Metabolic Flux Analysis of Xanthomonas oryzae Treated with Bismerthiazol Revealed Glutathione Oxidoreductase in Glutathione Metabolism Serves as an Effective Target
Abstract
:1. Introduction
2. Result and Discussion
2.1. GSMM Reconstruction and FBA Analysis
2.2. Mechanism Analysis and Potential Target Discovery
2.3. Effectiveness Test of Target GSR
2.4. Inhibitor Screening Based on Xoo-GSR
2.4.1. Homology Modeling of Xoo-GSR
2.4.2. Docking Analysis
2.4.3. Experimental Evaluation
3. Materials and Methods
3.1. RNA-Seq Data Preprocessing
3.2. Automated Reconstruction and Analysis of GSMM
3.3. Antibacterial Experiment
3.4. Virtual Screening of Xoo-GSR Targets
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Chukwu, S.; Rafii, M.; Ramlee, S.; Ismail, S.; Hasan, M.; Oladosu, Y.; Magaji, U.; Akos, I.; Olalekan, K. Bacterial leaf blight resistance in rice: A review of conventional breeding to molecular approach. Mol. Biol. Rep. 2019, 46, 1519–1532. [Google Scholar] [CrossRef] [PubMed]
- NIÑO-LIU, D.O.; Ronald, P.C.; Bogdanove, A.J. Xanthomonas oryzae pathovars: Model pathogens of a model crop. Mol. Plant Pathol. 2006, 7, 303–324. [Google Scholar] [CrossRef] [PubMed]
- Cui, H.; Wu, Z.; Zhang, L.; Ma, Q.; Cai, D.; Zhang, J.; Hu, D. Design, synthesis, antibacterial activity, and mechanism of novel mesoionic compounds based on natural pyrazole isolated from an endophytic fungus Colletotrichum gloeosporioides. J. Agric. Food Chem. 2023, 71, 10018–10027. [Google Scholar] [CrossRef]
- Huang, X.; Liu, H.-W.; Long, Z.-Q.; Li, Z.-X.; Zhu, J.-J.; Wang, P.-Y.; Qi, P.-Y.; Liu, L.-W.; Yang, S. Rational optimization of 1, 2, 3-triazole-tailored carbazoles as prospective antibacterial alternatives with significant in vivo control efficiency and unique mode of action. J. Agric. Food Chem. 2021, 69, 4615–4627. [Google Scholar] [CrossRef]
- Nelson, R.J.; Baraoidan, M.R.; Cruz, C.M.V.; Yap, I.V.; Leach, J.E.; Mew, T.W.; Leung, H. Relationship between phylogeny and pathotype for the bacterial blight pathogen of rice. Appl. Environ. Microbiol. 1994, 60, 3275–3283. [Google Scholar] [CrossRef]
- Lee, S.-W.; Han, M.; Park, C.-J.; Seo, Y.-S.; Bartley, L.E.; Jeon, J.-S. The molecular mechanisms of rice resistance to the bacterial blight pathogen, Xanthomonas oryzae pathovar oryzae. Adv. Bot. Res. 2011, 60, 51–87. [Google Scholar]
- Teng, K.; Liu, Q.; Zhang, M.; Naz, H.; Zheng, P.; Wu, X.; Chi, Y.R. Design and Enantioselective Synthesis of Chiral Pyranone Fused Indole Derivatives with Antibacterial Activities against Xanthomonas oryzae pv oryzae for Protection of Rice. J. Agric. Food Chem. 2024, 72, 4622–4629. [Google Scholar] [CrossRef]
- Liang, X.; Duan, Y.; Yu, X.; Wang, J.; Zhou, M. Photochemical degradation of bismerthiazol: Structural characterisation of the photoproducts and their inhibitory activities against Xanthomonas oryzae pv. oryzae. Pest Manag. Sci. 2016, 72, 997–1003. [Google Scholar] [CrossRef] [PubMed]
- Zhou, P.; Mo, X.; Wang, W.; Chen, X.; Lou, Y. The commonly used bactericide bismerthiazol promotes rice defenses against herbivores. Int. J. Mol. Sci. 2018, 19, 1271. [Google Scholar] [CrossRef]
