Relationship Between the Presence of Red Complex Species and the Distribution of Other Oral Bacteria, Including Major Periodontal Pathogens in Older Japanese Individuals
Abstract
:1. Introduction
2. Results
2.1. Detection of Major Periodontopathic Bacterial Species
2.2. α-Diversity and β-Diversity
2.3. Taxonomic Analysis at the Phylum and Genus Levels
3. Discussion
4. Materials and Methods
4.1. Ethics Statement
4.2. Subjects and Specimens
4.3. DNA Extraction
4.4. PCR Detection of Periodontopathic Bacterial Species
4.5. 16S rRNA Gene Library Preparation, Sequencing, and OTU Analysis
4.6. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhao, A.; Sun, J.; Liu, Y. Understanding bacterial biofilms: From definition to treatment strategies. Front. Cell Infect. Microbiol. 2023, 13, 1137947. [Google Scholar] [CrossRef] [PubMed]
- Wake, N.; Asahi, Y.; Noiri, Y.; Hayashi, M.; Motooka, D.; Nakamura, S.; Gotoh, K.; Miura, J.; Machi, H.; Iida, T.; et al. Temporal dynamics of bacterial microbiota in the human oral cavity determined using an in situ model of dental biofilms. NPJ Biofilms Microbiomes 2016, 2, 16018. [Google Scholar] [CrossRef]
- Abusleme, L.; Hoare, A.; Hong, B.Y.; Diaz, P.I. Microbial signatures of health, gingivitis, and periodontitis. Periodontol. 2000 2021, 86, 57–78. [Google Scholar] [CrossRef]
- Darveau, R.P.; Hajishengallis, G.; Curtis, M.A. Porphyromonas gingivalis as a Potential Community Activist for Disease. J. Dent. Res. 2012, 91, 816–820. [Google Scholar] [CrossRef] [PubMed]
- Nunez-Belmar, J.; Morales-Olavarria, M.; Vicencio, E.; Vernal, R.; Cardenas, J.P.; Cortez, C. Contribution of -Omics Technologies in the Study of Porphyromonas gingivalis during Periodontitis Pathogenesis: A Minireview. Int. J. Mol. Sci. 2022, 24, 620. [Google Scholar] [CrossRef]
- Nagasawa, Y.; Iio, K.; Fukuda, S.; Date, Y.; Iwatani, H.; Yamamoto, R.; Horii, A.; Inohara, H.; Imai, E.; Nakanishi, T.; et al. Periodontal disease bacteria specific to tonsil in IgA nephropathy patients predicts the remission by the treatment. PLoS ONE 2014, 9, e81636. [Google Scholar] [CrossRef] [PubMed]
- Alakhali, M.S.; Al-Maweri, S.A.; Al-Shamiri, H.M.; Al-haddad, K.; Halboub, E. The potential association between periodontitis and non-alcoholic fatty liver disease: A systematic review. Clin. Oral. Investig. 2018, 22, 2965–2974. [Google Scholar] [CrossRef]
- Kakabadze, M.Z.; Paresishvili, T.; Karalashvili, L.; Chakhunashvili, D.; Kakabadze, Z. Oral microbiota and oral cancer: Review. Oncol. Rev. 2020, 14, 129–134. [Google Scholar] [CrossRef]
- Lafuente Ibanez de Mendoza, I.; Maritxalar Mendia, X.; Garcia de la Fuente, A.M.; Quindos Andres, G.; Aguirre Urizar, J.M. Role of Porphyromonas gingivalis in oral squamous cell carcinoma development: A systematic review. J. Periodontal Res. 2020, 55, 13–22. [Google Scholar] [CrossRef]
