Effects on Clinical Outcomes: A Literature Review. Cureus 2020, 12, e10840. [Google Scholar] [CrossRef] [PubMed]
- Tappia, P.S.; Lopez, R.; Fitzpatrick-Wong, S.; Ramjiawan, B. Understanding the Role of Vitamin D in Heart Failure. Rev. Cardiovasc. Med. 2023, 24, 111. [Google Scholar] [CrossRef] [PubMed]
- Hummel, S.L.; Karmally, W.; Gillespie, B.W.; Helmke, S.; Teruya, S.; Wells, J.; Trumble, E.; Jimenez, O.; Marolt, C.; Wessler, J.D.; et al. Home-Delivered Meals Postdischarge From Heart Failure Hospitalization. Circ. Heart Fail. 2018, 11, e004886. [Google Scholar] [CrossRef]
- Wickman, B.E.; Enkhmaa, B.; Ridberg, R.; Romero, E.; Cadeiras, M.; Meyers, F.; Steinberg, F. Dietary Management of Heart Failure: DASH Diet and Precision Nutrition Perspectives. Nutrients 2021, 13, 4424. [Google Scholar] [CrossRef]
- Ezekowitz, J.A.; Colin-Ramirez, E.; Ross, H.; Escobedo, J.; Macdonald, P.; Troughton, R.; Saldarriaga, C.; Alemayehu, W.; McAlister, F.A.; Arcand, J.; et al. Reduction of dietary sodium to less than 100 mmol in heart failure (SODIUM-HF): An international, open-label, randomised, controlled trial. Lancet 2022, 399, 1391–1400. [Google Scholar] [CrossRef]
- Mullens, W.; Damman, K.; Dhont, S.; Banerjee, D.; Bayes-Genis, S.; Cannata, S.; Chioncel, O.; Cikes, M.; Ezekowitz, J.; Flammer, A.J.; et al. Dietary sodium and fluid intake in heart failure. A clinical consensus statement of the Heart Failure Association of the ESC. Eur. J. Heart Fail. 2024, 26, 730–741. [Google Scholar] [CrossRef]
- Wittczak, A.; Ślot, M.; Bielecka-Dabrowa, A. The Importance of Optimal Hydration in Patients with Heart Failure-Not Always Too Much Fluid. Biomedicines 2023, 11, 2684. [Google Scholar] [CrossRef]
- Chi, M.; Nie, Y.; Su, Y.; Wang, N.; Li, A.; Ma, T.; Hou, Y. Effects of weight loss in heart failure patients with overweight and obesity: A systematic review and meta-analysis. Eur. J. Prev. Cardiol. 2023, 30, 1906–1921. [Google Scholar] [CrossRef]
- Khan, A.; Van Iterson, E.H.; Laffin, L.J. The obesity paradox in heart failure: What is the role of cardiorespiratory fitness? Clevel. Clin. J. Med. 2021, 88, 449–458. [Google Scholar] [CrossRef]
- Cowie, M.R.; Woehrle, H.; Wegscheider, K.; Angermann, C.; d’Ortho, M.P.; Erdmann, E.; Levy, P.; Simonds, A.K.; Somers, V.K.; Zannad, F.; et al. Adaptive Servo-Ventilation for Central Sleep Apnea in Systolic Heart Failure. N. Engl. J. Med. 2015, 373, 1095–1105. [Google Scholar] [CrossRef] [PubMed]
- Camafort, M.; Kario, K. Hypertension, heart failure, and frailty in older people: A common but unclear situation. J. Clin. Hypertens. 2020, 22, 1763–1768. [Google Scholar] [CrossRef] [PubMed]
- Djoussé, L.; Gaziano, J.M. Alcohol consumption and risk of heart failure in the Physicians’ Health Study, I. Circulation 2007, 115, 34–39. [Google Scholar] [CrossRef] [PubMed]
- Rasoul, D.; Ajay, A.; Abdullah, A.; Mathew, J.; En, B.; Mashida, K.; Sankaranarayanan, R. Alcohol and Heart Failure. Eur. Cardiol. Rev. 2023, 18, e65. [Google Scholar] [CrossRef]
- Lindgren, M.; Börjesson, M. The importance of physical activity and cardiorespiratory fitness for patients with heart failure. Diabetes Res. Clin. Pract. 2021, 176, 108833. [Google Scholar] [CrossRef]
- Youn, J.C.; Kim, D.; Cho, J.Y.; Cho, D.H.; Park, S.M.; Jung, M.H.; Hyun, J.; Cho, H.J.; Park, S.M.; Choi, J.O.; et al. Committee of Clinical Practice Guidelines, Korean Society of Heart Failure. Korean Society of Heart Failure Guidelines for the Management of Heart Failure: Treatment. Korean Circ. J. 2023, 53, 217–238. [Google Scholar] [CrossRef]
- Edwards, J.J.; O’Driscoll, J.M. Exercise Training in Heart failure with Preserved and Reduced Ejection Fraction: A Systematic Review and Meta-Analysis. Sports Med. Open 2022, 8, 76. [Google Scholar] [CrossRef]
- Kim, S.E.; Yoo, B.S. Treatment Strategies of Improving Quality of Care in Patients with Heart Failure. Korean Circ. J. 2023, 53, 294–312. [Google Scholar] [CrossRef]
- Siddiqi, T.J.; Rashid, A.M.; Javaid, S.S.; Siddiqi, A.K.; Usman, M.S.; Hervir, O.; Kamimura, D.; Lavie, C.J.; Mentz, R.J.; Butler, J.; et al. High-Intensity Interval Training Versus Moderate Continuous Training in Patients with Heart Failure with Preserved Ejection Fraction: A Systematic Review and Meta-analysis. Curr. Probl. Cardiol. 2023, 48, 101720. [Google Scholar] [CrossRef]
- Wang, C.; Xing, J.; Zhao, B.; Wang, Y.; Zhang, L.; Wang, Y.; Zheng, M.; Liu, G. The Effects of High-Intensity Interval Training on Exercise Capacity and Prognosis in Heart Failure and Coronary Artery Disease: A Systematic Review and Meta-Analysis. Cardiovasc. Ther. 2022, 2022, 4273809. [Google Scholar] [CrossRef]
- Taylor-Piliae, R.E.; Finley, B.A. Tai Chi exercise for psychological well-being among adults with cardiovascular disease: A systematic review and meta-analysis. Eur. J. Cardiovasc. Nurs. 2020, 19, 580–591. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Qin, X.; Shen, M.; Xu, Y.; Huang, Y. The Effects of Tai Chi Exercise Among Adults with Chronic Heart Failure: An Overview of Systematic Review and Meta-Analysis. Front. Cardiovasc. Med. 2021, 8, 589267. [Google Scholar] [CrossRef] [PubMed]
- Yao, F.; Zhang, Y.; Kuang, X.; Zhou, Q.; Huang, L.; Peng, J.; Hou, K.; Du, S. Effects of Cardiac Rehabilitation Training in Patients with Heart Failure Based on Traditional Chinese Exercise: A Systematic Review and Meta-Analysis. Evid. Based Complement. Altern. Med. 2021, 2021, 1068623. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Shao, W.; Zhang, J.; Ma, J.; Huang, S.; Yu, P.; Zhu, W.; Liu, X. Prevalence of Atrial Fibrillation and Associated Mortality Among Hospitalized Patients with COVID-19: A Systematic Review and Meta-Analysis. Front. Cardiovasc. Med. 2021, 8, 720129. [Google Scholar] [CrossRef]
- Huang, X.; Pang, S.; Zhao, Y.; Qian, J.; Zhong, J.; Liu, S. Efficacy and safety of different traditional Chinese health exercises in patients with coronary heart disease combined with chronic heart failure: A network meta-analysis. Medicine 2023, 102, e36522. [Google Scholar] [CrossRef]
- Chen, X.; Marrone, G.; Olson, T.P.; Lundborg, C.S.; Zhu, H.; Wen, Z.; Lu, W.; Jiang, W. Intensity level and cardiorespiratory responses to Baduanjin exercise in patients with chronic heart failure. ESC Heart Fail. 2020, 7, 3782–3791. [Google Scholar] [CrossRef]
- Passantino, A.; Dalla Vecchia, L.A.; Corrà, U.; Scalvini, S.; Pistono, M.; Bussotti, M.; Gambarin, F.I.; Scrutinio, D.; La Rovere, M.T. The Future of Exercise-Based Cardiac Rehabilitation for Patients with Heart Failure. Front. Cardiovasc. Med. 2021, 8, 709898. [Google Scholar] [CrossRef]
- Taylor, R.S.; Dalal, H.M.; McDonagh, S.T.J. The role of cardiac rehabilitation in improving cardiovascular outcomes. Nat. Rev. Cardiol. 2022, 19, 180–194. [Google Scholar] [CrossRef]
- Taylor, R.S.; Walker, S.; Smart, N.A.; Piepoli, M.F.; Warren, F.C.; Ciani, O.; Whellan, D.; O’Connor, C.; Keteyian, S.J.; Coats, A.; et al. Impact of Exercise Rehabilitation on Exercise Capacity and Quality-of-Life in Heart Failure: Individual Participant Meta-Analysis. J. Am. Coll. Cardiol. 2019, 73, 1430–1443. [Google Scholar] [CrossRef]
- Soto, M.E.; Pérez-Torres, I.; Rubio-Ruiz, M.E.; Manzano-Pech, L.; Guarner-Lans, V. Interconnection between Cardiac Cachexia and Heart Failure-Protective Role of Cardiac Obesity. Cells 2022, 11, 1039. [Google Scholar] [CrossRef]
- Da Silva Lockmann, A.; Scariot, E.L.; Buss, C. The healthy eating index for older adults: Adaptation of the 2015 healthy eating index considering dietary guidelines for healthy aging. Eur. J. Nutr. 2024, 63, 1901–1913. [Google Scholar] [CrossRef] [PubMed]
- Chung, M.L.; Lee, S.J.; Moser, D.K.; Kang, J.; Lennie, T.A. A Comparison of Diet Quality of Patients with Heart Failure and Their Family Caregivers. J. Cardiovasc. Nurs. 2020, 35, 101–106. [Google Scholar] [CrossRef] [PubMed]
- Hopkins, L.C.; Holloman, C.; Webster, A.; Labyk, A.N.; Penicka, C.; May, L.; Sharn, A.; Gupta, S.; Schier, H.; Kennel, J.; et al. Caregiver Nutritional Health Outcomes of the Simple Suppers Study: Results from a 10 Week, Two-Group Quasi-Experimental Family Meals Intervention. Nutrients 2022, 14, 250. [Google Scholar] [CrossRef] [PubMed]
- Borlaug, B.A.; Jensen, M.D.; Kitzman, D.W.; Lam, C.S.P.; Obokata, M.; Rider, O.J. Obesity and heart failure with preserved ejection fraction: New insights and pathophysiological targets. Cardiovasc. Res. 2023, 118, 3434–3450. [Google Scholar] [CrossRef]