- Yahong, Z.; Xiaofang, C.; Shuo, W.; Congfeng, S. Functional analysis of tal4 of Xanthomonas oryzae pv. oryzae strain PXO99 A in resistance to bismerthiazol. J. Nanjing Agric. Univ./Nanjuing Nongye Daxue Xuebao 2014, 37, 57. [Google Scholar]
- Zhu, X.-F.; Xu, Y.; Peng, D.; Zhang, Y.; Huang, T.-T.; Wang, J.-X.; Zhou, M.-G. Detection and characterization of bismerthiazol-resistance of Xanthomonas oryzae pv. oryzae. Crop Prot. 2013, 47, 24–29. [Google Scholar] [CrossRef]
- Liang, X.; Yu, X.; Pan, X.; Wu, J.; Duan, Y.; Wang, J.; Zhou, M. A thiadiazole reduces the virulence of Xanthomonas oryzae pv. oryzae by inhibiting the histidine utilization pathway and quorum sensing. Mol. Plant Pathol. 2018, 19, 116–128. [Google Scholar] [CrossRef] [PubMed]
- Duarte, N.C.; Becker, S.A.; Jamshidi, N.; Thiele, I.; Mo, M.L.; Vo, T.D.; Srivas, R.; Palsson, B.Ø. Global reconstruction of the human metabolic network based on genomic and bibliomic data. Proc. Natl. Acad. Sci. USA 2007, 104, 1777–1782. [Google Scholar] [CrossRef] [PubMed]
- Thiele, I.; Swainston, N.; Fleming, R.M.; Hoppe, A.; Sahoo, S.; Aurich, M.K.; Haraldsdottir, H.; Mo, M.L.; Rolfsson, O.; Stobbe, M.D. A community-driven global reconstruction of human metabolism. Nat. Biotechnol. 2013, 31, 419–425. [Google Scholar] [CrossRef]
- O’Brien, E.J.; Monk, J.M.; Palsson, B.O. Using genome-scale models to predict biological capabilities. Cell 2015, 161, 971–987. [Google Scholar] [CrossRef]
- Ye, C.; Wei, X.; Shi, T.; Sun, X.; Xu, N.; Gao, C.; Zou, W. Genome-scale metabolic network models: From first-generation to next-generation. Appl. Microbiol. Biotechnol. 2022, 106, 4907–4920. [Google Scholar] [CrossRef]
- Gu, C.; Kim, G.B.; Kim, W.J.; Kim, H.U.; Lee, S.Y. Current status and applications of genome-scale metabolic models. Genome Biol. 2019, 20, 121. [Google Scholar] [CrossRef]
- Machado, D.; Andrejev, S.; Tramontano, M.; Patil, K.R. Fast automated reconstruction of genome-scale metabolic models for microbial species and communities. Nucleic Acids Res. 2018, 46, 7542–7553. [Google Scholar] [CrossRef]
- Molina Ortiz, J.P.; Read, M.N.; McClure, D.D.; Holmes, A.; Dehghani, F.; Shanahan, E.R. High throughput genome scale modeling predicts microbial vitamin requirements contribute to gut microbiome community structure. Gut Microbes 2022, 14, 2118831. [Google Scholar] [CrossRef]
- Wang, H.; Marcišauskas, S.; Sánchez, B.J.; Domenzain, I.; Hermansson, D.; Agren, R.; Nielsen, J.; Kerkhoven, E.J. RAVEN 2.0: A versatile toolbox for metabolic network reconstruction and a case study on Streptomyces coelicolor. PLoS Comput. Biol. 2018, 14, e1006541. [Google Scholar] [CrossRef]
- Arkin, A.P.; Cottingham, R.W.; Henry, C.S.; Harris, N.L.; Stevens, R.L.; Maslov, S.; Dehal, P.; Ware, D.; Perez, F.; Canon, S. KBase: The United States department of energy systems biology knowledgebase. Nat. Biotechnol. 2018, 36, 566–569. [Google Scholar] [CrossRef]
- Mendoza, S.N.; Olivier, B.G.; Molenaar, D.; Teusink, B. A systematic assessment of current genome-scale metabolic reconstruction tools. Genome Biol. 2019, 20, 158. [Google Scholar] [CrossRef] [PubMed]