- Nagasawa, Y.; Nomura, R.; Misaki, T.; Ito, S.; Naka, S.; Wato, K.; Okunaka, M.; Watabe, M.; Fushimi, K.; Tsuzuki, K.; et al. Relationship between IgA Nephropathy and Red Complex of Periodontopathic Bacterial Species. Int. J. Mol. Sci. 2021, 22, 13022. [Google Scholar] [CrossRef]
- Nagasawa, Y.; Misaki, T.; Ito, S.; Naka, S.; Wato, K.; Nomura, R.; Matsumoto-Nakano, M.; Nakano, K. Title IgA Nephropathy and Oral Bacterial Species Related to Dental Caries and Periodontitis. Int. J. Mol. Sci. 2022, 23, 725. [Google Scholar] [CrossRef] [PubMed]
- Kuraji, R.; Sekino, S.; Kapila, Y.; Numabe, Y. Periodontal disease-related nonalcoholic fatty liver disease and nonalcoholic steatohepatitis: An emerging concept of oral-liver axis. Periodontol. 2000 2021, 87, 204–240. [Google Scholar] [CrossRef] [PubMed]
- Peng, X.; Cheng, L.; You, Y.; Tang, C.; Ren, B.; Li, Y.; Xu, X.; Zhou, X. Oral microbiota in human systematic diseases. Int. J. Oral. Sci. 2022, 14, 14. [Google Scholar] [CrossRef] [PubMed]
- Socransky, S.S.; Haffajee, A.D.; Cugini, M.A.; Smith, C.; Kent, R.L., Jr. Microbial complexes in subgingival plaque. J. Clin. Periodontol. 1998, 25, 134–144. [Google Scholar] [CrossRef]
- Socransky, S.S.; Haffajee, A.D. Dental biofilms: Difficult therapeutic targets. Periodontol. 2000 2002, 28, 12–55. [Google Scholar] [CrossRef] [PubMed]
- Holt, S.C.; Ebersole, J.L. Porphyromonas gingivalis, Treponema denticola, and Tannerella forsythia: The “red complex”, a prototype polybacterial pathogenic consortium in periodontitis. Periodontol. 2000 2005, 38, 72–122. [Google Scholar] [CrossRef]
- Mohanty, R.; Asopa, S.J.; Joseph, M.D.; Singh, B.; Rajguru, J.P.; Saidath, K.; Sharma, U. Red complex: Polymicrobial conglomerate in oral flora: A review. J. Fam. Med. Prim. Care 2019, 8, 3480–3486. [Google Scholar]
- Tadjoedin, F.M.; Masulili, S.L.C.; Rizal, M.I.; Kusdhany, L.S.; Turana, Y.; Ismail, R.I.; Bachtiar, B.M. The Red and Orange Complex Subgingival Microbiome of Cognitive Impairment and Cognitively Normal Elderly with Periodontitis. Geriatrics 2022, 7, 12. [Google Scholar] [CrossRef]
- Carrouel, F.; Viennot, S.; Santamaria, J.; Veber, P.; Bourgeois, D. Quantitative Molecular Detection of 19 Major Pathogens in the Interdental Biofilm of Periodontally Healthy Young Adults. Front. Microbiol. 2016, 7, 840. [Google Scholar] [CrossRef]
- Abdulkareem, A.A.; Al-Taweel, F.B.; Al-Sharqi, A.J.B.; Gul, S.S.; Sha, A.; Chapple, I.L.C. Current concepts in the pathogenesis of periodontitis: From symbiosis to dysbiosis. J. Oral. Microbiol. 2023, 15, 2197779. [Google Scholar] [CrossRef]
- Ebbers, M.; Lübcke, P.M.; Volzke, J.; Kriebel, K.; Hieke, C.; Engelmann, R.; Lang, H.; Kreikemeyer, B.; Müller-Hilke, B. Interplay between P. ginbibalis, F. nucleatum and A. actinomycetemcomitans in murine alveolar bone loss, arthritis onset and progression. Sci. Rep. 2018, 8, 15129. [Google Scholar] [CrossRef] [PubMed]