- Fernández-Pombo, A.; Rodríguez-Carnero, G.; Castro, A.I.; Cantón-Blanco, A.; Seoane, L.M.; Casanueva, F.F.; Crujeiras, A.B.; Martínez-Olmos, M.A. Relevance of nutritional assessment and treatment to counteract cardiac cachexia and sarcopenia in chronic heart failure. Clin. Nutr. 2021, 40, 5141–5155. [Google Scholar] [CrossRef]
- Richardson, L.A.; Izuora, K.; Basu, A. Mediterranean Diet and Its Association with Cardiovascular Disease Risk Factors: A Scoping Review. Int. J. Environ. Res. Public Health 2022, 19, 12762. [Google Scholar] [CrossRef]
- Lee, J.H.; Kim, M.S.; Kim, E.J.; Park, D.G.; Cho, H.J.; Yoo, B.S.; Kang, S.M.; Choi, D.J. KSHF Guidelines for the Management of Acute Heart Failure: Part I.; Definition, Epidemiology and Diagnosis of Acute Heart Failure. Korean Circ. J. 2019, 49, 1–21. [Google Scholar] [CrossRef]
- Kim, M.S.; Lee, J.H.; Kim, E.J.; Park, D.G.; Park, S.J.; Park, J.J.; Shin, M.S.; Yoo, B.S.; Youn, J.C.; Lee, S.E.; et al. Korean Guidelines for Diagnosis and Management of Chronic Heart Failure. Korean Circ. J. 2017, 47, 555–643. [Google Scholar] [CrossRef]
- McDonagh, T.A.; Metra, M.; Adamo, M.; Gardner, R.S.; Baumbach, A.; Böhm, M.; Burri, H.; Butler, J.; Čelutkienė, J.; Chioncel, O.; et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur. Heart J. 2021, 42, 3599–3726. [Google Scholar] [CrossRef]
- Heidenreich, P.A.; Bozkurt, B.; Aguilar, D.; Allen, L.A.; Byun, J.J.; Colvin, M.M.; Deswal, A.; Drazner, M.H.; Dunlay, S.M.; Evers, L.R.; et al. 2022 American College of Cardiology/American Heart Association/Heart Failure Society of America Guideline for the Management of Heart Failure: Executive Summary. J. Card. Fail. 2022, 28, 810–830. [Google Scholar] [CrossRef]
- Hogas, M.; Statescu, C.; Padurariu, M.; Ciobica, A.; Bilha, S.C.; Haisan, A.; Timofte, D.; Hogas, S. Salt, Not Always a Cardiovascular Enemy? A Mini-Review and Modern Perspective. Medicina 2022, 58, 1175. [Google Scholar] [CrossRef] [PubMed]
- Chrysohoou, C.; Mantzouranis, E.; Dimitroglou, Y.; Mavroudis, A.; Tsioufis, K. Fluid and Salt Balance and the Role of Nutrition in Heart Failure. Nutrients 2022, 14, 1386. [Google Scholar] [CrossRef] [PubMed]
- García-García, A.; Alvarez-Sala-Walther, L.A.; Lee, H.Y.; Sierra, C.; Pascual-Figal, D.; Camafort, M. Is there sufficient evidence to justify changes in dietary habits in heart failure patients? A systematic review. Korean J. Intern. Med. 2022, 37, 37–47. [Google Scholar] [CrossRef]
- Herrmann, J.J.; Beckers-Wesche, F.; Baltussen, L.E.H.J.M.; Verdijk, M.H.I.; Bellersen, L.; Brunner-la Rocca, H.P.; Jaarsma, T.; Pisters, R.; Sanders-van Wijk, S.; Rodwell, L.; et al. Fluid REStriction in Heart Failure vs Liberal Fluid UPtake: Rationale and Design of the Randomized FRESH-UP Study. J. Card. Fail. 2022, 28, 1522–1530. [Google Scholar] [CrossRef]
- Guo, L.; Liu, X.; Yu, P.; Zhu, W. The “Obesity Paradox” in Patients with HFpEF with or Without Comorbid Atrial Fibrillation. Front. Cardiovasc. Med. 2022, 8, 743327. [Google Scholar] [CrossRef]
- El Hajj, E.C.; El Hajj, M.C.; Sykes, B.; Lamicq, M.; Zile, M.R.; Malcolm, R.; O’Neil, P.M.; Litwin, S.E. Pragmatic Weight Management Program for Patients with Obesity and Heart Failure with Preserved Ejection Fraction. J. Am. Heart Assoc. 2021, 10, e022930. [Google Scholar] [CrossRef]
- Deep Singh, T. Abnormal Sleep-Related Breathing Related to Heart Failure. Sleep Med. Clin. 2022, 17, 87–98. [Google Scholar] [CrossRef]
- Wang, Y.; Schöbel, C.; Penzel, T. Management of Obstructive Sleep Apnea in Patients with Heart Failure. Front. Med. 2022, 9, 803388. [Google Scholar] [CrossRef]
- Grubb, A.; Greene, S.J.; Fudim, M.; Dewald, T.; Mentz, R.J. Drugs of Abuse and Heart Failure. J. Card. Fail. 2021, 27, 1260–1275. [Google Scholar] [CrossRef]
- Andersson, C.; Schou, M.; Gustafsson, F.; Torp-Pedersen, C. Alcohol Intake in Patients with Cardiomyopathy and Heart Failure: Consensus and Controversy. Circ. Heart Fail. 2022, 15, 009459. [Google Scholar] [CrossRef]
- Nishimura, M.; Bhatia, H.; Ma, J.; Dickson, S.D.; Alshawabkeh, L.; Adler, E.; Maisel, A.; Criqui, M.H.; Greenberg, B.; Thomas, I.C. The Impact of Substance Abuse on Heart Failure Hospitalizations. Am. J. Med. 2020, 133, 207–213.e1. [Google Scholar] [CrossRef] [PubMed]
- Gottdiener, J.S.; Buzkova, P.; Kahn, P.A.; DeFilippi, C.; Shah, S.; Barasch, E.; Kizer, J.R.; Psaty, B.; Gardin, J.M. Relation of Cigarette Smoking and Heart Failure in Adults ≥65 Years of Age (From the Cardiovascular Health Study). Am. J. Cardiol. 2022, 168, 90–98. [Google Scholar] [CrossRef] [PubMed]
- Cicero, A.F.G.; Colletti, A.; von Haehling, S.; Vinereanu, D.; Bielecka-Dabrowa, A.; Sahebkar, A.; Toth, P.P.; Reiner, Ž.; Wong, N.D.; Mikhailidis, D.P.; et al. International Lipid Expert Panel. Nutraceutical support in heart failure: A position paper of the International Lipid Expert Panel (ILEP). Nutr. Res. Rev. 2020, 33, 155–179. [Google Scholar] [CrossRef] [PubMed]
- Fäh, D. Impact of diet on disease prevention and progression in heart failure patients: What’s the evidence? Cardiovasc. Med. 2023, 26, w02226. [Google Scholar] [CrossRef]
- Pfister, R.; Sharp, S.J.; Luben, R.; Wareham, N.J.; Khaw, K.T. Plasma vitamin C predicts incident heart failure in men and women in European Prospective Investigation into Cancer and Nutrition-Norfolk prospective study. Am. Heart J. 2011, 162, 246–253. [Google Scholar] [CrossRef]
- Mollace, A.; Macrì, R.; Mollace, R.; Tavernese, A.; Gliozzi, M.; Musolino, V.; Carresi, C.; Maiuolo, J.; Nicita, M.; Caminiti, R.; et al. Effect of Ferric Carboxymaltose Supplementation in Patients with Heart Failure with Preserved Ejection Fraction: Role of Attenuated Oxidative Stress and Improved Endothelial Function. Nutrients 2022, 14, 5057. [Google Scholar] [CrossRef]
- Timlin, M.T.; Pereira, M.A. Breakfast frequency and quality in the etiology of adult obesity and chronic diseases. Nutr. Rev. 2007, 65, 268–281. [Google Scholar] [CrossRef]
- Bolger, A.P.; Bartlett, F.R.; Penston, H.S.; O’Leary, J.; Pollock, N.; Kaprielian, R.; Chapman, C.M. Intravenous iron alone for the treatment of anemia in patients with chronic heart failure. J. Am. Coll. Cardiol. 2006, 48, 1225–1227. [Google Scholar] [CrossRef]
- Toblli, J.E.; Lombraña, A.; Duarte, P.; Di Gennaro, F. Intravenous iron reduces NT-pro-brain natriuretic peptide in anemic patients with chronic heart failure and renal insufficiency. J. Am. Coll. Cardiol. 2007, 50, 1657–1665. [Google Scholar] [CrossRef]
- Okonko, D.O.; Grzeslo, A.; Witkowski, T.; Mandal, A.K.; Slater, R.M.; Roughton, M.; Foldes, G.; Thum, T.; Majda, J.; Banasiak, W.; et al. Effect of intravenous iron sucrose on exercise tolerance in anemic and nonanemic patients with symptomatic chronic heart failure and iron deficiency FERRIC-HF: A randomized, controlled, observer-blinded trial. J. Am. Coll. Cardiol. 2008, 51, 103–112. [Google Scholar] [CrossRef]
- Sindone, A.; Doehner, W.; Manito, N.; McDonagh, T.; Cohen-Solal, A.; Damy, T.; Núñez, J.; Pfister, O.; van der Meer, P.; Comin-Colet, J. Practical Guidance for Diagnosing and Treating Iron Deficiency in Patients with Heart Failure: Why, Who and How? J. Clin. Med. 2022, 11, 2976. [Google Scholar] [CrossRef] [PubMed]
- Ponikowski, P.; van Veldhuisen, D.J.; Comin-Colet, J.; Ertl, G.; Komajda, M.; Mareev, V.; McDonagh, T.; Parkhomenko, A.; Tavazzi, L.; Levesque, V.; et al. Beneficial effects of long-term intravenous iron therapy with ferric carboxymaltose in patients with symptomatic heart failure and iron deficiency. Eur. Heart J. 2015, 36, 657–668. [Google Scholar] [CrossRef] [PubMed]
- Reinhold, J.; Burra, V.; Corballis, N.; Tsampasian, V.; Matthews, G.; Papadopoulou, C.; Vassiliou, V.S. Effects of Intravenous Iron Replacement Therapy on Cardiovascular Outcomes in Patients with Heart Failure: A Systematic Review and Meta-Analysis. J. Cardiovasc. Dev. Dis. 2023, 10, 116. [Google Scholar] [CrossRef] [PubMed]
- Barbarawi, M.; Lakshman, H.; Barbarawi, O.; Alabdouh, A.; Al Kasasbeh, M.; Djousse, L.; Manson, J.E. Omega-3 supplementation and heart failure: A meta-analysis of 12 trials including 81,364 participants. Contemp. Clin. Trials 2021, 107, 106458. [Google Scholar] [CrossRef]
- Block, R.C.; Liu, L.; Herrington, D.M.; Huang, S.; Tsai, M.Y.; O’Connell, T.D.; Shearer, G.C. Predicting Risk for Incident Heart Failure with Omega-3 Fatty Acids: From MESA. JACC Heart Fail. 2019, 7, 651–661. [Google Scholar] [CrossRef]