- Mahadevan, R.; Schilling, C.H. The effects of alternate optimal solutions in constraint-based genome-scale metabolic models. Metab. Eng. 2003, 5, 264–276. [Google Scholar] [CrossRef] [PubMed]
- Schellenberger, J.; Palsson, B.Ø. Use of randomized sampling for analysis of metabolic networks. J. Biol. Chem. 2009, 284, 5457–5461. [Google Scholar] [CrossRef] [PubMed]
- Lewis, N.E.; Hixson, K.K.; Conrad, T.M.; Lerman, J.A.; Charusanti, P.; Polpitiya, A.D.; Adkins, J.N.; Schramm, G.; Purvine, S.O.; Lopez-Ferrer, D. Omic data from evolved E. coli are consistent with computed optimal growth from genome-scale models. Mol. Syst. Biol. 2010, 6, 390. [Google Scholar] [CrossRef]
- Córdoba, S.C.; Tong, H.; Burgos, A.; Zhu, F.; Alseekh, S.; Fernie, A.R.; Nikoloski, Z. Identification of gene function based on models capturing natural variability of Arabidopsis thaliana lipid metabolism. Nat. Commun. 2023, 14, 4897. [Google Scholar] [CrossRef]
- Paul, A.; Anand, R.; Karmakar, S.P.; Rawat, S.; Bairagi, N.; Chatterjee, S. Exploring gene knockout strategies to identify potential drug targets using genome-scale metabolic models. Sci. Rep. 2021, 11, 213. [Google Scholar] [CrossRef]
- Becker, S.A.; Palsson, B.O. Context-specific metabolic networks are consistent with experiments. PLoS Comput. Biol. 2008, 4, e1000082. [Google Scholar] [CrossRef] [PubMed]
- Blazier, A.S.; Papin, J.A. Integration of expression data in genome-scale metabolic network reconstructions. Front. Physiol. 2012, 3, 299. [Google Scholar] [CrossRef]
- Jamialahmadi, O.; Hashemi-Najafabadi, S.; Motamedian, E.; Romeo, S.; Bagheri, F. A benchmark-driven approach to reconstruct metabolic networks for studying cancer metabolism. PLoS Comput. Biol. 2019, 15, e1006936. [Google Scholar] [CrossRef]
- Kim, M.K.; Lane, A.; Kelley, J.J.; Lun, D.S. E-Flux2 and SPOT: Validated methods for inferring intracellular metabolic flux distributions from transcriptomic data. PLoS ONE 2016, 11, e0157101. [Google Scholar] [CrossRef]
- Palsson, B. In silico biology through “omics”. Nat. Biotechnol. 2002, 20, 649–650. [Google Scholar] [CrossRef]
- Zur, H.; Ruppin, E.; Shlomi, T. iMAT: An integrative metabolic analysis tool. Bioinformatics 2010, 26, 3140–3142. [Google Scholar]
- Zhang, A.; Zhang, H.; Wang, R.; He, H.; Song, B.; Song, R. Bactericidal bissulfone B7 targets bacterial pyruvate kinase to impair bacterial biology and pathogenicity in plants. Sci. China Life Sci. 2024, 67, 391–402. [Google Scholar]
- Lucarelli, A.P.; Buroni, S.; Pasca, M.R.; Rizzi, M.; Cavagnino, A.; Valentini, G.; Riccardi, G.; Chiarelli, L.R. Mycobacterium tuberculosis phosphoribosylpyrophosphate synthetase: Biochemical features of a crucial enzyme for mycobacterial cell wall biosynthesis. PLoS ONE 2010, 5, e15494. [Google Scholar]
- Villela, A.D.; Ducati, R.G.; Rosado, L.A.; Bloch, C.J.; Prates, M.V.; Goncalves, D.C.; Ramos, C.H.I.; Basso, L.A.; Santos, D.S. Biochemical characterization of uracil phosphoribosyltransferase from Mycobacterium tuberculosis. PLoS ONE 2013, 8, e56445. [Google Scholar]