- Sedghi, L.; DiMassa, V.; Harrington, A.; Lynch, S.V.; Kapila, Y.L. The oral microbiome: Role of key organisms and complex networks in oral health and disease. Periodontol. 2000 2021, 87, 107–131. [Google Scholar] [CrossRef] [PubMed]
- Nomura, R.; Nagasawa, Y.; Misaki, T.; Ito, S.; Naka, S.; Okunaka, M.; Watanabe, M.; Tsuzuki, K.; Matsumoto-Nakano, M.; Nakano, K. Distribution of periodontopathic bacterial species between saliva and tonsils. Odontology 2023, 111, 719–727. [Google Scholar] [CrossRef]
- Estrela, S.; Whiteley, M.; Brown, S.P. The demographic determinants of human microbiome health. Trends Microbiol. 2015, 23, 134–141. [Google Scholar] [CrossRef]
- Seth, E.C.; Taga, M.E. Nutrient cross-feeding in the microbial world. Front. Microbiol. 2014, 5, 350. [Google Scholar] [CrossRef]
- Abusleme, L.; Dupuy, A.K.; Dutzan, N.; Silva, N.; Burleson, J.A.; Strausbaugh, L.D.; Gamonal, J.; Diaz, P.I. The subgingival microbiome in health and periodontitis and its relationship with community biomass and inflammation. ISME J. 2013, 7, 1016–1025. [Google Scholar] [CrossRef]
- Riviere, G.R.; Smith, K.S.; Carranza, N.; Tzagaroulaki, E.; Kay, S.L.; Dock, M.; Zhu, X.; DeRouen, T.A. Associations between Porphyromonas gingivalis and oral treponemes in subgingival plaque. Oral. Microbiol. Immun. 1996, 11, 150–155. [Google Scholar] [CrossRef]
- Yamada, M.; Ikegami, A.; Kuramitsu, H.K. Synergistic biofilm formation by Treponema denticola and Porphyromonas gingivalis. FEMS Microbiol. Lett. 2005, 250, 271–277. [Google Scholar] [CrossRef] [PubMed]
- Orth, R.K.; O’Brien-Simpson, N.M.; Dashper, S.G.; Reynolds, E.C. Synergistic virulence of Porphyromonas gingivalis and Treponema denticola in a murine periodontitis model. Mol. Oral. Microbiol. 2011, 26, 229–240. [Google Scholar] [CrossRef]
- Sakanaka, A.; Takeuchi, H.; Kuboniwa, M.; Amano, A. Dual lifestyle of Porphyromonas gingivalis in biofilm and gingival cells. Microb. Pathog. 2016, 94, 42–47. [Google Scholar] [CrossRef]
- Meuric, V.; Martin, B.; Guyodo, H.; Rouillon, A.; Tamanai-Shacoori, Z.; Barloy-Hubler, F.; Bonnaure-Mallet, M. Treponema denticola improves adhesive capacities of Porphyromonas gingivalis. Mol. Oral. Microbiol. 2013, 28, 40–53. [Google Scholar] [CrossRef] [PubMed]
- Maeda, K.; Nagata, H.; Yamamoto, Y.; Tanaka, M.; Tanaka, J.; Minamino, N.; Shizukuishi, S. Glyceraldehyde-3-phosphate dehydrogenase of Streptococcus oralis functions as a coadhesin for Porphyromonas gingivalis major fimbriae. Infect. Immun. 2004, 72, 1341–1348. [Google Scholar] [CrossRef] [PubMed]
- Lamont, R.J.; El-Sabaeny, A.; Park, Y.; Cook, G.S.; Costerton, J.W.; Demuth, D.R. Role of the Streptococcus gordonii SspB protein in the development of Porphyromonas gingivalis biofilms on streptococcal substrates. Microbiological 2002, 148 Pt 6, 1627–1636. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.; Simionato, M.R.; Sekiya, K.; Murakami, Y.; James, D.; Chen, W.B.; Hackett, M.; Yoshimura, F.; Demuth, D.R.; Lamont, R.J. Short fimbriae of Porphyromonas gingivalis and their role in coadhesion with. Infect. Immun. 2005, 73, 3983–3989. [Google Scholar] [CrossRef]