- Li, H.; Duan, Y.; Chen, B.; Zhao, Y.; Su, W.; Wang, S.; Wu, J.; Lu, L. New pharmacological treatments for heart failure with reduced ejection fraction (HFrEF): A Bayesian network meta-analysis. Medicine 2020, 99, e18341. [Google Scholar] [CrossRef]
- Matsuo, N.; Miyoshi, T.; Takaishi, A.; Kishinoue, T.; Yasuhara, K.; Tanimoto, M.; Nakano, Y.; Onishi, N.; Ueeda, M.; Ito, H. High Plasma Docosahexaenoic Acid Associated to Better Prognoses of Patients with Acute Decompensated Heart Failure with Preserved Ejection Fraction. Nutrients 2021, 13, 371. [Google Scholar] [CrossRef]
- Lechner, K.; Scherr, J.; Lorenz, E.; Lechner, B.; Haller, B.; Krannich, A.; Halle, M.; Wachter, R.; Duvinage, A.; Edelmann, F. Omega-3 fatty acid blood levels are inversely associated with cardiometabolic risk factors in HFpEF patients: The Aldo-DHF randomized controlled trial. Clin. Res. Cardiol. 2022, 111, 308–321. [Google Scholar] [CrossRef]
- Lázaro, I.; Lupón, J.; Cediel, G.; Codina, P.; Fitó, M.; Domingo, M.; Santiago-Vacas, E.; Zamora, E.; Sala-Vila, A.; Bayés-Genís, A. Relationship of Circulating Vegetable Omega-3 to Prognosis in Patients with Heart Failure. J. Am. Coll. Cardiol. 2022, 80, 1751–1758. [Google Scholar] [CrossRef]
- Yazdi, A.; Shirmohammadi, K.; Parvaneh, E.; Entezari-Maleki, T.; Hosseini, S.K.; Ranjbar, A.; Mehrpooya, M. Effects of coenzyme Q10 supplementation on oxidative stress biomarkers following reperfusion in STEMI patients undergoing primary percutaneous coronary intervention. J. Cardiovasc. Thorac. Res. 2023, 15, 250–261. [Google Scholar] [CrossRef]
- Morisco, C.; Trimarco, B.; Condorelli, M. Effect of coenzyme Q10 therapy in patients with congestive heart failure: A long-term multicenter randomized study. Clin. Investig. 1993, 71, S134–S136. [Google Scholar] [CrossRef] [PubMed]
- Mortensen, S.A.; Rosenfeldt, F.; Kumar, A.; Dolliner, P.; Filipiak, K.J.; Pella, D.; Alehagen, U.; Steurer, G.; Littarru, G.P. The effect of coenzyme Q10 on morbidity and mortality in chronic heart failure: Results from Q-SYMBIO: A randomized double-blind trial. JACC Heart Fail. 2014, 2, 641–649. [Google Scholar] [CrossRef] [PubMed]
- Mortensen, A.L.; Rosenfeldt, F.; Filipiak, K.J. Effect of coenzyme Q10 in Europeans with chronic heart failure: A sub-group analysis of the Q-SYMBIO randomized double-blind trial. Cardiol. J. 2019, 26, 147–156. [Google Scholar] [CrossRef] [PubMed]
- Samuel, T.Y.; Hasin, T.; Gotsman, I.; Weitzman, T.; Ben Ivgi, F.; Dadon, Z.; Asher, E.; Amir, O.; Glikson, M.; Alcalai, R.; et al. Coenzyme Q10 in the Treatment of Heart Failure with Preserved Ejection Fraction: A Prospective, Randomized, Double-Blind, Placebo-Controlled Trial. Drugs RD 2022, 22, 25–33. [Google Scholar] [CrossRef] [PubMed]
- Shamsi, A.; Cannata, A.; Piper, S.; Bromage, D.I.; McDonagh, T.A. Treatment of Iron Deficiency in Heart Failure. Curr. Cardiol. Rep. 2023, 25, 649–661. [Google Scholar] [CrossRef]
- Siddiqui, S.W.; Ashok, T.; Patni, N.; Fatima, M.; Lamis, A.; Anne, K.K. Anemia and Heart Failure: A Narrative Review. Cureus 2022, 14, e27167. [Google Scholar] [CrossRef]
- Alnuwaysir, R.I.S.; Hoes, M.F.; van Veldhuisen, D.J.; van der Meer, P.; Grote Beverborg, N. Iron Deficiency in Heart Failure: Mechanisms and Pathophysiology. J. Clin. Med. 2021, 11, 125. [Google Scholar] [CrossRef]
- Singer, C.E.; Vasile, C.M.; Popescu, M.; Popescu, A.I.S.; Marginean, I.C.; Iacob, G.A.; Popescu, M.D.; Marginean, C.M. Role of Iron Deficiency in Heart Failure-Clinical and Treatment Approach: An Overview. Diagnostics 2023, 13, 304. [Google Scholar] [CrossRef]
- Begum, S.; Latunde-Dada, G.O. Anemia of Inflammation with An Emphasis on Chronic Kidney Disease. Nutrients 2019, 11, 2424. [Google Scholar] [CrossRef]
- Zusman, O.; Itzhaki Ben Zadok, O.; Gafter-Gvili, A. Management of Iron Deficiency in Heart Failure. Acta Haematol. 2019, 142, 51–56. [Google Scholar] [CrossRef]
- Mordi, I.R.; Tee, A.; Lang, C.C. Iron Therapy in Heart Failure: Ready for Primetime? Card. Fail. Rev. 2018, 4, 28–32. [Google Scholar] [CrossRef] [PubMed]
- Geisser, P.; Burckhardt, S. The pharmacokinetics and pharmacodynamics of iron preparations. Pharmaceutics 2011, 3, 12–33. [Google Scholar] [CrossRef] [PubMed]
- Mentz, R.J.; Garg, J.; Rockhold, F.W.; Butler, J.; De Pasquale, C.G.; Ezekowitz, J.A.; Lewis, G.D.; O’Meara, E.; Ponikowski, P.; Troughton, R.W. Ferric Carboxymaltose in Heart Failure with Iron Deficiency. N. Engl. J. Med. 2023, 389, 975–986. [Google Scholar] [CrossRef] [PubMed]
- Rizzardi, N.; Liparulo, I.; Antonelli, G.; Orsini, F.; Riva, A.; Bergamini, C.; Fato, R. Coenzyme Q10 Phytosome Formulation Improves CoQ10 Bioavailability and Mitochondrial Functionality in Cultured Cells. Antioxidants 2021, 10, 927. [Google Scholar] [CrossRef]
- Guile, M.D.; Jain, A.; Anderson, K.A.; Clarke, C.F. New Insights on the Uptake and Trafficking of Coenzyme Q. Antioxidants 2023, 12, 1391. [Google Scholar] [CrossRef]
- DiNicolantonio, J.J.; Bhutani, J.; McCarty, M.F.; O’Keefe, J.H. Coenzyme Q10 for the treatment of heart failure: A review of the literature. Open Heart 2015, 2, e000326. [Google Scholar] [CrossRef]
- Kumar, A.; Kaur, H.; Devi, P.; Mohan, V. Role of coenzyme Q10 (CoQ10) in cardiac disease, hypertension and Meniere-like syndrome. Pharmacol. Ther. 2009, 124, 259–268. [Google Scholar] [CrossRef]
- Tsai, K.L.; Huang, Y.H.; Kao, C.L.; Yang, D.M.; Lee, H.C.; Chou, H.Y.; Chen, Y.C.; Chiou, G.Y.; Chen, L.H.; Yang, Y.P.; et al. A novel mechanism of coenzyme Q10 protects against human endothelial cells from oxidative stress-induced injury by modulating NO-related pathways. J. Nutr. Biochem. 2012, 23, 458–468. [Google Scholar] [CrossRef]
- Zhang, Q.; Dong, J.; Yu, Z. Pleiotropic use of Statins as non-lipid-lowering drugs. Int. J. Biol. Sci. 2020, 16, 2704–2711. [Google Scholar] [CrossRef]
- McMurray, J.J.; Dunselman, P.; Wedel, H.; Cleland, J.G.; Lindberg, M.; Hjalmarson, A.; Kjekshus, J.; Waagstein, F.; Apetrei, E.; Barrios, V.; et al. Coenzyme Q10, rosuvastatin, and clinical outcomes in heart failure: A pre-specified substudy of CORONA (controlled rosuvastatin multinational study in heart failure). J. Am. Coll. Cardiol. 2010, 56, 1196–1204. [Google Scholar] [CrossRef]
- Gutierrez-Mariscal, F.M.; de la Cruz-Ares, S.; Torres-Peña, J.D.; Alcalá-Diaz, J.F.; Yubero-Serrano, E.M.; López-Miranda, J. Coenzyme Q10 and Cardiovascular Diseases. Antioxidants 2021, 10, 906. [Google Scholar] [CrossRef] [PubMed]
- Franssen, C.; Chen, S.; Unger, A.; Korkmaz, H.I.; De Keulenaer, G.W.; Tschöpe, C.; Leite-Moreira, A.F.; Musters, R.; Niessen, H.W.; Linke, W.A.; et al. Myocardial Microvascular Inflammatory Endothelial Activation in Heart Failure with Preserved Ejection Fraction. JACC Heart Fail. 2016, 4, 312–324. [Google Scholar] [CrossRef] [PubMed]
- Heinzel, F.R.; Hegemann, N.; Hohendanner, F.; Primessnig, U.; Grune, J.; Blaschke, F.; de Boer, R.A.; Pieske, B.; Schiattarella, G.G.; Kuebler, W.M. Left ventricular dysfunction in heart failure with preserved ejection fraction-molecular mechanisms and impact on right ventricular function. Cardiovasc. Diagn. Ther. 2020, 10, 1541–1560. [Google Scholar] [CrossRef]
- Kotlyarov, S.; Kotlyarova, A. Clinical significance of polyunsaturated fatty acids in the prevention of cardiovascular diseases. Front. Nutr. 2022, 9, 998291. [Google Scholar] [CrossRef]
- Oppedisano, F.; Mollace, R.; Tavernese, A.; Gliozzi, M.; Musolino, V.; Macrì, R.; Carresi, C.; Maiuolo, J.; Serra, M.; Cardamone, A.; et al. PUFA Supplementation and Heart Failure: Effects on Fibrosis and Cardiac Remodeling. Nutrients 2021, 13, 2965. [Google Scholar] [CrossRef]
- Kelling, M.; Dimza, M.; Bartlett, A.; Traktuev, D.O.; Duarte, J.D.; Keeley, E.C. Omega-3 fatty acids in the treatment of heart failure. Curr. Probl. Cardiol. 2024, 49, 102730. [Google Scholar] [CrossRef]
- Cicero, A.F.G.; Colletti, A. Nutraceuticals and Dietary Supplements to Improve Quality of Life and Outcomes in Heart Failure Patients. Curr. Pharm. Des. 2017, 23, 1265–1272. [Google Scholar] [CrossRef]
- McCarty, M.F. Nutraceutical, Dietary, and Lifestyle Options for Prevention and Treatment of Ventricular Hypertrophy and Heart Failure. Int. J. Mol. Sci. 2021, 22, 3321. [Google Scholar] [CrossRef]
