Chemical Landscape of Adipocytes Derived from 3T3-L1 Cells Investigated by Fourier Transform Infrared and Raman Spectroscopies
Abstract
:1. Introduction
2. Results
2.1. Optical Microscopy and Staining for Adipocyte Profiling
2.2. Morphological and Chemical Description of Adipocytes by Raman and IR Markers
2.3. IRRS Spectroscopic-Based Omics
2.4. An Effect of the Fixation Agents on the Chemical Composition of the Adipocytes
3. Discussion
4. Materials and Methods
4.1. Chemicals
4.2. Cell Line
4.3. 3T3-L1 Adipogenesis
4.4. Cells Fixation
4.5. Histological and Immunofluorescence Staining and Actin Labeling
4.6. Raman and FTIR Microscopy
4.7. Raman and FTIR Data Analysis
4.8. Semiquantitative and Principal Component Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Guo, Y.; Cordes, K.R.; Farese, R.V.; Walther, T.C. Lipid Droplets at a Glance. J. Cell Sci. 2009, 122, 749–752. [Google Scholar] [CrossRef] [PubMed]
- Fujimoto, T.; Parton, R.G. Not Just Fat: The Structure and Function of the Lipid Droplet. Cold Spring Harb. Perspect. Biol. 2011, 3, a004838. [Google Scholar] [CrossRef] [PubMed]
- Liao, P.C.; Yang, E.J.; Borgman, T.; Boldogh, I.R.; Sing, C.N.; Swayne, T.C.; Pon, L.A. Touch and Go: Membrane Contact Sites Between Lipid Droplets and Other Organelles. Front. Cell Dev. Biol. 2022, 10, 852021. [Google Scholar] [CrossRef] [PubMed]
- Cruz, A.L.S.; Barreto, E.d.A.; Fazolini, N.P.B.; Viola, J.P.B.; Bozza, P.T. Lipid Droplets: Platforms with Multiple Functions in Cancer Hallmarks. Cell Death Dis. 2020, 11, 105. [Google Scholar] [CrossRef] [PubMed]
- Sanjabi, B.; Dashty, M.; Özcan, B.; Akbarkhanzadeh, V.; Rahimi, M.; Vinciguerra, M.; Van Rooij, F.; Al-Lahham, S.; Sheedfar, F.; Van Kooten, T.G.; et al. Lipid Droplets Hypertrophy: A Crucial Determining Factor in Insulin Regulation by Adipocytes. Sci. Rep. 2015, 5, 4–6. [Google Scholar] [CrossRef]
- Horii, T.; Kozawa, J.; Fujita, Y.; Kawata, S.; Ozawa, H.; Ishibashi, C.; Yoneda, S.; Nammo, T.; Miyagawa, J.I.; Eguchi, H.; et al. Lipid Droplet Accumulation in β Cells in Patients with Type 2 Diabetes Is Associated with Insulin Resistance, Hyperglycemia and β Cell Dysfunction Involving Decreased Insulin Granules. Front. Endocrinol. 2022, 13, 996716. [Google Scholar] [CrossRef]
- Xu, S.; Offermanns, S. Endothelial Lipid Droplets Drive Atherosclerosis and Arterial Hypertension. Trends Endocrinol. Metab. 2024, 35, 453–455. [Google Scholar] [CrossRef]
- Bermúdez, M.A.; Balboa, M.A.; Balsinde, J. Lipid Droplets, Phospholipase A2, Arachidonic Acid, and Atherosclerosis. Biomedicines 2021, 9, 1891. [Google Scholar] [CrossRef]
- DiDonato, D.; Brasaemle, D.L. Fixation Methods for the Study of Lipid Droplets by Immunofluorescence Microscopy. J. Histochem. Cytochem. 2003, 51, 773–780. [Google Scholar] [CrossRef]
- Melo, R.C.N.; D’Ávila, H.; Bozza, P.T.; Weller, P.F. Imaging Lipid Bodies Within Leukocytes with Different Light Microscopy Techniques. Methods Mol. Biol. 2011, 689, 149–161. [Google Scholar] [CrossRef]
- Turró, S.; Ingelmo-Torres, M.; Estanyol, J.M.; Tebar, F.; Fernández, M.A.; Albor, C.V.; Gaus, K.; Grewal, T.; Enrich, C.; Pol, A. Identification and Characterization of Associated with Lipid Droplet Protein 1: A Novel Membrane-Associated Protein That Resides on Hepatic Lipid Droplets. Traffic 2006, 7, 1254–1269. [Google Scholar] [CrossRef] [PubMed]
- Melo, R.C.N.; D’Avila, H.; Wan, H.C.; Bozza, P.T.; Dvorak, A.M.; Weller, P.F. Lipid Bodies in Inflammatory Cells: Structure, Function, and Current Imaging Techniques. J. Histochem. Cytochem. 2011, 59, 540–556. [Google Scholar] [CrossRef] [PubMed]
