Synthesis of New 1,4-Naphthoquinone Fluorosulfate Derivatives and the Study of Their Biological and Electrochemical Properties
Abstract
:1. Introduction
2. Results and Discussion
2.1. The Synthesis of Naphthoquinone Derivatives
2.2. Biological Activity Study
2.2.1. Evaluation of Biological Activity and ADMET Parameters in Silico
2.2.2. The Cytotoxicity Study
2.2.3. The Electronic Structure of Naphthoquinones in Relation to Cytotoxicity
2.3. Electrochemistry
2.3.1. Electrochemical Behavior of NQ, NQ1 and NQS at IMGE
2.3.2. Calculation of the Electron Number
2.3.3. Voltammetric Determination of NQ, NQ1, and NQS by Linear Scan Voltammetry (LSV)
2.3.4. Interference Study
2.3.5. Determination of NQ, NQ1, and NQS in Pharmaceutical Substances
3. Materials and Methods
3.1. Reagents and Equipment
3.2. Synthesis of Naphthoquinone Derivatives
3.2.1. 3-Chloro-2-((4-(tert-butyldimethylsilyloxy)phenyl)amino)-1,4-naphthoquinone (NQ1a)
3.2.2. 3-Chloro-2-((3-(tert-butyldimethylsilyloxy)phenyl)amino)-1,4-naphthoquinone (NQ2a)
3.2.3. 4-((3-Chloro-1,4-naphthoquinon-2-yl)amino)phenyl fluorosulfate (NQS)
3.2.4. 3-((3-Chloro-1,4-naphthoquinon-2-yl)amino)phenyl fluorosulfate (NQS2)
3.2.5. Method of One-Pot Synthesis 4-((3-Chloro-1,4-naphthoquinon-2-yl)amino)phenyl fluorosulfate (NQS) and 3-((3-Chloro-1,4-naphthoquinon-2-yl)amino)phenyl fluorosulfate (NQS2)
3.3. Biological Experiments
3.4. DFT Calculations
3.5. Electrochemical Measurements
3.5.1. Equipment
3.5.2. Characterization of the IMGE
3.6. ADME Predictions
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Uchimiya, M.; Stone, A.T. Reversible Redox Chemistry of Quinones: Impact on Biogeochemical Cycles. Chemosphere 2009, 77, 451–458. [Google Scholar] [CrossRef] [PubMed]
- Halicki, P.C.B.; Ferreira, L.A.; De Moura, K.C.G.; Carneiro, P.F.; Del Rio, K.P.; Carvalho, T.d.S.C.; Pinto, M.d.C.F.R.; da Silva, P.E.A.; Ramos, D.F. Naphthoquinone Derivatives as Scaffold to Develop New Drugs for Tuberculosis Treatment. Front. Microbiol. 2018, 9, 673. [Google Scholar] [CrossRef] [PubMed]
- Patel, O.P.S.; Beteck, R.M.; Legoabe, L.J. Antimalarial Application of Quinones: A Recent Update. Eur. J. Med. Chem. 2021, 210, 113084. [Google Scholar] [CrossRef] [PubMed]
- Leote, R.J.B.; Sanz, C.G.; Diculescu, V.C. Electrochemical Characterization of Shikonin and In-Situ Evaluation of Interaction with DNA. J. Electroanal. Chem. 2022, 921, 116663. [Google Scholar] [CrossRef]
- Lebedev, A.V.; Ivanova, M.V.; Levitsky, D.O. Iron Chelators and Free Radical Scavengers in Naturally Occurring Polyhydroxylated 1,4-Naphthoquinones. Hemoglobin 2008, 32, 165–179. [Google Scholar] [CrossRef]
- Devine, A.; Hegarty, C.; Casimero, C.; Molyneaux, R.L.; Smith, R.B.; Cardosi, M.F.; Davis, J. Electrochemically Initiated Release: Exploring New Modalities for Controlled Drug Release. J. Electroanal. Chem. 2020, 872, 113926. [Google Scholar] [CrossRef]
