Acute Paraoxon-Induced Neurotoxicity in a Mouse Survival Model: Oxidative Stress, Dopaminergic System Alterations and Memory Deficits
Abstract
:1. Introduction
2. Results
2.1. Preliminary Experiment: Effect of POX Treatment on Racine Scale and Survival Rate
2.2. Behavioral Effects After Acute POX Administration (4 mg/kg, Subcutaneously [s.c.]) Plus Emergency Treatment
2.2.1. Motor Coordination (Rotarod Test)
2.2.2. Basal Locomotor Activity
2.2.3. Anxiety-like Effects (Elevated Plus Maze)
2.2.4. Depressive-like Symptoms (Forced Swim Test (FST))
2.2.5. Memory Impairments (Novel Object Recognition Test (NORT))
2.3. Biomarkers of Oxidative Stress
2.4. NT Analysis and Dopamine Transporter (DAT) Quantification
2.5. Hippocampal and PFC Astrogliosis
3. Discussion
4. Materials and Methods
4.1. Animals
4.2. Drugs and Materials
4.3. In Vivo Treatment
4.4. Behavioral Assays
4.4.1. Rotarod
4.4.2. HLA
4.4.3. Elevated Plus Maze (EPM)
4.4.4. FST
4.4.5. NORT
4.5. Bio- and Neurochemical Assays
4.5.1. Tissue Sample Preparation and Protein Extraction
4.5.2. Western Blotting and Immunodetection
4.5.3. Neurotransmitter Extraction and Analysis
4.6. Data Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gupta, R.C. Handbook of Toxicology of Chemical Warfare Agents, 3rd ed.; Academic Press: Cambridge, MA, USA, 2020; pp. 17–26. [Google Scholar] [CrossRef]
- Figueiredo, T.H.; Apland, J.P.; Braga, M.F.M.; Marini, A.M. Acute and Long-Term Consequences of Exposure to Organophosphate Nerve Agents in Humans. Epilepsia 2018, 59, 92–99. [Google Scholar] [CrossRef] [PubMed]
- Jett, D.A.; Spriggs, S.M. Translational Research on Chemical Nerve Agents. Neurobiol. Dis. 2020, 133, 104335. [Google Scholar] [CrossRef] [PubMed]
- Eddleston, M.; Buckley, N.A.; Eyer, P.; Dawson, A.H.; Straub, W. Management of Acute Organophosphorus Pesticide Poisoning. Lancet 2008, 597–607. [Google Scholar] [CrossRef] [PubMed]
- McDonough, J.H.; McMonagle, J.; Copeland, T.; Zoeffel, D.; Shih, T.-M. Comparative Evaluation of Benzodiazepines for Control of Soman-Induced Seizures. Arch. Toxicol. 1999, 73, 473–478. [Google Scholar] [CrossRef]
- Shih, T.-M.; McDonough, J.H. Efficacy of Biperiden and Atropine as Anticonvulsant Treatment for Organophosphorus Nerve Agent Intoxication. Arch. Toxicol. 2000, 74, 165–172. [Google Scholar] [CrossRef]
- Steenland, K.; Jenkins, B.; Ames, R.G.; Chrislip, D.; Russo, J. Chronic Neurological Sequelae to Organophosphate Pesticide Poisoning. Am. J. Public Health 1994, 84, 731–736. [Google Scholar] [CrossRef]
- Garcia, S.J.; Abu-Qare, A.W.; Meeker-O’Connell, W.A.; Borton, A.J.; Abou-Donia, M.B. Methyl Parathion: A Review of Health Effects. J. Toxicol. Environ. Health B Crit. Rev. 2003, 6, 185–210. [Google Scholar] [CrossRef]
- Johnson, N.D.; Duysen, E.G.; Lockridge, O. Intrathecal Delivery of Fluorescent Labeled Butyrylcholinesterase to the Brains of Butyrylcholinesterase Knock-out Mice: Visualization and Quantification of Enzyme Distribution in the Brain. Neurotoxicology 2009, 30, 386–392. [Google Scholar] [CrossRef]