- Torrents, E. Ribonucleotide reductases: Essential enzymes for bacterial life. Front. Cell. Infect. Microbiol. 2014, 4, 52. [Google Scholar]
- Zhu, Z.; Du, S.; Du, Y.; Ren, J.; Ying, G.; Yan, Z. Glutathione reductase mediates drug resistance in glioblastoma cells by regulating redox homeostasis. J. Neurochem. 2018, 144, 93–104. [Google Scholar]
- Fleming, A.B.; Saltzman, W.M. Pharmacokinetics of the carmustine implant. Clin. Pharmacokinet. 2002, 41, 403–419. [Google Scholar] [CrossRef] [PubMed]
- Brittain, H.G. Profiles of drug substances, excipients, and related methodology. Analy Profiles Drug Subst Excip. 2002, 29, 1–5. [Google Scholar]
- Yamashita, M. Auranofin: Past to Present, and repurposing. Int. Immunopharmacol. 2021, 101, 108272. [Google Scholar] [CrossRef]
- Hoffman, D.W.; Wiebkin, P.; Rybak, L.P. Inhibition of glutathione-related enzymes and cytotoxicity of ethacrynic acid and cyclosporine. Biochem. Pharmacol. 1995, 49, 411–415. [Google Scholar] [CrossRef]
- Dalmizrak, O.; Teralı, K.; Asuquo, E.B.; Ogus, I.H.; Ozer, N. The relevance of glutathione reductase inhibition by fluoxetine to human health and disease: Insights derived from a combined kinetic and docking study. Protein J. 2019, 38, 515–524. [Google Scholar] [CrossRef]
- Martí-Renom, M.A.; Stuart, A.C.; Fiser, A.; Sánchez, R.; Melo, F.; Šali, A. Comparative protein structure modeling of genes and genomes. Annu. Rev. Biophys. Biomol. Struct. 2000, 29, 291–325. [Google Scholar] [CrossRef]
- King, Z.A.; Lu, J.; Dräger, A.; Miller, P.; Federowicz, S.; Lerman, J.A.; Ebrahim, A.; Palsson, B.O.; Lewis, N.E. BiGG Models: A platform for integrating, standardizing and sharing genome-scale models. Nucleic Acids Res. 2016, 44, D515–D522. [Google Scholar] [CrossRef]
- Liang, X.-L.; Liang, Z.-M.; Wang, S.; Chen, X.-H.; Ruan, Y.; Zhang, Q.-Y.; Zhang, H.-Y. An analysis of the mechanism underlying photocatalytic disinfection based on integrated metabolic networks and transcriptional data. J. Environ. Sci. 2020, 92, 28–37. [Google Scholar] [CrossRef]
- Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko, A. Highly accurate protein structure prediction with AlphaFold. Nature 2021, 596, 583–589. [Google Scholar] [CrossRef]
- Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010, 31, 455–461. [Google Scholar] [CrossRef]
- Clark, M.; Cramer III, R.D.; Van Opdenbosch, N. Validation of the general purpose tripos 5.2 force field. J. Comput. Chem. 1989, 10, 982–1012. [Google Scholar] [CrossRef]
- Song, Y.-L.; Liu, S.-S.; Yang, J.; Xie, J.; Zhou, X.; Wu, Z.-B.; Liu, L.-W.; Wang, P.-Y.; Yang, S. Discovery of Epipodophyllotoxin-Derived B2 as Promising Xoo FtsZ Inhibitor for Controlling Bacterial Cell Division: Structure-Based Virtual Screening, Synthesis, and SAR Study. Int. J. Mol. Sci. 2022, 23, 9119. [Google Scholar] [CrossRef]
- Ya, Y. Laboratory Identification of Resistance to Pesticides and rpfC Gene Sequence Analysis of Xanthomonas oryzae pv. oryzae in japonica Rice from Yunnan Plateau. Chin. J. Rice Sci. 2014, 28, 665. [Google Scholar]