- Krayz, G.T.; Bittner, S.; Dhiman, A.; Becker, J.Y. Electrochemistry of Quinones with Respect to Their Role in Biomedical Chemistry. Chem. Rec. 2021, 21, 2332–2343. [Google Scholar] [CrossRef]
- Rahman, M.M.; Islam, M.R.; Akash, S.; Shohag, S.; Ahmed, L.; Supti, F.A.; Rauf, A.; Aljohani, A.S.M.; Al Abdulmonem, W.; Khalil, A.A.; et al. Naphthoquinones and Derivatives as Potential Anticancer Agents: An Updated Review. Chem. Biol. Interact. 2022, 368, 110198. [Google Scholar] [CrossRef]
- Newman, D.K.; Kolter, R. A Role for Excreted Quinones in Extracellular Electron Transfer. Nature 2000, 405, 94–97. [Google Scholar] [CrossRef]
- Turek, A.K.; Hardee, D.J.; Ullman, A.M.; Nocera, D.G.; Jacobsen, E.N. Activation of Electron-Deficient Quinones through Hydrogen-Bond-Donor-Coupled Electron Transfer. Angew. Chemie Int. Ed. 2016, 55, 539–544. [Google Scholar] [CrossRef]
- Ibis, C.; Shntaif, H.; Bahar, H.; Ayla, S. An Investigation of Nucleophilic Substitution Reactions of 2,3-Dichloro-1,4-Naphthoquinone with Various Nucleophilic Reagents. J. Serbian Chem. Soc. 2015, 80, 731–738. [Google Scholar] [CrossRef]
- Kacmaz, A.; Acar, E.T.; Atun, G.; Kaya, K.; Sigirci, B.D.; Bagcigil, F. Synthesis, Electrochemistry, DFT Calculations, Antimicrobial Properties and X-ray Crystal Structures of Some NH- and/or S-Substituted-1,4-quinones. ChemistrySelect 2018, 3, 8615–8623. [Google Scholar] [CrossRef]
- Ravichandiran, P.; Masłyk, M.; Sheet, S.; Janeczko, M.; Premnath, D.; Kim, A.R.; Park, B.; Han, M.; Yoo, D.J. Synthesis and Antimicrobial Evaluation of 1,4-Naphthoquinone Derivatives as Potential Antibacterial Agents. ChemistryOpen 2019, 8, 589–600. [Google Scholar] [CrossRef] [PubMed]
- Tandon, V.K.; Yadav, D.B.; Singh, R.V.; Vaish, M.; Chaturvedi, A.K.; Shukla, P.K. Synthesis and Biological Evaluation of Novel 1,4-Naphthoquinone Derivatives as Antibacterial and Antiviral Agents. Bioorg. Med. Chem. Lett. 2005, 15, 3463–3466. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.H.; Yoo, J.; Park, S.-H.; Jung, J.-K.; Cho, H.; Chung, Y. Synthesis and Evaluation of Antitumor Activity of Novel 1,4-Naphthoquinone Derivatives (IV). Arch. Pharm. Res. 2006, 29, 123–130. [Google Scholar] [CrossRef]
- Kacmaz, A.; Deniz, N.G.; Aydinli, S.G.; Sayil, C.; Onay-Ucar, E.; Mertoglu, E.; Arda, N. Synthesis and Antiproliferative Evaluation of Some 1,4-Naphthoquinone Derivatives against Human Cervical Cancer Cells. Open Chem. 2019, 17, 337–345. [Google Scholar] [CrossRef]
- Schepetkin, I.A.; Karpenko, A.S.; Khlebnikov, A.I.; Shibinska, M.O.; Levandovskiy, I.A.; Kirpotina, L.N.; Danilenko, N.V.; Quinn, M.T. Synthesis, Anticancer Activity, and Molecular Modeling of 1,4-Naphthoquinones That Inhibit MKK7 and Cdc25. Eur. J. Med. Chem. 2019, 183, 111719. [Google Scholar] [CrossRef]