- Terry, A.V.; Beck, W.D.; Warner, S.; Vandenhuerk, L.; Callahan, P.M. Chronic Impairments in Spatial Learning and Memory in Rats Previously Exposed to Chlorpyrfos or Diisopropylfluorophosphate. Neurotoxicol. Teratol. 2012, 34, 1–8. [Google Scholar] [CrossRef]
- Harrison, P.K.; Sheridan, R.D.; Green, A.C.; Scott, I.R.; Tattersall, J.E.H. A Guinea Pig Hippocampal Slice Model of Organophosphate-Induced Seizure Activity. J. Pharmacol. Exp. Ther. 2004, 310, 678–686. [Google Scholar] [CrossRef]
- Farizatto, K.L.G.; McEwan, S.A.; Naidoo, V.; Nikas, S.P.; Shukla, V.G.; Almeida, M.F.; Byrd, A.; Romine, H.; Karanian, D.A.; Makriyannis, A.; et al. Inhibitor of Endocannabinoid Deactivation Protects Against In Vitro and In Vivo Neurotoxic Effects of Paraoxon. J. Mol. Neurosci. 2017, 63, 115–122. [Google Scholar] [CrossRef] [PubMed]
- Eisenkraft, A.; Falk, A.; Finkelstein, A. The Role of Glutamate and the Immune System in Organophosphate-Induced CNS Damage. Neurotox. Res. 2013, 24, 265–279. [Google Scholar] [CrossRef] [PubMed]
- Rambabu, L.; Megson, I.L.; Eddleston, M. Does Oxidative Stress Contribute to Toxicity in Acute Organophosphorus Poisoning?—A Systematic Review of the Evidence. Clin. Toxicol. 2020, 58, 437–452. [Google Scholar] [CrossRef] [PubMed]
- Raveh, L.; Brandeis, R.; Gilat, E.; Cohen, G.; Alkalay, D.; Rabinovitz, I.; Sonego, H.; Weissman, B.A. Anticholinergic and Antiglutamatergic Agents Protect against Soman-Induced Brain Damage and Cognitive Dysfunction. Toxicol. Sci. 2003, 75, 108–116. [Google Scholar] [CrossRef]
- Aldridge, J.E.; Meyer, A.; Seidler, F.J.; Slotkin, T.A. Alterations in Central Nervous System Serotonergic and Dopaminergic Synaptic Activity in Adulthood after Prenatal or Neonatal Chlorpyrifos Exposure. Environ. Health Perspect. 2005, 113, 1027–1031. [Google Scholar] [CrossRef]
- Mohammadi, M.; Ghani, E.; Ghasemi, A.; Khoshbaten, A.; Asgari, A. Synaptosomal GABA Uptake Decreases in Paraoxon-Treated Rat Brain. Toxicology 2008, 244, 42–48. [Google Scholar] [CrossRef]
- Pereira, E.F.R.; Aracava, Y.; DeTolla, L.J.; Beecham, E.J.; Basinger, G.W.; Wakayama, E.J.; Albuquerque, E.X. Animal Models That Best Reproduce the Clinical Manifestations of Human Intoxication with Organophosphorus Compounds. J. Pharmacol. Exp. Ther. 2014, 350, 313–321. [Google Scholar] [CrossRef]
- Deshpande, L.S.; Carter, D.S.; Blair, R.E.; DeLorenzo, R.J. Development of a Prolonged Calcium Plateau in Hippocampal Neurons in Rats Surviving Status Epilepticus Induced by the Organophosphate Diisopropylfluorophosphate. Toxicol. Sci. 2010, 116, 623–631. [Google Scholar] [CrossRef]
- Flannery, B.M.; Bruun, D.A.; Rowland, D.J.; Banks, C.N.; Austin, A.T.; Kukis, D.L.; Li, Y.; Ford, B.D.; Tancredi, D.J.; Silverman, J.L.; et al. Persistent Neuroinflammation and Cognitive Impairment in a Rat Model of Acute Diisopropylfluorophosphate Intoxication. J. Neuroinflamm. 2016, 13, 267. [Google Scholar] [CrossRef]