- Zhou, Z.; Wu, H.; Li, D.; Zeng, W.; Huang, J.; Wu, Z. Comparison of gut microbiome in the Chinese mud snail (Cipangopaludina chinensis) and the invasive golden apple snail (Pomacea canaliculata). PeerJ 2022, 10, e13245. [Google Scholar] [CrossRef]
- Lozupone, C.A.; Hamady, M.; Kelley, S.T.; Knight, R. Quantitative and qualitative beta diversity measures lead to different insights into factors that structure microbial communities. Appl. Env. Microbiol. 2007, 73, 1576–1585. [Google Scholar] [CrossRef]
- Berezow, A.B.; Darveau, R.P. Microbial shift and periodontitis. Periodontol. 2000 2011, 55, 36–47. [Google Scholar] [CrossRef]
- Torres, P.J.; Thompson, J.; McLean, J.S.; Kelley, S.T.; Edlund, A. Discovery of a Novel Periodontal Disease-Associated Bacterium. Microb. Ecol. 2019, 77, 267–276. [Google Scholar] [CrossRef]
- Mitsuhata, C.; Kado, N.; Hamada, M.; Nomura, R.; Kozai, K. Characterization of the unique oral microbiome of children with Down syndrome. Sci. Rep. 2022, 12, 14150. [Google Scholar] [CrossRef]
- Kametani, M.; Akitomo, T.; Usuda, M.; Kusaka, S.; Asao, Y.; Nakano, M.; Iwamoto, Y.; Tachikake, M.; Ogawa, M.; Kaneki, A.; et al. Evaluation of Periodontal Status and Oral Health Habits with Continual Dental Support for Young Patients with Hemophilia. Appl. Sci. 2024, 14, 1349. [Google Scholar] [CrossRef]
- Akitomo, T.; Tsuge, Y.; Mitsuhata, C.; Nomura, R. A Narrative Review of the Association between Dental Abnormalities and Chemotherapy. J. Clin. Med. 2024, 13, 4942. [Google Scholar] [CrossRef] [PubMed]
- Darveau, R.P. Periodontitis: A polymicrobial disruption of host homeostasis. Nat. Rev. Microbiol. 2010, 8, 481–490. [Google Scholar] [CrossRef] [PubMed]
- Hajishengallis, G. Periodontitis: From microbial immune subversion to systemic inflammation. Nat. Rev. Immunol. 2015, 15, 30–44. [Google Scholar] [CrossRef]
- Kinane, D.F.; Galicia, J.C.; Gorr, S.U.; Stathopoulou, P.G.; Benakanakere, M. P. gingivalis interactions with epithelial cells. Front. Biosci. 2008, 13, 966–984. [Google Scholar] [CrossRef]
- Hajishengallis, G.; Liang, S.; Payne, M.A.; Hashim, A.; Jotwani, R.; Eskan, M.A.; McIntosh, M.L.; Alsam, A.; Kirkwood, K.L.; Lambris, J.D.; et al. Low-abundance biofilm species orchestrates inflammatory periodontal disease through the commensal microbiota and complement. Cell Host Microbe 2011, 10, 497–506. [Google Scholar] [CrossRef]
- Mascitti, M.; Togni, L.; Troiano, G.; Caponio, V.C.A.; Gissi, D.B.; Montebugnoli, L.; Procaccini, M.; Lo Muzio, L.; Santarelli, A. Beyond Head and Neck Cancer: The Relationship Between Oral Microbiota and Tumour Development in Distant Organs. Front. Cell Infect. Microbiol. 2019, 9, 232. [Google Scholar] [CrossRef]