- Raddysh, M.E.; Delgado, D.H. Integrating supplementation in the management of patients with heart failure: An evidence-based review. Expert Rev. Cardiovasc. Ther. 2021, 19, 891–905. [Google Scholar] [CrossRef]
- Takii, H.; Matsumoto, K.; Kometani, T.; Okada, S.; Fushiki, T. Lowering effect of phenolic glycosides on the rise in postprandial glucose in mice. Biosci. Biotechnol. Biochem. 1997, 61, 1531–1535. [Google Scholar] [CrossRef]
- Adachi, T.; Yasuda, K.; Okamoto, Y.; Shihara, N.; Oku, A.; Ueta, K.; Kitamura, K.; Saito, A.; Iwakura, I.; Yamada, Y.; et al. T-1095, a renal Na+-glucose transporter inhibitor, improves hyperglycemia in streptozotocin-induced diabetic rats. Metabolism 2000, 49, 990–995. [Google Scholar] [CrossRef] [PubMed]
- Oku, A.; Ueta, K.; Arakawa, K.; Kano-Ishihara, T.; Matsumoto, T.; Adachi, T.; Yasuda, K.; Tsuda, K.; Ikezawa, K.; Saito, A. Correction of hyperglycemia and insulin sensitivity by T-1095, an inhibitor of renal Na+-glucose cotransporters, in streptozotocin-induced diabetic rats. Jpn. J. Pharmacol. 2000, 84, 351–354. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Xu, G.; Jin, W.; Gu, Y.; Huang, X.; Ge, L. Apple or apple polyphenol consumption improves cardiovascular disease risk factors: A systematic review and meta-analysis. Rev. Cardiovasc. Med. 2021, 22, 835–843. [Google Scholar] [CrossRef] [PubMed]
- Laue, C.; Balance, S.; Knutsen, S.H.; Papazova, E.; Soeth, E.; Pannenbeckers, A.; Schrezenmeir, J. Glycemic response to low sugar apple juice treated with invertase, glucose oxidase and catalase. Eur. J. Clin. Nutr. 2019, 73, 1382–1391. [Google Scholar] [CrossRef]
- Li, B.; Xu, L.; Liu, J.; Zhou, M.; Jiang, X. Phloretin ameliorates heart function after myocardial infarction via NLRP3/Caspase-1/IL-1β signaling. Biomed. Pharmacother. 2023, 165, 115083. [Google Scholar] [CrossRef]
- Zhang, L.; Chen, J.; Yan, L.; He, Q.; Xie, H.; Chen, M. Corrigendum: Resveratrol Ameliorates Cardiac Remodeling in a Murine Model of Heart Failure with Preserved Ejection Fraction. Front. Pharmacol. 2022, 13, 857367. [Google Scholar] [CrossRef]
- Ahmet, I.; Tae, H.J.; Lakatta, E.G.; Talan, M. Long-term low dose dietary resveratrol supplement reduces cardiovascular structural and functional deterioration in chronic heart failure in rats. Can. J. Physiol. Pharmacol. 2017, 95, 268–274. [Google Scholar] [CrossRef]
- Gupta, M.; Dey, S.; Marbaniang, D.; Pal, P.; Ray, S.; Mazumder, B. Grape seed extract: Having a potential health benefits. J. Food Sci. Technol. 2020, 57, 1205–1215. [Google Scholar] [CrossRef]
- Karthikeyan, K.; Sarala Bai, B.R.; Niranjali Devaraj, S. Grape seed proanthocyanidins ameliorates isoproterenol-induced myocardial injury in rats by stabilizing mitochondrial and lysosomal enzymes: An in vivo study. Life Sci. 2007, 81, 1615–1621. [Google Scholar] [CrossRef]
- Sato, M.; Bagchi, D.; Tosaki, A.; Das, D.K. Grape seed proanthocyanidin reduces cardiomyocyte apoptosis by inhibiting ischemia/reperfusion-induced activation of JNK-1 and C-JUN. Free. Radic. Biol. Med. 2001, 31, 729–737. [Google Scholar] [CrossRef]
- Algieri, C.; Bernardini, C.; Oppedisano, F.; La Mantia, D.; Trombetti, F.; Palma, E.; Forni, M.; Mollace, V.; Romeo, G.; Troisio, I.; et al. The Impairment of Cell Metabolism by Cardiovascular Toxicity of Doxorubicin Is Reversed by Bergamot Polyphenolic Fraction Treatment in Endothelial Cells. Int. J. Mol. Sci. 2022, 11, 8977. [Google Scholar] [CrossRef] [PubMed]
- Carresi, C.; Cardamone, A.; Coppoletta, A.R.; Caminiti, R.; Macrì, R.; Lorenzo, F.; Scarano, F.; Mollace, R.; Guarnieri, L.; Ruga, S.; et al. The protective effect of Bergamot Polyphenolic Fraction on reno-cardiac damage induced by DOCA-salt and unilateral renal artery ligation in rats. Biomed. Pharmacother. 2024, 171, 116082. [Google Scholar] [CrossRef] [PubMed]
- Lamiquiz-Moneo, I.; Giné-González, J.; Alisente, S.; Bea, A.M.; Pérez-Calahorra, S.; Marco-Benedí, V.; Baila-Rueda, L.; Jarauta, E.; Cenarro, A.; Civeira, F.; et al. Effect of bergamot on lipid profile in humans: A systematic review. Crit. Rev. Food Sci. Nutr. 2020, 60, 3133–3143. [Google Scholar] [CrossRef]
- Filipek, A.; Czerwińska, M.E.; Kiss, A.K.; Polański, J.A.; Naruszewicz, M. Oleacein may inhibit destabilization of carotid plaques from hypertensive patients. Impact on high mobility group protein-1. Phytomedicine Int. J. Phytother. Phytopharm. 2017, 32, 68–73. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Shang, P.; Li, D. Luteolin: A Flavonoid that Has Multiple Cardio-Protective Effects and Its Molecular Mechanisms. Front. Pharmacol. 2017, 8, 692. [Google Scholar] [CrossRef] [PubMed]
- Ahmadpour, E.; Toulabi, T.; Yadegarinia, D.; Yarahmadi, S.; Mohammadi, R.; Keyvanfar, A. Efficacy of olive leaves extract on the outcomes of hospitalized COVID-19 patients: A randomized, triple-blinded clinical trial. Explore 2023, 19, 536–543. [Google Scholar] [CrossRef]
- Musolino, V.; Macrì, R.; Cardamone, A.; Serra, M.; Coppoletta, A.R.; Tucci, L.; Maiuolo, J.; Lupia, C.; Scarano, F.; Carresi, C.; et al. Nocellara Del Belice (Olea europaea L. Cultivar): Leaf Extract Concentrated in Phenolic Compounds and Its Anti-Inflammatory and Radical Scavenging Activity. Plants 2023, 12, 27. [Google Scholar] [CrossRef]
- Al-Shudiefat, A.A.; Ludke, A.; Malik, A.; Jassal, D.S.; Bagchi, A.K.; Singal, P.K. Olive oil protects against progression of heart failure by inhibiting remodeling of heart subsequent to myocardial infarction in rats. Physiol. Rep. 2022, 10, e15379. [Google Scholar] [CrossRef]
- Filipek, A.; Mikołajczyk, T.P.; Guzik, T.J.; Naruszewicz, M. Oleacein and Foam Cell Formation in Human Monocyte-Derived Macrophages: A Potential Strategy against Early and Advanced Atherosclerotic Lesions. Pharmaceuticals 2020, 13, 64. [Google Scholar] [CrossRef]
- Filardo, S.; Roberto, M.; Di Risola, D.; Mosca, L.; Di Pietro, M.; Sessa, R. Olea europaea L-derived secoiridoids: Beneficial health effects and potential therapeutic approaches. Pharmacol. Ther. 2024, 254, 108595. [Google Scholar] [CrossRef]
- Ruiz-García, I.; Ortíz-Flores, R.; Badía, R.; García-Borrego, A.; García-Fernández, M.; Lara, E.; Martín-Montañez, E.; García-Serrano, S.; Valdés, S.; Gonzalo, M.; et al. Rich oleocanthal and oleacein extra virgin olive oil and inflammatory and antioxidant status in people with obesity and prediabetes. The APRIL study: A randomised, controlled crossover study. Clin. Nutr. 2023, 42, 1389–1398. [Google Scholar] [CrossRef] [PubMed]
- Stevens, Y.; Winkens, B.; Jonkers, D.; Masclee, A. The effect of olive leaf extract on cardiovascular health markers: A randomized placebo-controlled clinical trial. Eur. J. Nutr. 2021, 60, 2111–2120. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.Z.; Zhao, Y.B.; Li, C.M.; Chen, D.M.; Wang, G.P.; Chang, R.F.; Shu, H.R. Potential polyphenol markers of phase change in apple (Malus domestica). J. Plant Physiol. 2007, 164, 574–580. [Google Scholar] [CrossRef] [PubMed]
- Táborský, J.; Sus, J.; Lachman, J.; Šebková, B.; Adamcová, A.; Šatínský, D. Dynamics of Phloridzin and Related Compounds in Four Cultivars of Apple Trees during the Vegetation Period. Molecules 2021, 26, 3816. [Google Scholar] [CrossRef] [PubMed]
- Rieg, T.; Vallon, V. Development of SGLT1 and SGLT2 inhibitors. Diabetologia 2018, 61, 2079–2086. [Google Scholar] [CrossRef]
- Khanam, S.; Mishra, A.; Shahid, A.; Pujari, N.M. Therapeutic indication of Phloridzin: A new Gleam for metabolic disorders. Phytomedicine Plus 2022, 2, 100200. [Google Scholar] [CrossRef]
- Zhang, W.; Chen, S.; Fu, H.; Shu, G.; Tang, H.; Zhao, X.; Chen, Y.; Huang, X.; Zhao, L.; Yin, L.; et al. Hypoglycemic and hypolipidemic activities of phlorizin from Lithocarpus polystachyus Rehd in diabetes rats. Food Sci. Nutr. 2021, 9, 1989–1996. [Google Scholar] [CrossRef]
- Gliozzi, M.; Macrì, R.; Coppoletta, A.R.; Musolino, V.; Carresi, C.; Scicchitano, M.; Bosco, F.; Guarnieri, L.; Cardamone, A.; Ruga, S.; et al. From Diabetes Care to Heart Failure Management: A Potential Therapeutic Approach Combining SGLT2 Inhibitors and Plant Extracts. Nutrients 2022, 14, 3737. [Google Scholar] [CrossRef]
- Ehrenkranz, J.R.; Lewis, N.G.; Kahn, C.R.; Roth, J. Phlorizin: A review. Diabetes/Metab. Res. Rev. 2005, 21, 31–38. [Google Scholar] [CrossRef]
- Zhang, Y.; Zeng, M.; Zhang, X.; Yu, Q.; Zeng, W.; Yu, B.; Gan, J.; Zhang, S.; Jiang, X. Does an apple a day keep away diseases? Evidence and mechanism of action. Food Sci. Nutr. 2023, 11, 4926–4947. [Google Scholar] [CrossRef]