- Hobson, B.A.; Rowland, D.J.; Sisó, S.; Guignet, M.A.; Harmany, Z.T.; Bandara, S.B.; Saito, N.; Harvey, D.J.; Bruun, D.A.; Garbow, J.R.; et al. TSPO PET Using [18F]PBR111 Reveals Persistent Neuroinflammation Following Acute Diisopropylfluorophosphate Intoxication in the Rat. Toxicol. Sci. 2019, 170, 330–344. [Google Scholar] [CrossRef]
- Pouliot, W.; Bealer, S.L.; Roach, B.; Dudek, F.E. A Rodent Model of Human Organophosphate Exposure Producing Status Epilepticus and Neuropathology. Neurotoxicology 2016, 56, 196–203. [Google Scholar] [CrossRef] [PubMed]
- Guignet, M.; Dhakal, K.; Flannery, B.M.; Hobson, B.A.; Zolkowska, D.; Dhir, A.; Bruun, D.A.; Li, S.; Wahab, A.; Harvey, D.J.; et al. Persistent Behavior Deficits, Neuroinflammation, and Oxidative Stress in a Rat Model of Acute Organophosphate Intoxication. Neurobiol. Dis. 2020, 133, 104431. [Google Scholar] [CrossRef] [PubMed]
- Deshpande, L.S.; Phillips, K.; Huang, B.; DeLorenzo, R.J. Chronic Behavioral and Cognitive Deficits in a Rat Survival Model of Paraoxon Toxicity. Neurotoxicology 2014, 44, 352–357. [Google Scholar] [CrossRef] [PubMed]
- Comfort, N.; Re, D.B. Sex-Specific Neurotoxic Effects of Organophosphate Pesticides Across the Life Course. Curr. Environ. Health Rep. 2017, 4, 392–404. [Google Scholar] [CrossRef]
- Brown, M.A.; Brix, K.A. Review of Health Consequences from High-, Intermediate- and Low-Level Exposure to Organophosphorus Nerve Agents. J. Appl. Toxicol. 1998, 18, 393–408. [Google Scholar] [CrossRef]
- Jamal, G.A. Neurological Syndromes of Organophosphorus Compounds. Advers. Drug React. Toxicol. Rev. 1997, 16, 133–170. [Google Scholar]
- Jamal, G.A.; Hansen, S.; Julu, P.O.O. Low Level Exposures to Organophosphorus Esters May Cause Neurotoxicity. Toxicology 2002, 181, 23–33. [Google Scholar] [CrossRef]
- Naughton, S.X.; Terry, A.V. Neurotoxicity in Acute and Repeated Organophosphate Exposure. Toxicology 2018, 408, 101–112. [Google Scholar] [CrossRef]
- Deluca, M.A.; Chai, P.R.; Goralnick, E.; Erickson, T.B. Five Decades of Global Chemical Terror Attacks: Data Analysis to Inform Training and Preparedness. Disaster Med. Public Health Prep. 2021, 15, 750–761. [Google Scholar] [CrossRef]
- Balali-Mood, M.; Abdollahi, M. Basic and Clinical Toxicology of Organophosphorus Compounds; Springer: London, UK, 2014. [Google Scholar] [CrossRef]
- Deshpande, L.S.; Carter, D.S.; Phillips, K.F.; Blair, R.E.; DeLorenzo, R.J. Development of Status Epilepticus, Sustained Calcium Elevations and Neuronal Injury in a Rat Survival Model of Lethal Paraoxon Intoxication. Neurotoxicology 2014, 44, 17–26. [Google Scholar] [CrossRef]
- Maupu, C.; Enderlin, J.; Igert, A.; Oger, M.; Auvin, S.; Hassan-Abdi, R.; Soussi-Yanicostas, N.; Brazzolotto, X.; Nachon, F.; Dal Bo, G.; et al. Diisopropylfluorophosphate-Induced Status Epilepticus Drives Complex Glial Cell Phenotypes in Adult Male Mice. Neurobiol. Dis. 2021, 152, 105276. [Google Scholar] [CrossRef] [PubMed]