- Tamaki, K.; Kusunoki, H.; Tsuji, S.; Wada, Y.; Nagai, K.; Itoh, M.; Sano, K.; Amano, M.; Maeda, H.; Hasegawa, Y.; et al. The Relationship between Dietary Habits and Frailty in Rural Japanese Community-Dwelling Older Adults: Cross-Sectional Observation Study Using a Brief Self-Administered Dietary History Questionnaire. Nutrients 2018, 10, 1982. [Google Scholar] [CrossRef] [PubMed]
- Hasegawa, Y.; Sakuramoto, A.; Sugita, H.; Hasegawa, K.; Horii, N.; Sawada, T.; Shinmura, K.; Kishimoto, H. Relationship between oral environment and frailty among older adults dwelling in a rural Japanese community: A cross-sectional observational study. BMC Oral. Health 2019, 19, 1982. [Google Scholar] [CrossRef]
- Yasuda, J.; Yasuda, H.; Nomura, R.; Matayoshi, S.; Inaba, H.; Gongora, E.; Iwashita, N.; Shirahata, S.; Kaji, N.; Akitomo, T.; et al. Investigation of Periodontal Disease Development and Porphyromonas gulae FimA Genotype Distribution in Small Dogs. Sci. Rep. 2024, 14, 5360. [Google Scholar] [CrossRef]
- Kato, Y.; Shirai, M.; Murakami, M.; Mizusawa, T.; Hagimoto, A.; Wada, K.; Nomura, R.; Nakano, K.; Ooshima, T.; Asai, F. Molecular detection of human periodontal pathogens in oral swab specimens from dogs in Japan. J. Vet. Dent. 2011, 28, 84–89. [Google Scholar] [CrossRef]
- Watanabe, K.; Frommel, T.O. Porphyromonas gingivalis, Actinobacillus actinomycetemcomitans and Treponema denticola detection in oral plaque samples using the polymerase chain reaction. J. Clin. Periodontol. 1996, 23 Pt 1, 212–219. [Google Scholar] [CrossRef] [PubMed]
- Ashimoto, A.; Chen, C.; Bakker, I.; Slots, J. Polymerase chain reaction detection of 8 putative periodontal pathogens in subgingival plaque of gingivitis and advanced periodontitis lesions. Oral. Microbiol. Immunol. 1996, 11, 266–273. [Google Scholar] [CrossRef] [PubMed]
- Conrads, G.; Mutters, R.; Fischer, J.; Brauner, A.; Lutticken, R.; Lampert, F. PCR reaction and dot-blot hybridization to monitor the distribution of oral pathogens within plaque samples of periodontally healthy individuals. J. Periodontol. 1996, 67, 994–1003. [Google Scholar] [CrossRef] [PubMed]
- Kuboniwa, M.; Amano, A.; Kimura, K.R.; Sekine, S.; Kato, S.; Yamamoto, Y.; Okahashi, N.; Iida, T.; Shizukuishi, S. Quantitative detection of periodontal pathogens using real-time polymerase chain reaction with TaqMan probes. Oral. Microbiol. Immun. 2004, 19, 168–176. [Google Scholar] [CrossRef]
Characteristics | Pg-Positive (n = 85) | Td-Positive | Tf-Positive | All Red Complex-Positive | No Red Complex-Positive | Total |
---|---|---|---|---|---|---|
(n = 16) | (n = 88) | (n = 13) | (n = 10) | (n = 116) | ||
Age (year) | 75.5 ± 5.3 | 75.9 ± 5.7 | 75.4 ± 5.0 | 76.2 ± 6.2 | 74.7 ± 5.8 | 75.5 ± 5.3 |
Sex (male:female) | 27:58 | 6:10 | 26:62 | 4:9 | 5:5 | 39:77 |