- Tian, L.; Cao, J.; Zhao, T.; Liu, Y.; Khan, A.; Cheng, G. The Bioavailability, Extraction, Biosynthesis and Distribution of Natural Dihydrochalcone: Phloridzin. Int. J. Mol. Sci. 2021, 22, 962. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, S.; Mahmood, T.; Kumar, R.; Bagga, P.; Ahsan, F.; Shamim, A.; Ansari, A.; Shariq, M. Comparative evaluation of cardioprotective activity of Gala and Fuji apple juice against isoprenaline-induced cardiotoxicity in rats. J. Complement. Integr. Med. 2021, 19, 27–36. [Google Scholar] [CrossRef] [PubMed]
- Kohut, L.; Baldovska, S.; Mihal, M.; Belej, L.; Sirotkin, A.V.; Roychoudhury, S.; Kolesarova, A. The multiple actions of grape and its polyphenols on female reproductive processes with an emphasis on cell signalling. Front. Endocrinol. 2024, 4, 1245512. [Google Scholar] [CrossRef] [PubMed]
- Xia, N.; Daiber, A.; Förstermann, U.; Li, H. Antioxidant effects of resveratrol in the cardiovascular system. Br. J. Pharmacol. 2017, 174, 1633–1646. [Google Scholar] [CrossRef]
- Gal, R.; Deres, L.; Horvath, O.; Eros, K.; Sandor, B.; Urban, P.; Soos, S.; Marton, Z.; Sumegi, B.; Toth, K.; et al. Resveratrol Improves Heart Function by Moderating Inflammatory Processes in Patients with Systolic Heart Failure. Antioxidants 2020, 9, 1108. [Google Scholar] [CrossRef]
- Mollace, V.; Rosano, G.M.C.; Anker, S.D.; Coats, A.J.S.; Seferovic, P.; Mollace, R.; Tavernese, A.; Gliozzi, M.; Musolino, V.; Carresi, C.; et al. Pathophysiological Basis for Nutraceutical Supplementation in Heart Failure: A Comprehensive Review. Nutrients 2021, 13, 257. [Google Scholar] [CrossRef]
- Bagchi, D.; Bagchi, M.; Stohs, S.J.; Ray, S.D.; Sen, C.K.; Preuss, H.G. Cellular protection with proanthocyanidins derived from grape seeds. Ann. N. Y. Acad. Sci. 2002, 957, 260–270. [Google Scholar] [CrossRef]
- Foshati, S.; Nouripour, F.; Sadeghi, E.; Amani, R. The effect of grape (Vitis vinifera) seed extract supplementation on flow-mediated dilation, blood pressure, and heart rate: A systematic review and meta-analysis of controlled trials with duration-and dose-response analysis. Pharmacol. Res. 2022, 175, 105905. [Google Scholar] [CrossRef]
- Maiuolo, J.; Carresi, C.; Gliozzi, M.; Musolino, V.; Scarano, F.; Coppoletta, A.R.; Guarnieri, L.; Nucera, S.; Scicchitano, M.; Bosco, F.; et al. Effects of Bergamot Polyphenols on Mitochondrial Dysfunction and Sarcoplasmic Reticulum Stress in Diabetic Cardiomyopathy. Nutrients 2021, 13, 2476. [Google Scholar] [CrossRef]
- Salerno, R.; Casale, F.; Calandruccio, C.; Procopio, A. Characterization of flavonoids in Citrus bergamia (Bergamot) polyphenolic fraction by liquid chromatography–high resolution mass spectrometry (LC/HRMS). PharmaNutrition 2016, 4, S1–S7. [Google Scholar] [CrossRef]
- Leopoldini, M.; Malaj, N.; Toscano, M.; Sindona, G.; Russo, N. On the inhibitor effects of bergamot juice flavonoids binding to the 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR) enzyme. J. Agric. Food Chem. 2010, 58, 10768–10773. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Tocmo, R.; Nauman, M.C.; Haughan, M.A.; Johnson, J.J. Defining the cholesterol lowering mechanism of bergamot (Citrus bergamia) extract in HepG2 and Caco-2 cells. Nutrients 2021, 13, 3156. [Google Scholar] [CrossRef] [PubMed]
- Carresi, C.; Musolino, V.; Gliozzi, M.; Maiuolo, J.; Mollace, R.; Nucera, S.; Mollace, V. Anti-oxidant effect of bergamot polyphenolic fraction counteracts doxorubicin-induced cardiomyopathy: Role of autophagy and c-kitposCD45negCD31neg cardiac stem cell activation. J. Mol. Cell. Cardiol. 2018, 119, 10–18. [Google Scholar] [CrossRef] [PubMed]
- Infante, R.; Infante, M.; Pastore, D.; Pacifici, F.; Chiereghin, F.; Malatesta, G.; Donadel, G.; Tesauro, M.; Della-Morte, D. An Appraisal of the Oleocanthal-Rich Extra Virgin Olive Oil (EVOO) and Its Potential Anticancer and Neuroprotective Properties. Int. J. Mol. Sci. 2023, 24, 17323. [Google Scholar] [CrossRef]
- De Cicco, P.; Maisto, M.; Tenore, G.C.; Ianaro, A. Olive Leaf Extract, from Olea europaea L., Reduces Palmitate-Induced Inflammation via Regulation of Murine Macrophages Polarization. Nutrients 2020, 12, 3663. [Google Scholar] [CrossRef]
- Boskou, D.; Clodoveo, M.L. Olive Oil: Processing Characterization, and Health Benefits. Foods 2020, 9, 1612. [Google Scholar] [CrossRef]
- Nediani, C.; Ruzzolini, J.; Romani, A.; Calorini, L. Oleuropein, a Bioactive Compound from Olea europaea L., as a Potential Preventive and Therapeutic Agent in Non-Communicable Diseases. Antioxidants 2019, 8, 578. [Google Scholar] [CrossRef]
- Castillo-Luna, A.; Criado-Navarro, I.; Ledesma-Escobar, C.A.; López-Bascón, M.A.; Priego-Capote, F. The decrease in the health benefits of extra virgin olive oil during storage is conditioned by the initial phenolic profile. Food Chem. 2021, 336, 127730. [Google Scholar] [CrossRef]
- De Bock, M.; Thorstensen, E.B.; Derraik, J.G.; Henderson, H.V.; Hofman, P.L.; Cutfield, W.S. Human absorption and metabolism of oleuropein and hydroxytyrosol ingested as olive (Olea europaea L.) leaf extract. Mol. Nutr. Food Res. 2013, 57, 2079–2085. [Google Scholar] [CrossRef]
- Bulotta, S.; Oliverio, M.; Russo, D.; Procopio, A. Biological Activity of Oleuropein and its Derivatives. In Natural Products; Ramawat, K., Mérillon, J.M., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 3605–3638. [Google Scholar] [CrossRef]
- Nardi, M.; Brocchini, S.; Somavarapu, S.; Procopio, A. Hydroxytyrosol oleate: A promising neuroprotective nanocarrier delivery system of oleuropein and derivatives. Int. J. Pharm. 2023, 631, 122498. [Google Scholar] [CrossRef]
- Kouka, P.; Tsakiri, G.; Tzortzi, D.; Dimopoulou, S.; Sarikaki, G.; Stathopoulos, P.; Veskoukis, A.S.; Halabalaki, M.; Skaltsounis, A.L.; Kouretas, D. The Polyphenolic Composition of Extracts Derived from Different Greek Extra Virgin Olive Oils Is Correlated with Their Antioxidant Potency. Oxidative Med. Cell. Longev. 2019, 2019, 1870965. [Google Scholar] [CrossRef] [PubMed]
- Borah, P.; Sanjeev, A.; Mattaparthi, V.S.K. Computational investigation on the effect of Oleuropein aglycone on the α-synuclein aggregation. J. Biomol. Struct. Dyn. 2021, 39, 1259–1270. [Google Scholar] [CrossRef]
- Wu, L.; Velander, P.; Liu, D.; Xu, B. Olive Component Oleuropein Promotes β-Cell Insulin Secretion and Protects β-Cells from Amylin Amyloid-Induced Cytotoxicity. Biochemistry 2017, 56, 5035–5039. [Google Scholar] [CrossRef] [PubMed]
- Sandoval, V.; Sanz-Lamora, H.; Arias, G.; Marrero, P.F.; Haro, D.; Relat, J. Metabolic Impact of Flavonoids Consumption in Obesity: From Central to Peripheral. Nutrients 2020, 12, 2393. [Google Scholar] [CrossRef] [PubMed]
- González-Rodríguez, M.; Ait Edjoudi, D.; Cordero-Barreal, A.; Farrag, M.; Varela-García, M.; Torrijos-Pulpón, C.; Ruiz-Fernández, C.; Capuozzo, M.; Ottaiano, A.; Lago, F.; et al. Oleocanthal, an Antioxidant Phenolic Compound in Extra Virgin Olive Oil (EVOO): A Comprehensive Systematic Review of Its Potential in Inflammation and Cancer. Antioxidants 2023, 12, 2112. [Google Scholar] [CrossRef]
- Papakonstantinou, A.; Koumarianou, P.; Rigakou, A.; Diamantakos, P.; Frakolaki, E.; Vassilaki, N.; Chavdoula, E.; Melliou, E.; Magiatis, P.; Boleti, H. New Affordable Methods for Large-Scale Isolation of Major Olive Secoiridoids and Systematic Comparative Study of Their Antiproliferative/Cytotoxic Effect on Multiple Cancer Cell Lines of Different Cancer Origins. Int. J. Mol. Sci. 2023, 24, 3. [Google Scholar] [CrossRef]
- Silvestrini, A.; Giordani, C.; Bonacci, S.; Giuliani, A.; Ramini, D.; Matacchione, G.; Sabbatinelli, J.; Di Valerio, S.; Pacetti, D.; Procopio, A.D.; et al. Anti-Inflammatory Effects of Olive Leaf Extract and Its Bioactive Compounds Oleacin and Oleuropein-Aglycone on Senescent Endothelial and Small Airway Epithelial Cells. Antioxidants 2023, 12, 1509. [Google Scholar] [CrossRef]
- Talhaoui, N.; Gómez-Caravaca, A.M.; León, L.; De la Rosa, R.; Fernández-Gutiérrez, A.; Segura-Carretero, A. From Olive Fruits to Olive Oil: Phenolic Compound Transfer in Six Different Olive Cultivars Grown under the Same Agronomical Conditions. Int. J. Mol. Sci. 2016, 17, 337. [Google Scholar] [CrossRef]
- Cuffaro, D.; Bertolini, A.; Bertini, S.; Ricci, C.; Cascone, M.G.; Danti, S.; Saba, A.; Macchia, M.; Digiacomo, M. Olive Mill Wastewater as Source of Polyphenols with Nutraceutical Properties. Nutrients 2023, 15, 3746. [Google Scholar] [CrossRef]