- Lotti, M. Clinical Toxicology of Anticholinesterase Agents in Humans. In Hayes’ Handbook of Pesticide Toxicology, 3rd ed.; Krieger, R., Ed.; Academic Press: Cambridge, MA, USA, 2010; pp. 1543–1589. [Google Scholar] [CrossRef]
- Li, Y.; Zhao, T.; Li, J.; Xia, M.; Li, Y.; Wang, X.; Liu, C.; Zheng, T.; Chen, R.; Kan, D.; et al. Oxidative Stress and 4-Hydroxy-2-Nonenal (4-HNE): Implications in the Pathogenesis and Treatment of Aging-Related Diseases. J. Immunol. Res. 2022, 2022. [Google Scholar] [CrossRef] [PubMed]
- Pena-Llopis, S. Antioxidants as Potentially Safe Antidotes for Organophosphorus Poisoning. Curr. Enzym. Inhib. 2005, 1, 147–156. [Google Scholar] [CrossRef]
- Shilpa Bisht, R.D. Oxidative Stress-Major Executioner in Disease Pathology. Front. Biosci. 2017, 9, 420–447. [Google Scholar] [CrossRef]
- John, J.J.; Nagar, D.P.; Gujar, N.L.; Bhattacharya, R. Oxidative and Histopathological Alterations after Sub-Acute Exposure of Diisopropyl Phosphorofluoridate in Mice: Beneficial Effect of N acetylcysteine. Life Sci. 2019, 228, 98–111. [Google Scholar] [CrossRef]
- Cornelius, N.; Wardman, J.H.; Hargreaves, I.P.; Neergheen, V.; Bie, A.S.; Tümer, Z.; Nielsen, J.E.; Nielsen, T.T. Evidence of Oxidative Stress and Mitochondrial Dysfunction in Spinocerebellar Ataxia Type 2 (SCA2) Patient Fibroblasts: Effect of Coenzyme Q10 Supplementation on These Parameters. Mitochondrion 2017, 34, 103–114. [Google Scholar] [CrossRef]
- Jafari, M.; Salehi, M.; Asgari, A.; Ahmadi, S.; Abbasnezhad, M.; Hajihoosani, R.; Hajigholamali, M. Effects of Paraoxon on Serum Biochemical Parameters and Oxidative Stress Induction in Various Tissues of Wistar and Norway Rats. Environ. Toxicol. Pharmacol. 2012, 34, 876–887. [Google Scholar] [CrossRef]
- Ouardi, F.Z.; Anarghou, H.; Malqui, H.; Ouasmi, N.; Chigr, M.; Najimi, M.; Chigr, F. Gestational and Lactational Exposure to Malathion Affects Antioxidant Status and Neurobehavior in Mice Pups and Offspring. J. Mol. Neurosci. 2019, 69, 17–27. [Google Scholar] [CrossRef]
- Matés, J.M. Effects of Antioxidant Enzymes in the Molecular Control of Reactive Oxygen Species Toxicology. Toxicology 2000, 153, 83–104. [Google Scholar] [CrossRef]
- Possamai, F.P.; Fortunato, J.J.; Feier, G.; Agostinho, F.R.; Quevedo, J.; Wilhelm Filho, D.; Dal-Pizzol, F. Oxidative Stress after Acute and Sub-Chronic Malathion Intoxication in Wistar Rats. Environ. Toxicol. Pharmacol. 2007, 23, 198–204. [Google Scholar] [CrossRef]
- Zepeda-Arce, R.; Rojas-García, A.E.; Benitez-Trinidad, A.; Herrera-Moreno, J.F.; Medina-Díaz, I.M.; Barrón-Vivanco, B.S.; Villegas, G.P.; Hernández-Ochoa, I.; Sólis Heredia, M.D.; Bernal-Hernández, Y.Y. Oxidative Stress and Genetic Damage among Workers Exposed Primarily to Organophosphate and Pyrethroid Pesticides. Environ. Toxicol. 2017, 32, 1754–1764. [Google Scholar] [CrossRef] [PubMed]
- Ranjbar, A.; Solhi, H.; Mashayekhi, F.J.; Susanabdi, A.; Rezaie, A.; Abdollahi, M. Oxidative Stress in Acute Human Poisoning with Organophosphorus Insecticides; A Case Control Study. Environ. Toxicol. Pharmacol. 2005, 20, 88–91. [Google Scholar] [CrossRef] [PubMed]