- Ohsaki, Y.; Maeda, T.; Fujimoto, T. Fixation and Permeabilization Protocol Is Critical for the Immunolabeling of Lipid Droplet Proteins. Histochem. Cell Biol. 2005, 124, 445–452. [Google Scholar] [CrossRef] [PubMed]
- Ahluwalia, K.; Ebright, B.; Chow, K.; Dave, P.; Mead, A.; Poblete, R.; Louie, S.G.; Asante, I. Lipidomics in Understanding Pathophysiology and Pharmacologic Effects in Inflammatory Diseases: Considerations for Drug Development. Metabolites 2022, 12, 333. [Google Scholar] [CrossRef] [PubMed]
- Liakh, I.; Sledzinski, T.; Kaska, L.; Mozolewska, P.; Mika, A. Sample Preparation Methods for Lipidomics Approaches Used in Studies of Obesity. Molecules 2020, 25, 5307. [Google Scholar] [CrossRef]
- Ulmer, C.Z.; Patterson, R.E.; Koelmel, J.P.; Garrett, T.J.; Yost, R.A. A Robust Lipidomics Workflow for Mammalian Cells, Plasma, and Tissue Using Liquid-Chromatography High-Resolution Tandem Mass Spectrometry. Methods Mol. Biol. 2017, 1609, 91–106. [Google Scholar] [CrossRef]
- Zhang, H.; Fang, J.; Dai, Y.; Pan, Y.; Chu, K.; Smith, Z.J. Rapid Intracellular Detection and Analysis of Lipid Droplets’ Morpho-Chemical Composition by Phase-Guided Raman Sampling. Anal. Chem. 2023, 95, 13555–13565. [Google Scholar] [CrossRef]
- Daemen, S.; Gemmink, A.; Paul, A.; Billecke, N.; Rieger, K.; Parekh, S.H.; Hesselink, M.K.C. Label-Free CARS Microscopy Reveals Similar Triacylglycerol Acyl Chain Length and Saturation in Myocellular Lipid Droplets of Athletes and Individuals with Type 2 Diabetes. Diabetologia 2020, 63, 2654–2664. [Google Scholar] [CrossRef]
- Di Napoli, C.; Pope, I.; Masia, F.; Langbein, W.; Watson, P.; Borri, P. Quantitative Spatiotemporal Chemical Profiling of Individual Lipid Droplets by Hyperspectral CARS Microscopy in Living Human Adipose-Derived Stem Cells. Anal. Chem. 2016, 88, 3677–3685. [Google Scholar] [CrossRef]
- Zhang, C.; Li, J.; Lan, L.; Cheng, J.-X. Quantification of Lipid Metabolism in Living Cells through the Dynamics of Lipid Droplets Measured by Stimulated Raman Scattering Imaging. Anal. Chem. 2017, 89, 4502–4507. [Google Scholar] [CrossRef]
- Takei, Y.; Hirai, R.; Fukuda, A.; Miyazaki, S.; Shimada, R.; Okamatsu-Ogura, Y.; Saito, M.; Leproux, P.; Hisatake, K.; Kano, H. Visualization of Intracellular Lipid Metabolism in Brown Adipocytes by Time-Lapse Ultra-Multiplex CARS Microspectroscopy with an Onstage Incubator. J. Chem. Phys. 2021, 155, 125102. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.Y.; Hsieh, C.M.; Chin, L.K.; Shi, Y.; Feng, S.; Zhang, J.; Ser, W. Regulation of Lipid Droplets in Live Preadipocytes Using Optical Diffraction Tomography and Raman Spectroscopy. Opt. Express 2019, 27, 22994–23008. [Google Scholar] [CrossRef]
- Ferrara, M.A.; Filograna, A.; Ranjan, R.; Corda, D.; Valente, C.; Sirleto, L. Three-Dimensional Label-Free Imaging throughout Adipocyte Differentiation by Stimulated Raman Microscopy. PLoS ONE 2019, 14, e0216811. [Google Scholar] [CrossRef] [PubMed]
- Stanek, E.; Czamara, K.; Kaczor, A. Increased Obesogenic Action of Palmitic Acid during Early Stage of Adipogenesis. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2024, 1869, 159525. [Google Scholar] [CrossRef]
- Augustyniak, K.; Lesniak, M.; Latka, H.; Golan, M.P.; Kubiak, J.Z.; Zdanowski, R.; Malek, K. Adipose-Derived Mesenchymal Stem Cells’ Adipogenesis Chemistry Analyzed by FTIR and Raman Metrics. J. Lipid Res. 2024, 65, 100573. [Google Scholar] [CrossRef]