- Ronca, C.L.; Marques, S.S.; Ritieni, A.; Giménez-Martínez, R.; Barreiros, L.; Segundo, M.A. Olive Oil Waste as a Source of Functional Food Ingredients: Assessing Polyphenolic Content and Antioxidant Activity in Olive Leaves. Foods 2024, 13, 189. [Google Scholar] [CrossRef]
- Hamza, A.A.; Hassanin, S.O.; Hamza, S.; Abdalla, A.; Amin, A. Polyphenolic-enriched olive leaf extract attenuated doxorubicin-induced cardiotoxicity in rats via suppression of oxidative stress and inflammation. J. Basic Appl. Zool. 2021, 82, 54. [Google Scholar] [CrossRef]
- Sheibani, M.; Azizi, Y.; Shayan, M.; Nezamoleslami, S.; Eslami, F.; Farjoo, M.H.; Dehpour, A.R. Doxorubicin-Induced Cardiotoxicity: An Overview on Pre-clinical Therapeutic Approaches. Cardiovasc. Toxicol. 2022, 22, 292–310. [Google Scholar] [CrossRef] [PubMed]
- Maiuolo, J.; Bava, I.; Carresi, C.; Gliozzi, M.; Musolino, V.; Scarano, F.; Nucera, S.; Scicchitano, M.; Bosco, F.; Ruga, S.; et al. The Effects of Bergamot Polyphenolic Fraction, Cynara cardunculus, and Olea europea L. Extract on Doxorubicin-Induced Cardiotoxicity. Nutrients 2021, 13, 2158. [Google Scholar] [CrossRef]
- Granados-Principal, S.; El-Azem, N.; Pamplona, R.; Ramirez-Tortosa, C.; Pulido-Moran, M.; Vera-Ramirez, L.; Quiles, J.L.; Sanchez-Rovira, P.; Naudí, A.; Portero-Otin, M.; et al. Hydroxytyrosol ameliorates oxidative stress and mitochondrial dysfunction in doxorubicin-induced cardiotoxicity in rats with breast cancer. Biochem. Pharmacol. 2014, 90, 25–33. [Google Scholar] [CrossRef]
- D’Angelo, C.; Franceschelli, S.; Quiles, J.L.; Speranza, L. Wide Biological Role of Hydroxytyrosol: Possible Therapeutic and Preventive Properties in Cardiovascular Diseases. Cells 2020, 21, 1932. [Google Scholar] [CrossRef]
- Samuel, S.M.; Thirunavukkarasu, M.; Penumathsa, S.V.; Paul, D.; Maulik, N. Akt/FOXO3a/SIRT1-mediated cardioprotection by n-tyrosol against ischemic stress in rat in vivo model of myocardial infarction: Switching gears toward survival and longevity. J. Agric. Food Chem. 2008, 22, 9692–9698. [Google Scholar] [CrossRef]
- Chen, C.; Yu, L.T.; Cheng, B.R.; Xu, J.L.; Cai, Y.; Jin, J.L.; Feng, R.L.; Xie, L.; Qu, X.Y.; Li, D.; et al. Promising Therapeutic Candidate for Myocardial Ischemia/Reperfusion Injury: What Are the Possible Mechanisms and Roles of Phytochemicals? Front. Cardiovasc. Med. 2022, 17, 792592. [Google Scholar] [CrossRef]
- Geyikoglu, F.; Emir, M.; Colak, S.; Koc, K.; Turkez, H.; Bakir, M.; Hosseinigouzdagani, M.; Cerig, S.; Keles, O.N.; Ozek, N.S. Effect of oleuropein against chemotherapy drug-induced histological changes, oxidative stress, and DNA damages in rat kidney injury. J. Food Drug Anal. 2017, 25, 447–459. [Google Scholar] [CrossRef]
- Cheurfa, M.; Abdallah, H.H.; Allem, R.; Noui, A.; Picot-Allain, C.M.N.; Mahomoodally, F. Hypocholesterolaemic and antioxidant properties of Olea europaea L. leaves from Chlef province, Algeria using in vitro, in vivo and in silico approaches. Food Chem. Toxicol. 2019, 123, 98–105. [Google Scholar] [CrossRef]
- Xu, Y.; Wu, L.; Chen, A.; Xu, C.; Feng, Q. Protective Effects of Olive Leaf Extract on Acrolein-Exacerbated Myocardial Infarction via an Endoplasmic Reticulum Stress Pathway. Int. J. Mol. Sci. 2018, 7, 493. [Google Scholar] [CrossRef]
- Choi, S.H.; Joo, H.B.; Lee, S.J.; Choi, H.Y.; Park, J.H.; Baek, S.H.; Kwon, S.M. Oleuropein prevents angiotensin II-mediated: Human vascular progenitor cell depletion. Int. J. Cardiol. 2015, 181, 160–165. [Google Scholar] [CrossRef]
- Ruggiero, E.; Di Castelnuovo, A.; Costanzo, S.; Esposito, S.; De Curtis, A.; Persichillo, M.; Cerletti, C.; Donati, M.B.; De Gaetano, G.; Iacoviello, L.; et al. Olive oil consumption is associated with lower cancer, cardiovascular and all-cause mortality among Italian adults: Prospective results from the Moli-sani Study and analysis of potential biological mechanisms. Eur. J. Clin. Nutr. 2024, 78, 684–693. [Google Scholar] [CrossRef] [PubMed]
Exercise Training and HF Management | ||
---|---|---|
Clinical Trials | Properties | Ref. |
ESC guidelines recommend physical activity for all qualified patients | Improving the level of exercise, decreasing hospitalization and quality of life | [32] |
AHA/ACC HF 2022 guidelines for exercise program | Improvement in physical evidence, functional status, and quality of life | [33,34] |
Impact of ET related to VO2 | Improves exercise effectiveness with a value corresponding to 15–17% Increase in time spent on exercise, work weight, quality of life, and distance traveled in 6 min | [35] |
Meta-analysis on the effectiveness of ET, rehabilitation on heart function, and pulmonary circulation measurements in HF subjects with HFpEF | The mitral E/e relationship is significantly reduced in the post-training period, evidenced by five clinical studies | [36] |
The comparative effectiveness of IT and CT on the cardiac and respiratory fitness and exercise compliance of subjects with HF | Increase the highest oxygen absorption, 6 MWD, and left ventricular ejection fraction No significant changes in respiratory exchange relationship, resting heart rate, or slope of respiration corresponding to CO2 | [37] |
Relationship between the efficacy of aerobic exercise on maximal VO2 | Aerobic exercise gradually increased the VO2 peak Increased health-related quality of life in subjects with HFpEF | [38] |
Baduanjin exercise | Positive changes in QoL, exercise ability, and physical decline | [39] |
Exercise-Based Cardiac Rehabilitation | ||
Clinical Trials | Properties | Ref. |
Exercise associated with cardiac rehabilitation (LV value that is <40%) according to CROSH-FH clinical study | Negative results on mortality and hospitalization frequency of patients Increased quality of life and ability to perform exercise | [40] |
HF-ACTION clinical study | Cardiac rehabilitation adherence by exercise was <30% in the long term | [35] |
HF Nutrition | ||
Clinical Trials | Properties | Ref. |
Lethality in underfed patients | Increase to 68.9% | [41] |
Vitamin D addiction | No improvement | [42,43] |
DASH and Mediterranean diet | Lower risk of predisposition to HF Decline of rate of hospitalizations | [33,44,45] |
Antioxidant and potassium concentration in DASH diet | Reduction in HF hospitalizations | [33,44,45] |
Low-sodium DASH diet | Decrease in hardness, blood pressure Improvements in ventricular diastolic function Improvement in oxidative stress | [44,45] |
Prevention of Excessive Salt and Fluid Consumption | ||
Clinical Trials | Properties | Ref. |
Dietary sodium restriction (800 mg/day to 3000 mg/day) SODIUM-HF: Restricting dietary salt consumption (up to 1500 mg per day in subjects with HF) | Frequency of hospitalization or mortality in patients with HF remains unmodified No improvement in hospitalizations or emergency room admissions with standard therapy for one year | [46] |
Low-fluid diet for patients with low blood sodium levels in SALT-HF clinical study (<135 mmol/L) | Improved quality of life | [47] |
Correlation between chronic dehydration (hypohydration) and HF in ARIC study | 39% of increased risk of developing HF corresponding to a 1% reduction in body water weight | [48] |
Body Weight Management | ||
Clinical Trials | Properties | Ref. |
“Obesity paradox” | Positively influenced the prognosis in overweight and mildly obese individuals (BMI between 30 and 34.9 kg/m2) | [49] |
Bariatric surgery | Greater weight reduction: a loss of 18.8 kg more after one year and 22.6 kg more after two years Decrease in the development of heart failure | [50] |
Efficacy of ASV treatment implemented on cardiac function and remodeling | Negative result for adaptive servo-ventilation therapy on left ventricular ejection fraction Negative result for plasma BNP concentrations over a maximum 24-week period Improvements in patients’ quality of life and clinical status | [51] |
CPAP in HFrEF, according to clinical study | Benefits on markers of apnea, hypopnea, frequency of awakenings during the night, systolic pressure during the day, and heart rate | [52] |
Link Between Addiction and HF Management | ||
Clinical Trials | Properties | Ref. |
High alcohol ingestion | Enhanced HF progression Induction of dilated cardiomyopathy | [53] |