Height (cm) | 154.7 ± 8.1 | 155.7 ± 5.6 | 154.8 ± 8.2 | 155.9 ± 5.8 | 157.7 ± 8.2 | 155.0 ± 8.2 |
Weight (cm) | 53.6 ± 8.7 | 54.7 ± 8.7 | 53.7 ± 8.5 | 55.2 ± 8.5 | 55.8 ± 12.9 | 53.7 ± 8.9 |
Systolic blood pressure (mmHg) | 144.6 ± 18.4 | 135.3 ± 12.6 | 145.1 ± 17.7 | 136.0 ± 13.2 | 144.3 ± 13.8 | 144.1 ± 18.4 |
Diastolic blood pressure (mmHg) | 82.4 ± 11.6 | 77.6 ± 9.8 | 83.1 ± 12.2 | 77.0 ± 9.7 | 79.5 ± 9.2 | 82.3 ± 11.8 |
Hypertension (%) | 18 (21.2%) | 1 (6.3%) | 19 (21.6%) | 1 (7.7%) | 1 (10.0%) | 23 (19.8%) |
Diabetes mellitus (%) | 0 (0.0%) | 0 (0.0%) | 0 (0.0%) | 0 (0.0%) | 0 (0.0%) | 0 (0.0%) |
Dyslipidemia (%) | 6 (7.1%) | 0 (0.0%) | 6 (6.8%) | 0 (0.0%) | 0 (0.0%) | 8 (6.9%) |
Liver disease (%) | 2 (2.4%) | 0 (0.0%) | 2 (2.3%) | 0 (0.0%) | 0 (0.0%) | 2 (1.7%) |
Chronic kidney disease (%) | 0 (0.0%) | 0 (0.0%) | 1 (1.1%) | 0 (0.0%) | 0 (0.0%) | 1 (0.9%) |
Heart disease (%) | 4 (4.7%) | 1 (6.3%) | 3 (3.4%) | 1 (7.7%) | 1 (10.0%) | 5 (4.3%) |
Asthma (%) | 0 (0.0%) | 0 (0.0%) | 1 (1.1%) | 0 (0.0%) | 0 (0.0%) | 1 (0.9%) |
Tuberculosis (%) | 0 (0.0%) | 0 (0.0%) | 0 (0.0%) | 0 (0.0%) | 0 (0.0%) | 0 (0.0%) |
Lung infection (%) | 0 (0.0%) | 0 (0.0%) | 0 (0.0%) | 0 (0.0%) | 0 (0.0%) | 0 (0.0%) |
Digestive disease (%) | 1 (1.2%) | 0 (0.0%) | 1 (1.1%) | 0 (0.0%) | 0 (0.0%) | 1 (0.9%) |
Osteoporosis (%) | 2 (2.4%) | 0 (0.0%) | 2 (2.3%) | 0 (0.0%) | 0 (0.0%) | 2 (1.7%) |
Rheumatism (%) | 0 (0.0%) | 0 (0.0%) | 0 (0.0%) | 0 (0.0%) | 0 (0.0%) | 0 (0.0%) |
Thyroid disease (%) | 3 (3.5%) | 0 (0.0%) | 4 (4.5%) | 0 (0.0%) | 1 (10.0%) | 5 (4.3%) |
Collagen disease (%) | 1 (1.2%) | 0 (0.0%) | 1 (1.1%) | 0 (0.0%) | 0 (0.0%) | 1 (0.9%) |
Blood disease (%) | 2 (2.4%) | 0 (0.0%) | 1 (1.1%) | 0 (0.0%) | 0 (0.0%) | 2 (1.7%) |
Stroke (%) | 0 (0.0%) | 0 (0.0%) | 0 (0.0%) | 0 (0.0%) | 0 (0.0%) | 0 (0.0%) |
Cancer (%) | 4 (4.7%) | 0 (0.0%) | 3 (3.4%) | 0 (0.0%) | 0 (0.0%) | 5 (4.3%) |
White blood cell (102/μL) | 56.7 ± 14.5 | 64.3 ± 17.2 | 56.7 ± 13.5 | 63.5 ± 18.8 | 62.2 ± 10.2 | 57.4 ± 13.6 |
Red blood cell (104/μL) | 441.7 ± 38.7 | 443.9 ± 31.0 | 447.3 ± 38.6 | 437.5 ± 28.7 | 453.9 ± 57.2 | 445.2 ± 40.9 |
Hemoglobin (g/dL) | 13.2 ± 1.1 | 13.4 ± 1.0 | 13.4 ± 1.0 | 13.1 ± 1.1 | 13.1 ± 1.0 | 13.3 ± 1.1 |
Hematocrit (%) | 42.0 ± 3.3 | 42.2 ± 3.2 | 42.5 ± 3.2 | 41.8 ± 3.1 | 41.8 ± 3.0 | 42.2 ± 3.3 |
Platelet (104/μL) | 24.3 ± 4.8 | 23.9 ± 5.3 | 24.5 ± 4.9 | 24.3 ± 4.4 | 23.0 ± 6.2 | 24.2 ± 5.0 |
HDL cholesterol (mg/dL) | 65.4 ± 14.9 | 69.8 ± 19.4 | 67.4 ± 14.4 | 65.9 ± 14.9 | 66.8 ± 16.0 | 65.6 ± 14.6 |
Total protein (g/dL) | 7.2 ± 0.4 | 7.3 ± 0.4 | 7.2 ± 0.4 | 7.2 ± 0.4 | 7.1 ± 0.3 | 7.2 ± 0.4 |
Blood sugar (mg/dL) | 111.4 ± 34.3 | 115.0 ± 23.7 | 112.2 ± 34.6 | 110.8 ± 36.9 | 117.2 ± 42.4 | 112.7 ± 34.0 |
Total cholesterol (mg/dL) | 210.0 ± 36.5 | 212.4 ± 51.7 | 209.1 ± 37.5 | 209.6 ± 35.5 | 203.9 ± 38.6 | 207.3 ± 36.7 |
LDL cholesterol (mg/dL) | 116.1 ± 28.9 | 116.3 ± 38.9 | 112.6 ± 27.7 | 114.9 ± 28.1 | 112.5 ± 31.3 | 113.3 ± 28.4 |