- Aonuma, Y.; Kondo, Y.; Hirano-Iwata, A.; Nishikawa, A.; Shinohara, Y.; Iwata, H.; Kimura, Y.; Niwano, M. Label-Free and Real Time Monitoring of Adipocyte Differentiation by Surface Infrared Spectroscopy. Sens. Actuators B Chem. 2013, 176, 1176–1182. [Google Scholar] [CrossRef]
- Kim, C.Y.; Le, T.T.; Chen, C.; Cheng, J.X.; Kim, K.H. Curcumin Inhibits Adipocyte Differentiation through Modulation of Mitotic Clonal Expansion. J. Nutr. Biochem. 2011, 22, 910–920. [Google Scholar] [CrossRef]
- Shon, D.; Park, S.; Yoon, S.; Ko, Y. Identification of Biochemical Differences in White and Brown Adipocytes Using FTIR Spectroscopy. Appl. Sci. 2022, 12, 3071. [Google Scholar] [CrossRef]
- Shuster, S.O.; Burke, M.J.; Davis, C.M. Spatiotemporal Heterogeneity of De Novo Lipogenesis in Fixed and Living Single Cells. J. Phys. Chem. B 2023, 127, 2918–2926. [Google Scholar] [CrossRef]
- Augustyniak, K.; Pragnaca, A.; Lesniak, M.; Halasa, M.; Borkowska, A.; Pieta, E.; Kwiatek, W.M.; Kieda, C.; Zdanowski, R.; Malek, K. Molecular Tracking of Interactions between Progenitor and Endothelial Cells via Raman and FTIR Spectroscopy Imaging: A Proof of Concept of a New Analytical Strategy for In Vitro Research. Cell. Mol. Life Sci. 2023, 80, 329. [Google Scholar] [CrossRef]
- Ruiz-Ojeda, F.J.; Rupérez, A.I.; Gomez-Llorente, C.; Gil, A.; Aguilera, C.M. Cell Models and Their Application for Studying Adipogenic Differentiation in Relation to Obesity: A Review. Int. J. Mol. Sci. 2016, 17, 1040. [Google Scholar] [CrossRef] [PubMed]
- Benitez, G.J.; Shinoda, K. Isolation of Adipose Tissue Nuclei for Single-Cell Genomic Applications. J. Vis. Exp. 2020, 2020, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Szafraniec, E.; Wiercigroch, E.; Czamara, K.; Majzner, K.; Staniszewska-Slezak, E.; Marzec, K.M.; Malek, K.; Kaczor, A.; Baranska, M. Diversity among Endothelial Cell Lines Revealed by Raman and Fourier-Transform Infrared Spectroscopic Imaging. Analyst 2018, 143, 4323–4334. [Google Scholar] [CrossRef] [PubMed]
- Czamara, K.; Majzner, K.; Pacia, M.Z.; Kochan, K.; Kaczor, A.; Baranska, M. Raman Spectroscopy of Lipids: A Review. J. Raman Spectrosc. 2015, 46, 4–20. [Google Scholar] [CrossRef]
- Liaw, L.; Prudovsky, I.; Koza, R.A.; Anunciado-Koza, R.V.; Siviski, M.E.; Lindner, V.; Friesel, R.E.; Rosen, C.J.; Baker, P.R.S.; Simons, B.; et al. Lipid Profiling of In Vitro Cell Models of Adipogenic Differentiation: Relationships with Mouse Adipose Tissues. J. Cell. Biochem. 2016, 2193, 2182–2193. [Google Scholar] [CrossRef]
- Bik, E.; Mielniczek, N.; Jarosz, M.; Denbigh, J.; Budzynska, R.; Baranska, M.; Majzner, K. Tunicamycin Induced Endoplasmic Reticulum Changes in Endothelial Cells Investigated: In Vitro by Confocal Raman Imaging. Analyst 2019, 144, 6561–6569. [Google Scholar] [CrossRef]
- Furuhashi, M.; Saitoh, S.; Shimamoto, K.; Miura, T. Fatty Acid-Binding Protein 4 (FABP4): Pathophysiological Insights and Potent Clinical Biomarker of Metabolic and Cardiovascular Diseases. Clin. Med. Insights Cardiol. 2014, 2014, 23–33. [Google Scholar] [CrossRef]
- Blat, A.; Dybas, J.; Kaczmarska, M.; Chrabaszcz, K.; Bulat, K.; Kostogrys, R.B.; Cernescu, A.; Malek, K.; Marzec, K.M. An Analysis of Isolated and Intact Rbc Membranes—A Comparison of a Semiquantitative Approach by Means of FTIR, Nano-FTIR, and Raman Spectroscopies. Anal. Chem. 2019, 91, 9867–9874. [Google Scholar] [CrossRef]