- Wellington, K.W. Understanding Cancer and the Anticancer Activities of Naphthoquinones—A Review. RSC Adv. 2015, 5, 20309–20338. [Google Scholar] [CrossRef]
- Dong, J.; Krasnova, L.; Finn, M.G.; Sharpless, K.B. Sulfur(VI) Fluoride Exchange (SuFEx): Another Good Reaction for Click Chemistry. Angew. Chemie Int. Ed. 2014, 53, 9430–9448. [Google Scholar] [CrossRef]
- Liu, Z.; Li, J.; Li, S.; Li, G.; Sharpless, K.B.; Wu, P. SuFEx Click Chemistry Enabled Late-Stage Drug Functionalization. J. Am. Chem. Soc. 2018, 140, 2919–2925. [Google Scholar] [CrossRef]
- Chai, J.; Zhang, J.; Wen, Y.; Zou, L.; Zhang, X.; Xin, X.; Zhou, M.; Xu, J.; Zhang, G. Highly Sensitive Electrochemical Sensor Based on PEDOT:PSS-β-CD-SWCNT-COOH Modified Glassy Carbon Electrode Enables Trace Analysis Shikonin. J. Electrochem. Soc. 2019, 166, B388–B394. [Google Scholar] [CrossRef]
- Wu, L.; Lu, L.; Zhang, L.; Xu, J.; Zhang, K.; Wen, Y.; Duan, X.; Yang, F. Electrochemical Determination of the Anticancer Herbal Drug Shikonin at a Nanostructured Poly(Hydroxymethylated-3,4-ethylenedioxythiophene) Modified Electrode. Electroanalysis 2013, 25, 2244–2250. [Google Scholar] [CrossRef]
- Zhou, H.; Wang, J.; Yea, B. Electrochemical Investigation of Redox Reactions of Herbal Drug-Shikonin and Its Determination in Pharmaceutical Preparations. J. Anal. Chem. 2010, 65, 749–754. [Google Scholar] [CrossRef]
- Gao, Y.-S.; Wu, L.-P.; Zhang, K.-X.; Xu, J.-K.; Lu, L.-M.; Zhu, X.-F.; Wu, Y. Electroanalytical Method for Determination of Shikonin Based on the Enhancement Effect of Cyclodextrin Functionalized Carbon Nanotubes. Chinese Chem. Lett. 2015, 26, 613–618. [Google Scholar] [CrossRef]
- An, J.; Li, J.; Chen, W.; Yang, C.; Hu, F.; Wang, C. Electrochemical Study and Application on Shikonin at Poly(Diallyldimethylammonium Chloride) Functionalized Graphene Sheets Modified Glass Carbon Electrode. Chem. Res. Chinese Univ. 2013, 29, 798–805. [Google Scholar] [CrossRef]
- Hahn, Y.; Lee, H.Y. Electrochemical Behavior and Square Wave Voltammetric Determination of Doxorubicin Hydrochloride. Arch. Pharm. Res. 2004, 27, 31–34. [Google Scholar] [CrossRef]
- Abhishek Singh, T.; Sharma, V.; Thakur, N.; Tejwan, N.; Sharma, A.; Das, J. Selective and Sensitive Electrochemical Detection of Doxorubicin via a Novel Magnesium Oxide/Carbon Dot Nanocomposite Based Sensor. Inorg. Chem. Commun. 2023, 150, 110527. [Google Scholar] [CrossRef]
- Skalová, Š.; Langmaier, J.; Barek, J.; Vyskočil, V.; Navrátil, T. Doxorubicin Determination Using Two Novel Voltammetric Approaches: A Comparative Study. Electrochim. Acta 2020, 330, 135180. [Google Scholar] [CrossRef]
- Hashemzadeh, N.; Hasanzadeh, M.; Shadjou, N.; Eivazi-Ziaei, J.; Khoubnasabjafari, M.; Jouyban, A. Graphene Quantum Dot Modified Glassy Carbon Electrode for the Determination of Doxorubicin Hydrochloride in Human Plasma. J. Pharm. Anal. 2016, 6, 235–241. [Google Scholar] [CrossRef]