Patients with alcoholic cardiomyopathy | Reduced the risk of death from cardiovascular causes, coronary heart disease, and stroke development by 14–25% with consumption of 2.5–14.9 g/day of alcohol | [54] |
Nutritional Supplementation in Prevention and Therapy Support for HF | ||
---|---|---|
Clinical Trials | Properties | Ref. |
Relationship between plasma vitamin C levels and HF incidence | Positive association Lower risk of HF | [95] |
PUFA supplementation | Positive outcomes for HF patients | [93] |
Doses relevant to the clinical context of DHA | Mitigated the risk of mitochondrial permeability transitions triggered by Ca2+ Reduced stress | [93] |
Supplementation with Ferric Carboxymaltose (FCM) | ||
Clinical Trials | Properties | Ref. |
A single-arm study in 2006 examining IV iron treatment in 16 patients with HF and systolic HF for 12 days | Improvement in the 6 MWD test and MLHFQ | [98] |
A randomized study of 40 HF patients with an EF of 40% receiving IV 200 mg sucrose per week for 5 weeks | Patients who were given IV iron exhibited lower levels of NT-pro-BNP Improved functional capacity Reduced number of hospitalizations over the course of 6 months | [99] |
A 2008 randomized study of 35 patients with an EF of 45%, anemia, and evidence of iron deficiency carried out with a total of 1400 mg of iron sucrose | No significant differences in peak oxygen consumption or treadmill exercise duration (p = 0.08 for both) Significant improvements in NYHA functional class Improvement in global patient assessment | [100] |
Patients received 200 mg IV of FCM in the FAIR-FH study, with a maintenance dose every 4 weeks | 50% versus 28% of patients showed improvement with FCM | [101] |
The 6 MWD and questionnaire | The difference in serum ferritin levels was 246 ng/mL The difference in Hb concentration was 0.5 g/dL Normal Hb concentration (12.5 g/dL at the end of the trial) | [102] |
The CONFIRM-HF study enrolled 304 symptomatic outpatients with HF with left ventricular EF ≤ 45% and iron deficiency randomized 1:1 to treatment with FCM or saline and followed up for 52 weeks | Treatment with FCM significantly improved the 6 MWD test at week 24 Improvements in NYHA class and other functional/QoL measures with statistical significance A significant reduction in the risk of hospitalization for worsening HF (HR 0.39, CI 95% 0.19–0.82; p = 0.009) | [102,103] |
Supplementation with Polyunsaturated Fatty Acids (PUFAs) | ||
Clinical Trials | Properties | Ref. |
A meta-analysis involving nearly 80,000 heart failure patients | Ω-3 did not have a substantial impact on heart failure admissions or cardiovascular mortality A slight but significant effect on rehospitalizations | [104] |
MESA was conducted to assess the role of Ω-3 in preventing heart failure, including 6562 participants (52 females) with a duration of 13 years | Higher plasma percentage of EPA, measured and expressed as %EPA, was related to a lower risk of HF, in particular HFrEF and HFpEF, which was also valid for the other Ω-3, in particular for the combination % EPA + % DHA | [105] |
Clinical studies carried out in obese patients with HFpEF | Consuming a diet rich in UFAs (MUFAs and PUFAs) improved diastolic function and cardiorespiratory efficiency, leading to increased fat mass | [106] |
The EPA/AA ratio was studied in 577 HF patients divided into 2 groups, and its correlation with HF patient mortality was discovered | No differences were found in parameters such as BNP levels, blood pressure, and LVEF Variations in cardiac mortality rates existed, and they were inversely related to the EPA/AA ratio The ratio could independently predict cardiac mortality in patients with HF | [107] |
12 RCTs were incorporated into a study that included 81,364 patients and their follow-up periods of 6 months to 6.2 years | The randomized groups had no significant differences in the rate of first HF hospitalization The placebo groups showed no significant disparity in cardiovascular mortality, with 990 cases for Ω-3 and 948 cases for the control group Ω-3 patients experienced a significantly decreased rate of recurrent HF hospitalization (1432 placebo and 1330 omega-3; RR 0.91; 95% CI 0.85–0.98, p = 0.02; I2 = 71%) | [108] |
The serum ALA level of patients with HF was studied, specifically revealing 85 cardiovascular deaths, 140 all-cause deaths. and 141 first HF hospitalizations | The risk of composite deaths and first HF decreased significantly for patients in the 3 upper quartiles (Q2–Q4) compared to those in the lowest quartile of ALA in serum (Q1) using Cox regression analyses (HR: 0.61; 95% CI: 0.46–0.81) The decrease in all-cause death was statistically significant (HR: 0.58; 95% CI: 0.41–0.82), cardiovascular death (HR: 0.51; 95% CI: 0.32–0.80), first HF hospitalization (HR: 0.58; 95% CI: 0.40–0.84), and the composite of cardiovascular death and HF hospitalization (HR: 0.58; 95% CI: 0.42–0.79) During the midterm follow-up, patients with the highest ALA levels had a better prognosis than those with lower levels | [109] |
Supplementation with Coenzyme Q10 (CoQ10) | ||
Clinical Trials | Properties | Ref. |
Study conducted using CoQ10 400 mg before PPCI and 200 mg twice daily for three days after PPCI vs. placebo | Plasma level of antioxidant biomarkers was similar in both groups at 6 and 24, h; at 72 h, there were significant ameliorations in the group treated with CoQ10 | [110] |
Trial of patients with HFrEF | Group treatment with CoQ10 decreased hospitalization over the control | [111] |
Q-SYMBIO trial: 420 participants administered two years’ 100 mg of CoQ10 in addition to standard therapy | CoQ10 in addition to standard therapy resulted in a decrease of cardiovascular death, HF hospitalizations, mechanical support or cardiac transplant, death from cardiovascular causes, and all-cause mortality | [112] |
Subgroup analysis of the Q-SYMBIO randomized double-blind trial | After two years, decreased mortality by 53% in the CoQ10 group compared to placebo Hospitalization due to worsening HF significantly decreased in the CoQ10 group (3%) compared to the placebo group (13%) | [113] |
Pilot randomized, double-blind trial placebo-controlled trial in HFpEF patients over 55 old | Supplementation with CoQ10: no clinical benefit was observed, due the fact that HFpEF exhibits different clinical phenotypes | [114] |
Recent Preclinical and Clinical Evidence in Nutraceutical Supplementation and HF | ||
---|---|---|
Clinical Trials | Properties | Ref. |
Intake of specific nutraceuticals | Improvements in functional parameters like stroke, ejection fraction, volume, and cardiac output in HF patients, with minimal side effects reported in clinical studies through anti-ischemic, anti-inflammatory, antioxidant, and anti-platelet effects | [137,139] |
Malus domestica Derivatives | ||
Clinical Trials | Properties | Ref. |
Japanese researchers conducted an in vivo study to assess the delayed absorption of glucose in the intestines treating mice with oral phlorizin | Reduction in postprandial rise in blood glucose levels | [140] |
Administration of the phlorizin derivative T-1095 in diabetic rats | Significantly improved hyperglycemia by inhibiting glucose reabsorption in the kidneys. Reducing the expression of SGLTs and impaired renal glucose transporter 2 (GLUT2) expression | [141] |
Administration of T1095 in rats with streptozotocin-induced diabetes, which is remarkable | Resulted in steady hyperglycemia and insulin resistance levels in the skeletal muscle of rats | [142] |
Apple extracts and their juice have been found to contain between 11% and 36% total phlorizin | Effectively reduction the levels of oxidized LDL | [143] |
A clinical trial involved 30 men with impaired fasting glucose who drank 500 mL of either treated (with invertase and glucose oxidase/CAT) or untreated apple juice | The sugar content, postprandial glycemic response, and venous serum insulin response saw reductions of 21%, 68%, and 47%, respectively, as a result of the enzymatic treatment No adverse gastrointestinal side effects, the glycemic load was reduced by 74.6% | [144] |
Phloretin’s potential role in a rat model of MI was explored in a recent in vivo study | Inhibited the NLRP3/caspase-1/IL-1β pathway Upregulated Cx43 while limiting p38 phosphorylation Reduced susceptibility to ventricular arrhythmias (VAs) Phloretin reduced fibrosis and prevented HF by inhibiting inflammation | [145] |