- Blat, A.; Makowski, W.; Smenda, J.; Pięta, Ł.; Bania, M.; Zapotoczny, S.; Malek, K. Human Erythrocytes under Stress. Spectroscopic Fingerprints of Known Oxidative Mechanisms and Beyond. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2024, 313, 124142. [Google Scholar] [CrossRef]
- Yudhani, R.D.; Sari, Y.; Nugrahaningsih, D.A.A.; Sholikhah, E.N.; Rochmanti, M.; Purba, A.K.R.; Khotimah, H.; Nugrahenny, D.; Mustofa, M. In Vitro Insulin Resistance Model: A Recent Update. J. Obes. 2023, 2023, 1964732. [Google Scholar] [CrossRef]
- Mubtasim, N.; Gollahon, L. Characterizing 3T3-L1 MBX Adipocyte Cell Differentiation Maintained with Fatty Acids as an In Vitro Model to Study the Effects of Obesity. Life 2023, 13, 1712. [Google Scholar] [CrossRef] [PubMed]
- Mehlem, A.; Hagberg, C.E.; Muhl, L.; Eriksson, U.; Falkevall, A. Imaging of Neutral Lipids by Oil Red O for Analyzing the Metabolic Status in Health and Disease. Nat. Protoc. 2013, 8, 1149–1154. [Google Scholar] [CrossRef] [PubMed]
- Fukumoto, S.; Fujimoto, T. Deformation of Lipid Droplets in Fixed Samples. Histochem. Cell Biol. 2002, 118, 423–428. [Google Scholar] [CrossRef] [PubMed]
- Berger, E.; Géloën, A. FABP4 Controls Fat Mass Expandability (Adipocyte Size and Number) through Inhibition of CD36/SR-B2 Signalling. Int. J. Mol. Sci. 2023, 24, 1032. [Google Scholar] [CrossRef]
- Arisawa, K.; Ichi, I.; Yasukawa, Y.; Sone, Y.; Fujiwara, Y. Changes in the Phospholipid Fatty Acid Composition of the Lipid Droplet during the Differentiation of 3T3-L1 Adipocytes. J. Biochem. 2013, 154, 281–289. [Google Scholar] [CrossRef]
- Miehle, F.; Möller, G.; Cecil, A.; Lintelmann, J.; Wabitsch, M.; Tokarz, J.; Adamski, J.; Haid, M. Lipidomic Phenotyping Reveals Extensive Lipid Remodeling during Adipogenesis in Human Adipocytes. Metabolites 2020, 10, 217. [Google Scholar] [CrossRef]
- Subramanian, V.; Rotlienberg, A.; Gomez, C.; Cohen, A.W.; Garcia, A.; Bhattacharyya, S.; Shapiro, L.; Dolios, G.; Wang, R.; Lisanti, M.P.; et al. Perilipin A Mediates the Reversible Binding of CGI-58 to Lipid Droplets in 3T3-L1 Adipocytes. J. Biol. Chem. 2004, 279, 42062–42071. [Google Scholar] [CrossRef]
- Skinner, J.R.; Harris, L.-A.L.S.; Shew, T.M.; Abumrad, N.A.; Wolins, N.E. Perilipin 1 Moves between the Fat Droplet and the Endoplasmic Reticulum. Adipocyte 2013, 2, 80–86. [Google Scholar] [CrossRef]
- Gan, L.; Liu, Z.; Cao, W.; Zhang, Z.; Sun, C. FABP4 Reversed the Regulation of Leptin on Mitochondrial Fatty Acid Oxidation in Mice Adipocytes. Sci. Rep. 2015, 5, 13588. [Google Scholar] [CrossRef]
- Sanvictores, T.; Davis, D.D. Histology, Rough Endoplasmic Reticulum. In Treasure Island (FL); StatPearls Publishing, Cassell and Company: London, UK, 2024. [Google Scholar]
- Grzybek, M.; Palladini, A.; Alexaki, V.I.; Surma, M.A.; Simons, K.; Chavakis, T.; Klose, C.; Coskun, Ü. Comprehensive and Quantitative Analysis of White and Brown Adipose Tissue by Shotgun Lipidomics. Mol. Metab. 2019, 22, 12–20. [Google Scholar] [CrossRef]
- Qin, Y.; Jiang, W.; Li, A.; Gao, M.; Liu, H.; Gao, Y.; Tian, X.; Gong, G. The Combination of Paraformaldehyde and Glutaraldehyde Is a Potential Fixative for Mitochondria. Biomolecules 2021, 11, 711. [Google Scholar] [CrossRef] [PubMed]
- Crown, S.B.; Marze, N.; Antoniewicz, M.R. Catabolism of Branched Chain Amino Acids Contributes Significantly to Synthesis of Odd-Chain and Even-Chain Fatty Acids in 3T3-L1 Adipocytes. PLoS ONE 2015, 10, e0145850. [Google Scholar] [CrossRef] [PubMed]
- Lasch, P. CytospecTM. Berlin, Germany. Available online: https://www.cytospec.com (accessed on 22 October 2024).