- Karimi-Maleh, H.; Alizadeh, M.; Orooji, Y.; Karimi, F.; Baghayeri, M.; Rouhi, J.; Tajik, S.; Beitollahi, H.; Agarwal, S.; Gupta, V.K.; et al. Guanine-Based DNA Biosensor Amplified with Pt/SWCNTs Nanocomposite as Analytical Tool for Nanomolar Determination of Daunorubicin as an Anticancer Drug: A Docking/Experimental Investigation. Ind. Eng. Chem. Res. 2021, 60, 816–823. [Google Scholar] [CrossRef]
- Ayla, S.S.; Bahar, H.; Yavuz, S.; Hazer, B.; Ibis, C. The Synthesis and Characterization of Novel Quinone–Amine Polymers from the Reactions of 2,3-Dichloro-1,4-Naphthoquinone and Polyoxypropylenediamines. Phosphorus. Sulfur. Silicon Relat. Elem. 2016, 191, 438–443. [Google Scholar] [CrossRef]
- Ibis, C.; Ayla, S.S.; Asar, H. Synthesis and Spectral and Electrochemical Characterization of Novel Substituted 1,4-Naphthoquinone Derivatives. Synth. Commun. 2014, 44, 121–126. [Google Scholar] [CrossRef]
- Brun, M.-P.; Braud, E.; Angotti, D.; Mondésert, O.; Quaranta, M.; Montes, M.; Miteva, M.; Gresh, N.; Ducommun, B.; Garbay, C. Design, Synthesis, and Biological Evaluation of Novel Naphthoquinone Derivatives with CDC25 Phosphatase Inhibitory Activity. Bioorg. Med. Chem. 2005, 13, 4871–4879. [Google Scholar] [CrossRef] [PubMed]
- Tandon, V.K.; Maurya, H.K.; Kumar, S.; Rashid, A.; Panda, D. Synthesis and Evaluation of 2-Heteroaryl and 2,3-Diheteroaryl-1,4-Naphthoquinones That Potently Induce Apoptosis in Cancer Cells. RSC Adv. 2014, 4, 12441–12447. [Google Scholar] [CrossRef]
- de Oliveira, J.C.; Abreu, B.U.; Paz, E.R.S.; Almeida, R.G.; Honorato, J.; Souza, C.P.; Fantuzzi, F.; Ramos, V.F.S.; Menna-Barreto, R.F.S.; Araujo, M.H.; et al. SuFEx-Functionalized Quinones via Ruthenium-Catalyzed C–H Alkenylation: A Potential Building Block for Bioactivity Valorization. Chem. An Asian J. 2024, e202400757. [Google Scholar] [CrossRef]
- Bhand, S.; Patil, R.; Shinde, Y.; Lande, D.N.; Rao, S.S.; Kathawate, L.; Gejji, S.P.; Weyhermüller, T.; Salunke-Gawali, S. Tautomerism in O-Hydroxyanilino-1,4-Naphthoquinone Derivatives: Structure, NMR, HPLC and Density Functional Theoretic Investigations. J. Mol. Struct. 2016, 1123, 245–260. [Google Scholar] [CrossRef]
- Liang, D.; Streefkerk, D.E.; Jordaan, D.; Wagemakers, J.; Baggerman, J.; Zuilhof, H. Silicon-Free SuFEx Reactions of Sulfonimidoyl Fluorides: Scope, Enantioselectivity, and Mechanism. Angew. Chemie 2020, 132, 7564–7570. [Google Scholar] [CrossRef]
- Poroikov, V.V.; Filimonov, D.A. How to Acquire New Biological Activities in Old Compounds by Computer Prediction. J. Comput. Aided. Mol. Des. 2002, 16, 819–824. [Google Scholar] [CrossRef]
- Benites, J.; Valderrama, J.A.; Bettega, K.; Pedrosa, R.C.; Calderon, P.B.; Verrax, J. Biological Evaluation of Donor-Acceptor Aminonaphthoquinones as Antitumor Agents. Eur. J. Med. Chem. 2010, 45, 6052–6057. [Google Scholar] [CrossRef]