- Lukaszewicz-Hussain, A. Subchronic Intoxication with Chlorfenvinphos, an Organophosphate Insecticide, Affects Rat Brain Antioxidative Enzymes and Glutathione Level. Food Chem. Toxicol. 2008, 46, 82–86. [Google Scholar] [CrossRef]
- Pearson, J.N.; Patel, M. The Role of Oxidative Stress in Organophosphate and Nerve Agent Toxicity. Ann. N. Y Acad. Sci. 2016, 1378, 17–24. [Google Scholar] [CrossRef]
- Zare, Z.; Tehrani, M.; Zarbakhsh, S.; Farzadmanesh, H.; Shafia, S.; Abedinzade, M.; Ghanaat, A.; Mohammadi, M. Effects of Paraoxon Exposure on Expression of Apoptosis-Related Genes, Neuronal Survival, and Astrocyte Activation in Rat Prefrontal Cortex. Neurotox. Res. 2020, 37, 356–365. [Google Scholar] [CrossRef]
- Rojas, A.; McCarren, H.S.; Wang, J.; Wang, W.; Abreu-Melon, J.M.; Wang, S.; McDonough, J.H.; Dingledine, R. Comparison of Neuropathology in Rats Following Status Epilepticus Induced by Diisopropylfluorophosphate and Soman. Neurotoxicology 2021, 83, 14–27. [Google Scholar] [CrossRef]
- Chapman, S.; Kadar, T.; Gilat, E. Seizure Duration Following Sarin Exposure Affects Neuro-Inflammatory Markers in the Rat Brain. Neurotoxicology 2006, 27, 277–283. [Google Scholar] [CrossRef]
- Anand, K.; Dhikav, V. Hippocampus in Health and Disease: An Overview. Ann. Indian. Acad. Neurol. 2012, 15, 239–246. [Google Scholar] [CrossRef]
- Neves, G.; Cooke, S.F.; Bliss, T.V.P. Synaptic Plasticity, Memory and the Hippocampus: A Neural Network Approach to Causality. Nat. Rev. Neurosci. 2008, 9, 65–75. [Google Scholar] [CrossRef]
- Haam, J.; Yakel, J.L. Cholinergic Modulation of the Hippocampal Region and Memory Function. J. Neurochem. 2017, 142, 111–121. [Google Scholar] [CrossRef]
- McNamara, C.G.; Dupret, D. Two Sources of Dopamine for the Hippocampus. Trends Neurosci. 2017, 40, 383–384. [Google Scholar] [CrossRef] [PubMed]
- Chang, P.K.; Yu, L.; Chen, J.C. Dopamine D3 Receptor Blockade Rescues Hyper-Dopamine Activity-Induced Deficit in Novel Object Recognition Memory. Neuropharmacology 2018, 133, 216–223. [Google Scholar] [CrossRef] [PubMed]
- Yang, K.; Broussard, J.I.; Levine, A.T.; Jenson, D.; Arenkiel, B.R.; Dani, J.A. Dopamine Receptor Activity Participates in Hippocampal Synaptic Plasticity Associated with Novel Object Recognition. Eur. J. Neurosci. 2017, 45, 138–146. [Google Scholar] [CrossRef] [PubMed]
- Graziani, S.; Christin, D.; Daulon, S.; Breton, P.; Perrier, N.; Taysse, L. Effects of Repeated Low-Dose Exposure of the Nerve Agent VX on Monoamine Levels in Different Brain Structures in Mice. Neurochem. Res. 2014, 39, 911–921. [Google Scholar] [CrossRef]
- Friedman, N.P.; Robbins, T.W. The Role of Prefrontal Cortex in Cognitive Control and Executive Function. Neuropsychopharmacology 2022, 47, 72–89. [Google Scholar] [CrossRef]