- Sirén, J.; Välimäki, N.; Mäkinen, V. HISAT2-fast and sensitive alignment against general human population. IEEE/ACM Trans. Comput. Biol. Bioinform. 2014, 11, 375–388. [Google Scholar]
- Pertea, M.; Pertea, G.M.; Antonescu, C.M.; Chang, T.-C.; Mendell, J.T.; Salzberg, S.L. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat. Biotechnol. 2015, 33, 290–295. [Google Scholar] [CrossRef]
- Cao, M.-H.; Tang, B.-H.; Ruan, Y.; Liang, X.-L.; Chu, X.-Y.; Liang, Z.-M.; Zhang, Q.-Y.; Zhang, H.-Y. Development of specific and selective bactericide by introducing exogenous metabolite of pathogenic bacteria. Eur. J. Med. Chem. 2021, 225, 113808. [Google Scholar] [CrossRef]
- Aminov, R. Metabolomics in antimicrobial drug discovery. Expert Opin. Drug Discov. 2022, 17, 1047–1059. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhao, J.; Li, J. Genome-scale metabolic modeling in antimicrobial pharmacology. Eng. Microbiol. 2022, 2, 100021. [Google Scholar] [CrossRef]
Model | Residues in Most Favoured Regions | Residues in Additional Allowed Regions | Residues in Generously Allowed Regions | Residues in Disallowed Regions |
---|---|---|---|---|
Xoo-GSR (378) | 348 (92.1%) | 24 (6.3%) | 6 (1.6%) | 0 (0.0%) |
Molecular ID | Docking Score |
---|---|
GSR-DB12411 | −12.3 |
FAD | −12.2 |
GSR-DB15039 | −11.8 |
GSR-DB04888 | −11.7 |
GSR-DB11852 | −11.7 |
GSR-DB12886 | −11.7 |
Molecular | CAS | Molecular Weight | Inhibition Rate (6 h) | Inhibition Rate (12 h) |
---|---|---|---|---|
DB12411 | 1037624-75-1 | 506.64 | 97.08% | 99.23% |
DB15039 | 1642303-38-5 | 605.56 | 45.20% | 27.33% |
DB11852 | 1000787-75-6 | 517.4 | 29.51% | 13.74% |
DMSO | 9.72% | 6.39% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, H.-L.; Liang, X.-L.; Ge, Z.-Y.; Zhang, Z.; Ruan, Y.; Tang, H.; Zhang, Q.-Y. Metabolic Flux Analysis of Xanthomonas oryzae Treated with Bismerthiazol Revealed Glutathione Oxidoreductase in Glutathione Metabolism Serves as an Effective Target. Int. J. Mol. Sci. 2024, 25, 12236. https://doi.org/10.3390/ijms252212236
Yu H-L, Liang X-L, Ge Z-Y, Zhang Z, Ruan Y, Tang H, Zhang Q-Y. Metabolic Flux Analysis of Xanthomonas oryzae Treated with Bismerthiazol Revealed Glutathione Oxidoreductase in Glutathione Metabolism Serves as an Effective Target. International Journal of Molecular Sciences. 2024; 25(22):12236. https://doi.org/10.3390/ijms252212236
Chicago/Turabian StyleYu, Hai-Long, Xiao-Long Liang, Zhen-Yang Ge, Zhi Zhang, Yao Ruan, Hao Tang, and Qing-Ye Zhang. 2024. "Metabolic Flux Analysis of Xanthomonas oryzae Treated with Bismerthiazol Revealed Glutathione Oxidoreductase in Glutathione Metabolism Serves as an Effective Target" International Journal of Molecular Sciences 25, no. 22: 12236. https://doi.org/10.3390/ijms252212236
APA StyleYu, H. -L., Liang, X. -L., Ge, Z. -Y., Zhang, Z., Ruan, Y., Tang, H., & Zhang, Q. -Y. (2024). Metabolic Flux Analysis of Xanthomonas oryzae Treated with Bismerthiazol Revealed Glutathione Oxidoreductase in Glutathione Metabolism Serves as an Effective Target. International Journal of Molecular Sciences, 25(22), 12236. https://doi.org/10.3390/ijms252212236