- Doogue, M.P.; Polasek, T.M. The ABCD of Clinical Pharmacokinetics. Ther. Adv. Drug Saf. 2013, 4, 5–7. [Google Scholar] [CrossRef]
- Daina, A.; Michielin, O.; Zoete, V. SwissADME: A Free Web Tool to Evaluate Pharmacokinetics, Drug-Likeness and Medicinal Chemistry Friendliness of Small Molecules. Sci. Rep. 2017, 7, 42717. [Google Scholar] [CrossRef] [PubMed]
- Wellington, K.W.; Kolesnikova, N.I.; Hlatshwayo, V.; Saha, S.T.; Kaur, M.; Motadi, L.R. Anticancer Activity, Apoptosis and a Structure–Activity Analysis of a Series of 1,4-Naphthoquinone-2,3-Bis-Sulfides. Invest. New Drugs 2020, 38, 274–286. [Google Scholar] [CrossRef] [PubMed]
- Randall, J.D.; Eyckens, D.J.; Stojcevski, F.; Francis, P.S.; Doeven, E.H.; Barlow, A.J.; Barrow, A.S.; Arnold, C.L.; Moses, J.E.; Henderson, L.C. Modification of Carbon Fibre Surfaces by Sulfur-Fluoride Exchange Click Chemistry. ChemPhysChem 2018, 19, 3176–3181. [Google Scholar] [CrossRef] [PubMed]
- Andrada, D.M.; Holzmann, N.; Hamadi, T.; Frenking, G. Direct estimate of the internal π-donation to the carbene centre within N-heterocyclic carbenes and related molecules. Beilstein J. Org. Chem. 2015, 11, 2727–2736. [Google Scholar] [CrossRef]
- Lin, Y.-S.; Li, G.-D.; Mao, S.-P.; Chai, J.-D. Long-Range Corrected Hybrid Density Functionals with Improved Dispersion Corrections. J. Chem. Theory Comput. 2013, 9, 263–272. [Google Scholar] [CrossRef]
- Verrax, J.; Beck, R.; Dejeans, N.; Glorieux, C.; Sid, B.; Rozangela, C.P.; Julio, B.; David, V.; Jaime, A.V.; Pedro, B.C. Redox-Active Quinones and Ascorbate: An Innovative Cancer Therapy That Exploits the Vulnerability of Cancer Cells to Oxidative Stress. Anticancer. Agents Med. Chem. 2011, 11, 213–221. [Google Scholar] [CrossRef]
- Heyrovský, J. Principles of Polarography; Academic Press: New York, NY, USA, 1966. [Google Scholar]
- Compton, R.G.; Laborda, E.; Ward, K.R. Understanding Voltammetry: Simulation of Electrode Processes; Imperial College Press: London, UK, 2013; ISBN 978-1-78326-323-3. [Google Scholar]
- Gamboa-Valero, N.; Astudillo, P.D.; González-Fuentes, M.A.; Leyva, M.A.; Rosales-Hoz, M.D.J.; González, F.J. Hydrogen Bonding Complexes in the Quinone-Hydroquinone System and the Transition to a Reversible Two-Electron Transfer Mechanism. Electrochim. Acta 2016, 188, 602–610. [Google Scholar] [CrossRef]
- Bailey, S.I.; Ritchie, I.M. A Cyclic Voltammetric Study of the Aqueous Electrochemistry of Some Quinones. Electrochim. Acta 1985, 30, 3–12. [Google Scholar] [CrossRef]
- Sangeetha, K.; Abraham, T.E. Chemical Modification of Papain for Use in Alkaline Medium. J. Mol. Catal. B Enzym. 2006, 38, 171–177. [Google Scholar] [CrossRef]
- Rani, S.K.; Easwaramoorthy, D.; Bilal, I.M.; Palanichamy, M. Studies on Mn(II)-Catalyzed Oxidation of α-Amino Acids by Peroxomonosulphate in Alkaline Medium-Deamination and Decarboxylation: A Kinetic Approach. Appl. Catal. A Gen. 2009, 369, 1–7. [Google Scholar] [CrossRef]