- Bettcher, B.M.; Olson, K.E.; Carlson, N.E.; McConnell, B.V.; Boyd, T.; Adame, V.; Solano, D.A.; Anton, P.; Markham, N.; Thaker, A.A.; et al. Astrogliosis and Episodic Memory in Late Life: Higher GFAP Is Related to Worse Memory and White Matter Microstructure in Healthy Aging and Alzheimer’s Disease. Neurobiol. Aging 2021, 103, 68–77. [Google Scholar] [CrossRef]
- Salim, S. Oxidative Stress and the Central Nervous System. J. Pharmacol. Exp. 2017, 360, 201–205. [Google Scholar] [CrossRef]
- Basmadjian, O.M.; Occhieppo, V.B.; Marchese, N.A.; Silvero, C.M.J.; Becerra, M.C.; Baiardi, G.; Bregonzio, C. Amphetamine Induces Oxidative Stress, Glial Activation and Transient Angiogenesis in Prefrontal Cortex via AT1-R. Front. Pharmacol. 2021, 12, 647747. [Google Scholar] [CrossRef]
- Murphy, B.L.; Arnsten, A.F.T.; David Jentsch, J.; Roth, R.H. Dopamine and Spatial Working Memory in Rats and Monkeys: Pharmacological Reversal of Stress-Induced Impairment. J. Neurosci. 1996, 16, 7768–7775. [Google Scholar] [CrossRef]
- Bahmani, Z.; Daliri, M.R.; Merrikhi, Y.; Clark, K.; Noudoost, B. Working Memory Enhances Cortical Representations via Spatially Specific Coordination of Spike Times. Neuron 2018, 97, 967–979. [Google Scholar] [CrossRef]
- Puig, M.V.; Antzoulatos, E.G.; Miller, E.K. Prefrontal Dopamine in Associative Learning and Memory. Neuroscience 2014, 282, 217–229. [Google Scholar] [CrossRef] [PubMed]
- Kassa, J.; Koupilova, M.; Vachek, J. The Influence of Low-Level Sarin Inhalation Exposure on Spatial Memory in Rats. Pharmacol. Biochem. Behav. 2001, 70, 175–179. [Google Scholar] [CrossRef] [PubMed]
- Angrand, L.; Takillah, S.; Malissin, I.; Berriche, A.; Cervera, C.; Bel, R.; Gerard, Q.; Knoertzer, J.; Baati, R.; Kononchik, J.P.; et al. Persistent Brainwave Disruption and Cognitive Impairment Induced by Acute Sarin Surrogate Sub-Lethal Dose Exposure. Toxicology 2021, 456, 152787. [Google Scholar] [CrossRef] [PubMed]
- Oswal, D.P.; Garrett, T.L.; Morris, M.; Lucot, J.B. Low-Dose Sarin Exposure Produces Long Term Changes in Brain Neurochemistry of Mice. Neurochem. Res. 2013, 38, 108–116. [Google Scholar] [CrossRef]
- Levin, E.D.; Addy, N.; Baruah, A.; Elias, A.; Christopher, N.C.; Seidler, F.J.; Slotkin, T.A. Prenatal Chlorpyrifos Exposure in Rats Causes Persistent Behavioral Alterations. Neurotoxicol. Teratol. 2002, 24, 733–741. [Google Scholar] [CrossRef]
- Ricceri, L.; Venerosi, A.; Capone, F.; Cometa, M.F.; Lorenzini, P.; Fortuna, S.; Calamandrei, G. Developmental Neurotoxicity of Organophosphorous Pesticides: Fetal and Neonatal Exposure to Chlorpyrifos Alters Sex-Specific Behaviors at Adulthood in Mice. Toxicol. Sci. 2006, 93, 105–113. [Google Scholar] [CrossRef]
- Mohammadzadeh, L.; Hosseinzadeh, H.; Abnous, K.; Razavi, B.M. Neuroprotective Potential of Crocin against Malathion-Induced Motor Deficit and Neurochemical Alterations in Rats. Environ. Sci. Pollut. Res. Int. 2018, 25, 4904–4914. [Google Scholar] [CrossRef]