Triglyceride (mg/dL) | 142.5 ± 75.3 | 131.3 ± 67.0 | 145.3 ± 74.6 | 143.8 ± 79.1 | 123.1 ± 70.6 | 142.0 ± 72.0 |
Creatinine (mg/dL) | 0.7 ± 0.2 | 0.7 ± 0.2 | 0.7 ± 0.2 | 0.7 ± 0.2 | 0.8 ± 0.2 | 0.7 ± 0.2 |
γ-GTP (U/I) | 35.1 ± 84.3 | 125.8 ± 249.6 | 34.0 ± 82.8 | 37.0 ± 93.5 | 32.6 ± 26.1 | 38.6 ± 97.9 |
AST (U/L) | 25.8 ± 9.2 | 31.4 ± 17.0 | 25.6 ± 8.2 | 26.4 ± 9.6 | 23.9 ± 11.8 | 25.9 ± 9.5 |
ALT (U/L) | 20.9 ± 8.2 | 25.3 ± 11.9 | 21.2 ± 7.6 | 21.3 ± 8.4 | 16.9 ± 7.2 | 20.8 ± 7.8 |
Albumin (g/dL) | 4.2 ± 0.2 | 4.2 ± 0.2 | 4.3 ± 0.2 | 4.3 ± 0.2 | 4.2 ± 0.3 | 4.2 ± 0.3 |
Cystatin C (mg/L) | 1.0 ± 0.3 | 1.0 ± 0.2 | 1.0 ± 0.2 | 1.0 ± 0.2 | 1.0 ± 0.1 | 1.0 ± 0.2 |
High sensitive CRP (mg/dL) | 0.1 ± 0.1 | 0.1 ± 0.1 | 0.1 ± 0.1 | 0.1 ± 0.1 | 0.1 ± 0.2 | 0.1 ± 0.1 |
Teeth number | 21.2 ± 7.0 | 23.8 ± 5.6 | 21.6 ± 7.3 | 23.2 ± 5.8 | 20.8 ± 6.1 | 21.3 ± 7.2 |
Model 1 | Model 2 | |||||
---|---|---|---|---|---|---|
Variables | Odds Ratio (95% Confidence Interval) | p Value | Odds Ratio (95% Confidence Interval) | p Value | Odds Ratio (95% Confidence Interval) | p Value |
Age | 1.00 (0.91–1.09) | 0.955 | 1.01 (0.92–1.20) | 0.901 | 0.99 (0.91–1.09) | 0.856 |
Sex | 1.48 (0.60–3.63) | 0.398 | 1.57 (0.63–3.90) | 0.330 | 1.63 (0.64–3.14) | 0.306 |
Teeth number | 0.98 (0.92–1.05) | 0.596 | 0.99 (0.92–1.05) | 0.691 | 0.98 (0.91–1.04) | 0.485 |
Pi | 4.22 (1.16–15.4) | 0.029 | - | - | 3.56 (0.95–13.3) | 0.059 |
Cs | - | - | 4.91 (1.60–15.0) | 0.005 | 4.07 (1.30–12.8) | 0.016 |
Model 1 | Model 2 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Variables | Odds Ratio (95% Confidence Interval) | p Value | Odds Ratio (95% Confidence Interval) | p Value | Odds Ratio (95% Confidence Interval) | p Value | Odds Ratio (95% Confidence Interval) | p Value | Odds Ratio (95% Confidence Interval) | p Value |
Age | 1.02 (0.93–1.12) | 0.684 | 1.01 (0.93–1.11) | 0.697 | 1.06 (0.96–1.16) | 0.263 | 1.00 (0.91–1.10) | 0.960 | 1.02 (0.93–1.13) | 0.647 |
Sex | 2.12 (0.83–5.33) | 0.110 | 2.09 (0.82–5.28) | 0.119 | 2.26 (0.87–5.89) | 0.094 | 1.52 (0.59–3.96) | 0.384 | 1.65 (0.59–4.59) | 0.336 |
Teeth number | 1.02 (0.95–1.09) | 0.597 | 1.03 (0.97–1.10) | 0.362 | 1.05 (0.98–1.12) | 0.166 | 1.03 (0.97–1.10) | 0.357 | 1.04 (0.97–1.12) | 0.253 |
Cr | 3.74 (1.35–10.35) | 0.011 | - | - | - | - | - | - | 1.49 (0.44-5.09) | 0.526 |
Pn | - | - | 4.68 (1.48–14.8) | 0.009 | - | - | - | - | 2.19 (0.53–9.04) | 0.280 |
Co | - | - | - | - | 8.05 (2.26–27.50) | 0.001 | - | - | 5.03 (1.29–19.6) | 0.020 |
Ec | - | - | - | - | - | - | 5.57 (2.06–15.2) | 0.001 | 4.04 (1.41–11.6) | 0.010 |
Purpose | Sequence (5′-3′) | Size (bp) | References |
---|---|---|---|
Universal primer | |||
(positive control) | |||
PA | AGA GTT TGA TCC TGG CTC AG | 315 | [49] |
PD | GTA TTA CCG CGG CTG CTG | ||
Detection of periodontitis-related species | |||