- Tandon, V.K.; Maurya, H.K.; Mishra, N.N.; Shukla, P.K. Design, Synthesis and Biological Evaluation of Novel Nitrogen and Sulfur Containing Hetero-1,4-Naphthoquinones as Potent Antifungal and Antibacterial Agents. Eur. J. Med. Chem. 2009, 44, 3130–3137. [Google Scholar] [CrossRef] [PubMed]
- Ishikawa, T.; Eguchi, Y.; Igarashi, M.; Okajima, T.; Mita, K.; Yamasaki, Y.; Sumikura, K.; Okumura, T.; Tabuchi, Y.; Hayashi, C.; et al. Synthesis and Biochemical Characterization of Naphthoquinone Derivatives Targeting Bacterial Histidine Kinases. J. Antibiot. 2024, 77, 522–532. [Google Scholar] [CrossRef] [PubMed]
- Becke, A.D. Density-Functional Exchange-Energy Approximation with Correct Asymptotic Behavior. Phys. Rev. A 1988, 38, 3098–3100. [Google Scholar] [CrossRef] [PubMed]
- Weigend, F.; Ahlrichs, R. Balanced Basis Sets of Split Valence, Triple Zeta Valence and Quadruple Zeta Valence Quality for H to Rn: Design and Assessment of Accuracy. Phys. Chem. Chem. Phys. 2005, 7, 3297. [Google Scholar] [CrossRef] [PubMed]
- Weigend, F. Accurate Coulomb-Fitting Basis Sets for H to Rn. Phys. Chem. Chem. Phys. 2006, 8, 1057. [Google Scholar] [CrossRef]
- Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the Damping Function in Dispersion Corrected Density Functional Theory. J. Comput. Chem. 2011, 32, 1456–1465. [Google Scholar] [CrossRef]
- Neese, F.; Wennmohs, F.; Hansen, A.; Becker, U. Efficient, Approximate and Parallel Hartree–Fock and Hybrid DFT Calculations. A ‘Chain-of-Spheres’ Algorithm for the Hartree–Fock Exchange. Chem. Phys. 2009, 356, 98–109. [Google Scholar] [CrossRef]
- Izsák, R.; Neese, F. An Overlap Fitted Chain of Spheres Exchange Method. J. Chem. Phys. 2011, 135. [Google Scholar] [CrossRef]
- Khristunova, E.; Barek, J.; Kratochvil, B.; Korotkova, E.; Dorozhko, E.; Vyskocil, V. Electrochemical Immunoassay for the Detection of Antibodies to Tick-Borne Encephalitis Virus by Using Various Types of Bioconjugates Based on Silver Nanoparticles. Bioelectrochemistry 2020, 135, 107576. [Google Scholar] [CrossRef]
- Bard, A.J.; Larry, R. Faulkner, Electrochemical Methods: Fundamentals and Applications; Wiley: Hoboken, NJ, USA, 2000; ISBN 978-0-471-04372-0. [Google Scholar]
- Herrera Hernández, H.; Ruiz Reynoso, A.M.; Trinidad González, J.C.; González Morán, C.O.; Miranda Hernández, J.G.; Mandujano Ruiz, A.; Morales Hernández, J.; Orozco Cruz, R. Electrochemical Impedance Spectroscopy (EIS): A Review Study of Basic Aspects of the Corrosion Mechanism Applied to Steels. In Electrochemical Impedance Spectroscopy; IntechOpen: London, UK, 2020. [Google Scholar] [CrossRef]
Compound | Modified Electrode | Method | Linear Con-Centration Range, μmol L−1 | Limit of Detection (LOD), nmol L−1 | Objects | Ref. |