- Hawkey, A.B.; Glazer, L.; Dean, C.; Wells, C.N.; Odamah, K.A.; Slotkin, T.A.; Seidler, F.J.; Levin, E.D. Adult Exposure to Insecticides Causes Persistent Behavioral and Neurochemical Alterations in Zebrafish. Neurotoxicol. Teratol. 2020, 78, 106853. [Google Scholar] [CrossRef]
- Levin, E.D.; Chrysanthis, E.; Yacisin, K.; Linney, E. Chlorpyrifos Exposure of Developing Zebrafish: Effects on Survival and Long-Term Effects on Response Latency and Spatial Discrimination. Neurotoxicol. Teratol. 2003, 25, 51–57. [Google Scholar] [CrossRef]
- Burke, R.D.; Todd, S.W.; Lumsden, E.; Mullins, R.J.; Mamczarz, J.; Fawcett, W.P.; Gullapalli, R.P.; Randall, W.R.; Pereira, E.F.R.; Albuquerque, E.X. Developmental Neurotoxicity of the Organophosphorus Insecticide Chlorpyrifos: From Clinical Findings to Preclinical Models and Potential Mechanisms. J. Neurochem. 2017, 142, 162–177. [Google Scholar] [CrossRef]
- Levin, E.D.; Cauley, M.; Johnson, J.E.; Cooper, E.M.; Stapleton, H.M.; Ferguson, P.L.; Seidler, F.J.; Slotkin, T.A. Prenatal Dexamethasone Augments the Neurobehavioral Teratology of Chlorpyrifos: Significance for Maternal Stress and Preterm Labor. Neurotoxicol. Teratol. 2014, 41, 35–42. [Google Scholar] [CrossRef] [PubMed]
- Baldwin, K.R.; Phillips, A.L.; Horman, B.; Arambula, S.E.; Rebuli, M.E.; Stapleton, H.M.; Patisaul, H.B. Sex Specific Placental Accumulation and Behavioral Effects of Developmental Firemaster 550 Exposure in Wistar Rats. Sci. Rep. 2017, 7, 7118. [Google Scholar] [CrossRef] [PubMed]
- Beninger, R.J. The Role of Dopamine in Locomotor Activity and Learning. Brain Res. 1983, 6, 173–196. [Google Scholar] [CrossRef] [PubMed]
- Ikemoto, S. Ventral Striatal Anatomy of Locomotor Activity Induced by Cocaine, D-Amphetamine, Dopamine and D1/D2 Agonists. Neuroscience 2002, 113, 939–955. [Google Scholar] [CrossRef] [PubMed]
- Alfonso, M.; Durán, R.; Fajardo, D.; Justo, L.; Faro, L.R.F. Mechanisms of Action of Paraoxon, an Organophosphorus Pesticide, on in Vivo Dopamine Release in Conscious and Freely Moving Rats. Neurochem. Int. 2019, 124, 130–140. [Google Scholar] [CrossRef]
- Faro, L.R.F.; Fajardo, D.; Durán, R.; Alfonso, M. Characterization of Acute Intrastriatal Effects of Paraoxon on in Vivo Dopaminergic Neurotransmission Using Microdialysis in Freely Moving Rats. Toxicol. Lett. 2018, 299, 124–128. [Google Scholar] [CrossRef]
- Figueiredo, T.H.; Qashu, F.; Apland, J.P.; Aroniadou-Anderjaska, V.; Souza, A.P.; Braga, M.F.M. The GluK1 (GluR5) Kainate/α-Amino-3-Hydroxy-5-Methyl-4-Isoxazolepropionic Acid Receptor Antagonist LY293558 Reduces Soman-Induced Seizures and Neuropathology. J. Pharmacol. Exp. Ther. 2011, 336, 303–312. [Google Scholar] [CrossRef]
- Racine, R.J. Modification of Seizure Activity by Electrical Stimulation: II. Motor Seizure. Electroencephalogr. Clin. Neurophysiol. 1972, 32, 281–294. [Google Scholar] [CrossRef]
- Vito, S.; Austin, A.T.; Banks, C.N.; Inceoglu, B.; Bruun, D.A.; Zolkowska, D.; Tancredi, D.J.; Rogawski, M.A.; Hammock, B.D.; Lein, P.J. Post-Exposure Administration of Diazepam Combined with Soluble Epoxide Hydrolase Inhibition Stops Seizures and Modulates Neuroinflammation in a Murine Model of Acute TETS Intoxication. Toxicol. Appl. Pharmacol. 2014, 281, 185–194. [Google Scholar] [CrossRef]