The inhibitory effects of phloretin on the NLRP3/caspase-1/IL-1β pathway were strongly supported by in vitro experiments on H9c2 cells | Phloretin may inhibit the NLRP3/caspase-1/IL-1β pathway, leading to the reversal of post-MI structural and electrical remodeling, thereby reducing the risk of VAs and HF | [145] |
Vitis vinifera L. Seed Extract | ||
Clinical Trials | Properties | Ref. |
In vivo study examining resveratrol | Amelioration of HFpEF-induced cardiac remodeling Decreases Smad3 acetylation and transcriptional activity Potential protection against adverse cardiac remodeling in HFpEF | [146] |
In vivo experiment involving rats with permanent ligation of the left coronary artery | Adding resveratrol to the diet over a long period of time improved cardiovascular health in congestive heart failure | [147] |
Grape seed-derived PCs | Demonstrated cardioprotective effects by affecting lysosomal and mitochondrial function. Isoproterenol-treated rats were co-treated with PC: reduced lysosomal enzyme activities in their cardiac tissue while increasing respiratory chain enzymes and mitochondrial activity | [148,149] |
To assess the cardioprotective effect of PCs, a group of rats were given 100 mg of GSE orally in addition to their regular diet for 3 weeks | Significant decrease in reactive oxygen species in the heart Improvement in contractile regeneration after ischemia, suggesting a cardioprotective action GSE functions as an antioxidant in living organisms and its ability to block antideath signaling through inhibition of the transcription factor and pro-apoptotic gene JNK-1 and c-Jun contributes to its cardioprotective benefits | [150] |
Citrus bergamia Polyphenolic Fraction | ||
Clinical Trials | Properties | Ref. |
The impact of BPF on the mitochondrial bioenergetics of pulmonary artery endothelial cells (PAECs) was examined, focusing on its interaction with doxorubicin-induced cardiotoxicity | The cell viability of PAECs decreased by 50% after 24 h of treatment with different concentrations of DOX The negative effect of DOX was reversed when BPF was administered at increasing doses (100 µg/mL and 200 µg/mL) | [151] |
Dietary supplementation rich in bergamot polyphenols in experimental model of hypertension induced by unilateral renal artery ligation in rats | Counteracted the hypertension-induced renal–cardiac syndrome, as BPF treatment prevents blood pressure elevation in renal artery ligation and treatment with deoxycorticosterone acetate (RAL DOCA–salt) rats (p < 0.05) Had a protective effect on the volume of the contralateral kidney (p < 0.01) BPF enhanced cardiac tissue strain dysfunction through elevated Pk in displacement movement (p < 0.01) and decreased increased time to peak (T2P) in strain movement (p < 0.05) | [152] |
Many studies have analyzed the impact of BPF on human lipid profile | The potential synergistic effect may be due to bergamot’s ability to act on various levels, inhibiting HMG-CoA reductase, acyl-CoA cholesterol acyltransferase, and pancreatic cholesterol ester hydrolase | [153] |
Olea europaea L. Extract | ||
Clinical Trials | Properties | Ref. |
Atherosclerotic process and plaque instability in cardiovascular disease can be improved by oleacein (10–20 μM) | Oleacein (10–20 μM) inhibited various molecular targets, including high mobility group protein 1, matrix metalloproteinase 9, matrix metalloproteinase 9–neutrophil gelatinase-associated lipocalin complex, and tissue factor | [154] |
The positive impact of polyphenols on dyslipidemia in non-alcoholic fatty liver disease (NAFLD) was confirmed through a study on Olea polyphenols | Lutein may have cardioprotective properties against conditions such as coronary artery disease, atherosclerosis, and heart failure | [155] |
A new therapeutic treatment approach has gained attention recently, involving capsules containing 30 percent OL to control COVID-19 | This biophenol increases body temperature, respiratory rate, oxygen saturation, and blood pulse rate, resulting in shorter hospital stays by reducing erythrocyte sedimentation rate and C-reactive protein levels | [156] |
The anti-inflammatory activity and potential benefits of oleic acid (OA) in reducing lipid accumulation were investigated in an in vitro model of non-alcoholic fatty liver disease (NAFLD) using McA-RH7777 cells | The OLECp has proven to be highly effective in neutralizing hydroxyl radicals and DPPH both scavenging free radicals (IC50: 2.30 ± 0.18 mg/mL) and decreasing signal area in the EPR spectra | [157] |
The beneficial properties of olive oil were investigated for their effects on heart failure caused by post-myocardial infarction (PMI) induced by coronary artery constriction in rats | The myocardial redox ratio (reduced glutathione/oxidized glutathione) decreased by 44.4%, 16.4%, and 36.9% at 4 weeks postmortem interval in the LRC, LOO, and LCO groups, respectively, compared to the initial values The LRC, LOO, and LCO groups showed a significant increase in lipid hydroperoxide formation of 137.4%, 14.6%, and 97.1%, respectively, at 4 weeks PMI Rats treated with tyrosol experienced decreased infarct size and improved myocardial function compared to untreated animals | [158] |
The formation of foam cells is improved by oleacein at a concentration of 50 μM | Decreased the expression of receptors (scavenger A1 receptor, CD36, lectin-like oxLDL receptor) responsible for binding and absorbing oxidized LDL into macrophages | [159] |
OL at concentrations between 50 and 100 μM | Inhibited the expression of endothelial leukocytes Reduced the adhesion of monocytic cells to vascular endothelial cells | [159,160] |
Comparison of health benefits of oleocanthal- and oleacein-rich extra-virgin olive oil (EVOO) with ordinary olive oil (OO) in individuals aged 40–65 with prediabetes and obesity | A significant increase in total antioxidant status and a decrease in lipid and organic peroxides compared to OO treatment (p < 0.05) A reduction in interferon-γ with inter-treatment differences (p < 0.041); weight, BMI, and blood glucose decreased significantly (p < 0.05) after EVOO treatment, indicating its effectiveness | [161] |
Assessment of alterations in blood lipid profiles in overweight/obese subjects with slightly elevated cholesterol levels following an 8-week treatment with OLEX | Blood lipid levels did not show significant differences after 4 or 8 weeks of OLEX diet supplementation compared to placebo (p < 0.05) The intervention groups did not differ significantly in terms of oxLDL, glucose, blood pressure, insulin levels, or liver function parameters (p < 0.05). The incorporation of OLEX for 8 weeks did not result in significant modifications to blood lipid profiles | [162] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Macrì, R.; Mollace, R.; Serra, M.; Scarano, F.; Ritorto, G.; Ussia, S.; Cardamone, A.; Coppoletta, A.R.; Carresi, C.; Gliozzi, M.; et al. Nutritional and Nutraceutical Support to the Failing Myocardium: A Possible Way of Potentiating the Current Treatment of Heart Failure. Int. J. Mol. Sci. 2024, 25, 12232. https://doi.org/10.3390/ijms252212232
Macrì R, Mollace R, Serra M, Scarano F, Ritorto G, Ussia S, Cardamone A, Coppoletta AR, Carresi C, Gliozzi M, et al. Nutritional and Nutraceutical Support to the Failing Myocardium: A Possible Way of Potentiating the Current Treatment of Heart Failure. International Journal of Molecular Sciences. 2024; 25(22):12232. https://doi.org/10.3390/ijms252212232
Chicago/Turabian StyleMacrì, Roberta, Rocco Mollace, Maria Serra, Federica Scarano, Giovanna Ritorto, Sara Ussia, Antonio Cardamone, Anna Rita Coppoletta, Cristina Carresi, Micaela Gliozzi, and et al. 2024. "Nutritional and Nutraceutical Support to the Failing Myocardium: A Possible Way of Potentiating the Current Treatment of Heart Failure" International Journal of Molecular Sciences 25, no. 22: 12232. https://doi.org/10.3390/ijms252212232
APA StyleMacrì, R., Mollace, R., Serra, M., Scarano, F., Ritorto, G., Ussia, S., Cardamone, A., Coppoletta, A. R., Carresi, C., Gliozzi, M., Musolino, V., Maiuolo, J., Palma, E., Volterrani, M., Mollace, V., & Muscoli, C. (2024). Nutritional and Nutraceutical Support to the Failing Myocardium: A Possible Way of Potentiating the Current Treatment of Heart Failure. International Journal of Molecular Sciences, 25(22), 12232. https://doi.org/10.3390/ijms252212232