---|---|---|---|---|---|---|
Shikonin | PEDOT:PSS-β-CD-SWCNT-COOH/GCE | DPV | 0.006–30 | 1.8 | urine | [21] |
PEDOT-MeOH/GCE | DPV | 0.001–10,000 | 0.3 | urine | [22] | |
GCE | SWV | 0.0208–1.82 | 7.8 | herbal drug Gromwell Root | [23] | |
MWCNTs/b-CD/GCE | DPV | 0.005–10,000 | 1.0 | urine | [24] | |
PDDA-GS/GCE | DPV | 0.09472–3.789 | 315.7 | herbal drug Lithosper-mum erythrorhi-zon | [25] | |
Doxorubicin | SMDE | SWV | 0.5–10 | 100 | pharmaceuti-cal preparations | [26] |
multifunctional carbon dots/magnesi-um oxide (CDs/MgO/SPCE) | CV | 0.1–1 | 90 | pharmaceuti-cal preparations | [27] | |
p-Ag/SAE | DPCSV DPV | 0.6–10 1.0–40 | 440 840 | human urine | [28] | |
GQD/GCE | DPV | 0.018–3.600 | 16 | human plasma | [29] | |
Daunorubicin | ds-DNA/Pt/SWCNTs/GCE | DPV | 0.004–250 | 1.0 | pharmaceuti-cal preparations | [30] |
Properties | NQ | NQ1 | NQS | NQ2 | NQS2 |
---|---|---|---|---|---|
Formula | C10H4Cl2O2 | C16H10ClNO3 | C16H9ClFNO5S | C16H10ClNO3 | C16H9ClFNO5S |
Molecular weight | 227.04 | 299.71 | 381.76 | 299.71 | 381.76 |
Number of heavy atoms | 14 | 21 | 25 | 21 | 25 |
Fraction Csp3 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Number of rotatable bonds | 0 | 2 | 4 | 2 | 4 |
Number of H-bond acceptors | 2 | 3 | 6 | 3 | 6 |
Number of H-bond donors | 0 | 2 | 1 | 2 | 1 |
Molar Refractivity | 53.84 | 79.89 | 88.57 | 79.89 | 88.57 |
tPSA, Å2 | 34.14 | 66.4 | 97.92 | 66.4 | 97.92 |
Lipophilicity. Consensus Log Po/w | 2.55 | 2.65 | 2.93 | 2.65 | 2.90 |
BBB permeant | yes | yes | no | yes | no |
Synthetic accessibility | 2.39 | 2.79 | 3.02 | 2.83 | 3.10 |
Bioavailability Score | 0.55 | 0.55 | 0.55 | 0.55 | 0.55 |
LD50 mg/kg | 160 | 1260 | 2000 | 2000 | 2000 |
Toxicity class | 3 | 4 | 4 | 4 | 4 |
Cell Line | NQ | NQ1 | NQ2 | NQS | NQS2 | Cisplatin |
---|---|---|---|---|---|---|
PC-3 | 22.31 ± 3.54 | 1.59 ± 0.10 | 0.9 ±0.07 | 6.23 ± 1.08 | 2.60 ± 0.30 | 40.89 ± 6.20 |
MCF-7 | 9.89 ± 1.03 | 7.68 ± 0.62 | 4.38 ± 0.48 | 17.48 ± 3.02 | 5.44 ± 0.89 | 33.46 ± 5.42 |
SKOV-3 | 20.56 ± 2.16 | 5.98 ± 0.65 | 2.19 ± 0.32 | 7.22 ± 0.92 | 3.95 ± 0.42 | 32.81 ± 7.12 |
Jurkat | 37.88 ± 5.49 | 2.87 ± 0.10 | 1.77 ± 0.18 | 4.24 ± 0.34 | 3.06 ± 0.36 | 19.97 ± 1.98 |
E(HOMO) (eV) | E(LUMO) (eV) | VEA (kcal/mol) | η (eV) | χ (eV) | ω (eV) | |
---|---|---|---|---|---|---|
PC-3 | −0.96 | −0.90 | 0.77 | 0.96 | 0.96 | 0.93 |
MCF-7 | −0.24 | −0.55 | 0.64 | 0.14 | 0.31 | 0.44 |
SKOV-3 | −0.91 | −0.84 | 0.70 | 0.90 | 0.90 | 0.88 |
Jurkat | −0.94 | −0.81 | 0.66 | 0.96 | 0.92 | 0.87 |
Compound | Functional Group | Epa, V | Epc, V |
---|---|---|---|
NQ | Quinone | 0.26 ± 0.05 | −0.13 ± 0.05 |
NQ1 | Imino | −0.51 ± 0.05 | −0.65 ± 0.05 |
Quinoid | 0.64 ± 0.05 | 0.03 ± 0.05 | |
Hydroxyl | 0.14 ± 0.05 | no signal | |
NQS | Imino | −0.41 ± 0.05 | −0.36 ± 0.05 |
Quinone | 0.36 ± 0.05 | 0.18 ± 0.05 |
Parameter | Optimal Conditions | ||
---|---|---|---|