- Deacon, R.M.J. Measuring Motor Coordination in Mice. J. Vis. Exp. 2013, 75, e2609. [Google Scholar] [CrossRef]
- Duart-Castells, L.; Nadal-Gratacós, N.; Muralter, M.; Puster, B.; Berzosa, X.; Estrada-Tejedor, R.; Niello, M.; Bhat, S.; Pubill, D.; Camarasa, J.; et al. Role of Amino Terminal Substitutions in the Pharmacological, Rewarding and Psychostimulant Profiles of Novel Synthetic Cathinones. Neuropharmacology 2021, 186, 108475. [Google Scholar] [CrossRef] [PubMed]
- Komada, M.; Takao, K.; Miyakawa, T. Elevated plus Maze for Mice. J. Vis. Exp. 2008, 22, 1088. [Google Scholar] [CrossRef]
- Can, A.; Dao, D.T.; Arad, M.; Terrillion, C.E.; Piantadosi, S.C.; Gould, T.D. The Mouse Forced Swim Test. J. Vis. Exp. 2011, 59, e3638. [Google Scholar] [CrossRef] [PubMed]
- da Cruz, J.F.O.; Gomis-Gonzalez, M.; Maldonado, R.; Marsicano, G.; Ozaita, A.; Busquets-Garcia, A. An Alternative Maze to Assess Novel Object Recognition in Mice. Bio Protoc. 2020, 10, e3651. [Google Scholar] [CrossRef]
- Bellot, M.; Espinosa-Velasco, M.; López-Arnau, R.; Escubedo, E.; Gómez-Canela, C. Characterization of Monoaminergic Neurochemicals in Cortex and Striatum of Mouse Brain. J. Pharm. Biomed. Anal. 2022, 217, 114844. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Urquizu, E.; Paratusic, S.; Goyenechea, J.; Gómez-Canela, C.; Fumàs, B.; Pubill, D.; Raldúa, D.; Camarasa, J.; Escubedo, E.; López-Arnau, R. Acute Paraoxon-Induced Neurotoxicity in a Mouse Survival Model: Oxidative Stress, Dopaminergic System Alterations and Memory Deficits. Int. J. Mol. Sci. 2024, 25, 12248. https://doi.org/10.3390/ijms252212248
Urquizu E, Paratusic S, Goyenechea J, Gómez-Canela C, Fumàs B, Pubill D, Raldúa D, Camarasa J, Escubedo E, López-Arnau R. Acute Paraoxon-Induced Neurotoxicity in a Mouse Survival Model: Oxidative Stress, Dopaminergic System Alterations and Memory Deficits. International Journal of Molecular Sciences. 2024; 25(22):12248. https://doi.org/10.3390/ijms252212248
Chicago/Turabian StyleUrquizu, Edurne, Selma Paratusic, Júlia Goyenechea, Cristian Gómez-Canela, Berta Fumàs, David Pubill, Demetrio Raldúa, Jordi Camarasa, Elena Escubedo, and Raúl López-Arnau. 2024. "Acute Paraoxon-Induced Neurotoxicity in a Mouse Survival Model: Oxidative Stress, Dopaminergic System Alterations and Memory Deficits" International Journal of Molecular Sciences 25, no. 22: 12248. https://doi.org/10.3390/ijms252212248
APA StyleUrquizu, E., Paratusic, S., Goyenechea, J., Gómez-Canela, C., Fumàs, B., Pubill, D., Raldúa, D., Camarasa, J., Escubedo, E., & López-Arnau, R. (2024). Acute Paraoxon-Induced Neurotoxicity in a Mouse Survival Model: Oxidative Stress, Dopaminergic System Alterations and Memory Deficits. International Journal of Molecular Sciences, 25(22), 12248. https://doi.org/10.3390/ijms252212248