- Bassan, P.; Kohler, A.; Martens, H.; Lee, J.; Byrne, H.J.; Dumas, P.; Gazi, E.; Brown, M.; Clarke, N.; Gardner, P. Resonant Mie Scattering (RMieS) Correction of Infrared Spectra from Highly Scattering Biological Samples. Analyst 2010, 135, 268–277. [Google Scholar] [CrossRef] [PubMed]
Raman Spectra | FTIR Spectra | |||
---|---|---|---|---|
Band Position [cm−1] | Biomolecules | Band Position [cm−1] | Biomolecules | |
LDs | 1070, 1451, 2855 896 1270, 1306, 1660, 3010 1099, 1129 605 1743 | FAs SFAs UFAs PLs CEs TAGs | 1465, 2852 - 3010 - 1178 1743 | FAs - UFAs - CEs TAGs |
Features of lipids | 1660/1451 - - | Unsaturation degree - - | - 2852 + 2954/1465 2852/2954 | - Total lipids Length of FA chains |
Perilipidic area | 1099, 1129 750, 1316, 1585 - - - 643, 1007 | PLs Cytochromes - - - AAs | 1240, 1340 - 1620 1680 1150, 1114, 1050 - | PLs - Intermolecular β-sheets Folded strands in proteins Sugars - |
Cytoplasm | 1257 - - | Proteins - - | 1650 1396 1080 | α-helices in proteins AAs Nucleic acids |
Nucleus | 790, 1240, 1340 1316, 1375, 1585 | Phosphates Purines (A, G) | - - | - - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Augustyniak, K.; Lesniak, M.; Golan, M.P.; Latka, H.; Wojtan, K.; Zdanowski, R.; Kubiak, J.Z.; Malek, K. Chemical Landscape of Adipocytes Derived from 3T3-L1 Cells Investigated by Fourier Transform Infrared and Raman Spectroscopies. Int. J. Mol. Sci. 2024, 25, 12274. https://doi.org/10.3390/ijms252212274
Augustyniak K, Lesniak M, Golan MP, Latka H, Wojtan K, Zdanowski R, Kubiak JZ, Malek K. Chemical Landscape of Adipocytes Derived from 3T3-L1 Cells Investigated by Fourier Transform Infrared and Raman Spectroscopies. International Journal of Molecular Sciences. 2024; 25(22):12274. https://doi.org/10.3390/ijms252212274
Chicago/Turabian StyleAugustyniak, Karolina, Monika Lesniak, Maciej P. Golan, Hubert Latka, Katarzyna Wojtan, Robert Zdanowski, Jacek Z. Kubiak, and Kamilla Malek. 2024. "Chemical Landscape of Adipocytes Derived from 3T3-L1 Cells Investigated by Fourier Transform Infrared and Raman Spectroscopies" International Journal of Molecular Sciences 25, no. 22: 12274. https://doi.org/10.3390/ijms252212274
APA StyleAugustyniak, K., Lesniak, M., Golan, M. P., Latka, H., Wojtan, K., Zdanowski, R., Kubiak, J. Z., & Malek, K. (2024). Chemical Landscape of Adipocytes Derived from 3T3-L1 Cells Investigated by Fourier Transform Infrared and Raman Spectroscopies. International Journal of Molecular Sciences, 25(22), 12274. https://doi.org/10.3390/ijms252212274