NQ | NQ1 | NQS | |
Background electrolyte | 0.1 M NaClO4 96% ethanol solution | ||
Working electrode | IMGE | ||
Auxiliary/reference electrode | silver chloride electrode (1 mol·L−1 KCl) | ||
Scan rate, mV·s−1 | 100 | ||
pH | 2 | 10 | |
Accumulation potential, V | 1.0 | −1.0 | −1.8 |
Accumulation time, s | 50 | 30 | 20 |
Peak potential, V | 0.13 ± 0.01 | −0.58± 0.01 | −0.52 ± 0.01 |
Compound | Peak Potential, V | Regression Equation | Linear Concentration Range, mol·L−1 | Limit of Detection (LOD), mol·L−1 |
---|---|---|---|---|
NQ | 0.12 | y = 3.14x−0.35 (R2 = 0.9992) | 2 × 10−5–8 × 10−4 | 7.2 × 10−6 |
NQ1 | −0.58 | y = 45.74x + 0.37 (R2 = 0.9992) | 1 × 10−6–8 × 10−4 | 8 × 10−7 |
NQS | −0.53 | y = 0.12x + 0.05 (R2 = 0.9989) | 5 × 10−7–1 × 10−5 | 8.6 × 10−8 |
Compound | Added (mol·L−1) | Found (mol·L−1) | Recovery (%) | Relative Standard Deviation (%) |
---|---|---|---|---|
NQ | 6 × 10−5 | 6.06 × 10−5 | 101 | 5.33 |
8 × 10−5 | 7.95 × 10−5 | 99.4 | 1.75 | |
1 × 10−4 | 1.04 × 10−4 | 104 | 3.74 | |
NQ1 | 6 × 10−6 | 6.04 × 10−6 | 101 | 1.47 |
8 × 10−6 | 7.96 × 10−6 | 99.5 | 1.5 | |
1 × 10−5 | 0.97 × 10−5 | 95 | 4.27 | |
NQS | 6 × 10−7 | 6.19 × 10−7 | 103 | 3.94 |
1 × 10−6 | 1.09 × 10−6 | 109 | 9.06 | |
1.4 × 10−6 | 1.47 × ·10−6 | 105 | 18.33 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aseeva, N.V.; Danilenko, N.V.; Plotnikov, E.V.; Korotkova, E.I.; Lipskikh, O.I.; Solomonenko, A.N.; Erkovich, A.V.; Eskova, D.D.; Khlebnikov, A.I. Synthesis of New 1,4-Naphthoquinone Fluorosulfate Derivatives and the Study of Their Biological and Electrochemical Properties. Int. J. Mol. Sci. 2024, 25, 12245. https://doi.org/10.3390/ijms252212245
Aseeva NV, Danilenko NV, Plotnikov EV, Korotkova EI, Lipskikh OI, Solomonenko AN, Erkovich AV, Eskova DD, Khlebnikov AI. Synthesis of New 1,4-Naphthoquinone Fluorosulfate Derivatives and the Study of Their Biological and Electrochemical Properties. International Journal of Molecular Sciences. 2024; 25(22):12245. https://doi.org/10.3390/ijms252212245
Chicago/Turabian StyleAseeva, Natalia V., Nadezhda V. Danilenko, Evgenii V. Plotnikov, Elena I. Korotkova, Olga I. Lipskikh, Anna N. Solomonenko, Alina V. Erkovich, Daria D. Eskova, and Andrei I. Khlebnikov. 2024. "Synthesis of New 1,4-Naphthoquinone Fluorosulfate Derivatives and the Study of Their Biological and Electrochemical Properties" International Journal of Molecular Sciences 25, no. 22: 12245. https://doi.org/10.3390/ijms252212245
APA StyleAseeva, N. V., Danilenko, N. V., Plotnikov, E. V., Korotkova, E. I., Lipskikh, O. I., Solomonenko, A. N., Erkovich, A. V., Eskova, D. D., & Khlebnikov, A. I. (2024). Synthesis of New 1,4-Naphthoquinone Fluorosulfate Derivatives and the Study of Their Biological and Electrochemical Properties. International Journal of Molecular Sciences, 25(22), 12245. https://doi.org/10.3390/ijms252212245