Porphyromonas gingivalis | CCG CAT ACA CTT GTA TTA TTG CAT GAT A | 267 | [50] |
AAG AAG TTT ACA ATC CTT AGG ACT GTC T | |||
Treponema denticola | AAG GCG GTA GAG CCG CTC A | 311 | [51] |
AGC CGC TGT CGA AAA GCC CA | |||
Tannerella forsythia | GCG TAT GTA ACC TGC CCG CA | 641 | [52] |
TGC TTC AGT GTC AGT TAT ACC T | |||
Capnocytophaga ochracea | AGA GTT TGA TCC TGG CTC AG | 185 | [53] |
GAT GCC GTC CCT ATA TAC TAT GGG G | |||
Capnocytophaga sputigena | AGA GTT TGA TCC TGG CTC AG | 185 | [53] |
GAT GCC GCT CCT ATA TAC CAT TAG G | |||
Prevotella intermedia | TTT GTT GGG GAG TAA AGC GGG | 575 | [53] |
TCA ACA TCT CTG TAT CCT GCG T | |||
Prevotella nigrescens | ATG AAA CAA AGG TTT TCC GGT AAG | 804 | [52] |
CCC ACG TCT CTG TGG GCT GCG A | |||
Campylobacter rectus | TTT CGG AGC GTA AAC TCC TTT TC | 598 | [52] |
TTT CTG CAA GCA GAC ACT CTT | |||
Aggregatibacter actinomycetemcomitans | CTA GGT ATT GCG AAA CAA TTT G | 262 | [54] |
CCT GAA ATT AAG CTG GTA ATC | |||
Eikenella corrodens | CTA ATA CCG CAT ACG TCC TAA G | 688 | [52] |
CTA CTA AGC AAT CAA GTT GCC C |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kametani, M.; Nagasawa, Y.; Usuda, M.; Kaneki, A.; Ogawa, M.; Shojima, K.; Yamazaki, H.; Tokumoto, K.; Matsuoka, D.; Suehara, K.; et al. Relationship Between the Presence of Red Complex Species and the Distribution of Other Oral Bacteria, Including Major Periodontal Pathogens in Older Japanese Individuals. Int. J. Mol. Sci. 2024, 25, 12243. https://doi.org/10.3390/ijms252212243
Kametani M, Nagasawa Y, Usuda M, Kaneki A, Ogawa M, Shojima K, Yamazaki H, Tokumoto K, Matsuoka D, Suehara K, et al. Relationship Between the Presence of Red Complex Species and the Distribution of Other Oral Bacteria, Including Major Periodontal Pathogens in Older Japanese Individuals. International Journal of Molecular Sciences. 2024; 25(22):12243. https://doi.org/10.3390/ijms252212243
Chicago/Turabian StyleKametani, Mariko, Yasuyuki Nagasawa, Momoko Usuda, Ami Kaneki, Masashi Ogawa, Kensaku Shojima, Hiromitsu Yamazaki, Kana Tokumoto, Daiki Matsuoka, Kana Suehara, and et al. 2024. "Relationship Between the Presence of Red Complex Species and the Distribution of Other Oral Bacteria, Including Major Periodontal Pathogens in Older Japanese Individuals" International Journal of Molecular Sciences 25, no. 22: 12243. https://doi.org/10.3390/ijms252212243
APA StyleKametani, M., Nagasawa, Y., Usuda, M., Kaneki, A., Ogawa, M., Shojima, K., Yamazaki, H., Tokumoto, K., Matsuoka, D., Suehara, K., Suehiro, Y., Akitomo, T., Mitsuhata, C., Misaki, T., Ito, S., Naka, S., Matsumoto-Nakano, M., Nakano, K., Kishimoto, H., ... Nomura, R. (2024). Relationship Between the Presence of Red Complex Species and the Distribution of Other Oral Bacteria, Including Major Periodontal Pathogens in Older Japanese Individuals. International Journal of Molecular Sciences, 25(22), 12243. https://doi.org/10.3390/ijms252212243