Alcohol Alters Skeletal Muscle Bioenergetic Function: A Scoping Review
Abstract
:1. Introduction
2. Results
2.1. Study Selection
2.2. ATP-Phosphocreatine (PCr) System
2.3. Glycolytic Metabolism
2.4. Mitochondrial Metabolism
3. Discussion
3.1. EtOH and the ATP-PCr System in SKM
3.2. EtOH and SKM Glycolytic Metabolism
3.2.1. Enzymatic Reactions in the Earlier Phase of Anaerobic Glycolysis
3.2.2. Enzymatic Reactions in the Later Phase of Anaerobic Glycolysis
3.3. EtOH and SKM Mitochondrial Metabolism
3.3.1. Conversion of Fuel Substrates to Acetyl-CoA
3.3.2. Tricarboxylic Acid (TCA) Cycle
3.3.3. Electron Transport Chain (ETC) and Oxidative Phosphorylation
3.3.4. Mitochondrial Morphology and Content
3.4. Limitations
4. Materials and Methods
4.1. Search Strategy
4.2. Eligibility Criteria
4.3. Exclusion Criteria
4.4. Study Selection
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- SAMHSA. Center for Behavioral Health Statistics and Quality 2023 National Survey on Drug Use and Health. Table 2.25A—Alcohol Use in Lifetime: Among People Aged 12 or Older; by Age Group and Demographic Characteristics, Numbers in Thousands, 2022 and 2023. Available online: https://www.samhsa.gov/data/report/2023-nsduh-detailed-tables (accessed on 30 September 2024).
- SAMHSA. Center for Behavioral Health Statistics and Quality 2022 National Survey on Drug Use and Health. Table 5.9A—Alcohol Use Disorder in Past Year: Among People Aged 12 or Older; by Age Group and Demographic Characteristics, Numbers in Thousands, 2021 and 2022. Available online: https://www.samhsa.gov/data/sites/default/files/reports/rpt42728/NSDUHDetailedTabs2022/NSDUHDetailedTabs2022/NSDUHDetTabsSect5pe2022.htm#tab5.9a (accessed on 20 March 2024).
- Molina, P.E.; Nelson, S. Binge Drinking’s Effects on the Body. Alcohol Res. Curr. Rev. 2018, 39, 99–109. [Google Scholar]
- Paul, J.A.; Whittington, R.A.; Baldwin, M.R. Critical Illness and the Frailty Syndrome: Mechanisms and Potential Therapeutic Targets. Anesth. Analg. 2020, 130, 1545–1555. [Google Scholar] [CrossRef]
- Simon, L.; Jolley, S.E.; Molina, P.E. Alcoholic Myopathy: Pathophysiologic Mechanisms and Clinical Implications. Alcohol Res. Curr. Rev. 2017, 38, 207–217. [Google Scholar]
- Levitt, D.E.; Luk, H.-Y.; Vingren, J.L. Alcohol, Resistance Exercise, and mTOR Pathway Signaling: An Evidence-Based Narrative Review. Biomolecules 2022, 13, 2. [Google Scholar] [CrossRef] [PubMed]
- Steiner, J.L.; Lang, C.H. Dysregulation of Skeletal Muscle Protein Metabolism by Alcohol. Am. J. Physiol. Endocrinol. Metab. 2015, 308, E699–E712. [Google Scholar] [CrossRef]
- Simon, L.; Molina, P.E. Cellular Bioenergetics: Experimental Evidence for Alcohol-Induced Adaptations. Function 2022, 3, zqac039. [Google Scholar] [CrossRef]
- Bourgeois, B.L.; Levitt, D.E.; Molina, P.E.; Simon, L. Chronic Alcohol and Skeletal Muscle. In Handbook of Substance Misuse and Addictions; Patel, V.B., Preedy, V.R., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 1–26. ISBN 978-3-030-67928-6. [Google Scholar]
- Simon, L.; Bourgeois, B.L.; Molina, P.E. Alcohol and Skeletal Muscle in Health and Disease. Alcohol Res. Curr. Rev. 2023, 43, 04. [Google Scholar] [CrossRef] [PubMed]
- Kraft, T.; Hornemann, T.; Stolz, M.; Nier, V.; Wallimann, T. Coupling of Creatine Kinase to Glycolytic Enzymes at the Sarcomeric I-Band of Skeletal Muscle: A Biochemical Study in Situ. J. Muscle Res. Cell Motil. 2000, 21, 691–703. [Google Scholar] [CrossRef]
- Shaw, C.S.; Jones, D.A.; Wagenmakers, A.J.M. Network Distribution of Mitochondria and Lipid Droplets in Human Muscle Fibres. Histochem. Cell Biol. 2008, 129, 65–72. [Google Scholar] [CrossRef]
- Romanello, V.; Sandri, M. The Connection between the Dynamic Remodeling of the Mitochondrial Network and the Regulation of Muscle Mass. Cell. Mol. Life Sci. CMLS 2021, 78, 1305–1328. [Google Scholar] [CrossRef]
- Romanello, V.; Sandri, M. Mitochondrial Quality Control and Muscle Mass Maintenance. Front. Physiol. 2015, 6, 422. [Google Scholar] [CrossRef] [PubMed]
- Crupi, A.N.; Nunnelee, J.S.; Taylor, D.J.; Thomas, A.; Vit, J.-P.; Riera, C.E.; Gottlieb, R.A.; Goodridge, H.S. Oxidative Muscles Have Better Mitochondrial Homeostasis than Glycolytic Muscles throughout Life and Maintain Mitochondrial Function during Aging. Aging 2018, 10, 3327–3352. [Google Scholar] [CrossRef]
- Fontes-Oliveira, C.C.; Steinz, M.; Schneiderat, P.; Mulder, H.; Durbeej, M. Bioenergetic Impairment in Congenital Muscular Dystrophy Type 1A and Leigh Syndrome Muscle Cells. Sci. Rep. 2017, 7, 45272. [Google Scholar] [CrossRef] [PubMed]
- Memme, J.M.; Slavin, M.; Moradi, N.; Hood, D.A. Mitochondrial Bioenergetics and Turnover during Chronic Muscle Disuse. Int. J. Mol. Sci. 2021, 22, 5179. [Google Scholar] [CrossRef] [PubMed]
- Alway, S.E.; Mohamed, J.S.; Myers, M.J. Mitochondria Initiate and Regulate Sarcopenia. Exerc. Sport Sci. Rev. 2017, 45, 58–69. [Google Scholar] [CrossRef]
- Vainshtein, A.; Sandri, M. Signaling Pathways That Control Muscle Mass. Int. J. Mol. Sci. 2020, 21, 4759. [Google Scholar] [CrossRef]
- McTernan, P.M.; Levitt, D.E.; Welsh, D.A.; Simon, L.; Siggins, R.W.; Molina, P.E. Alcohol Impairs Immunometabolism and Promotes Naïve T Cell Differentiation to Pro-Inflammatory Th1 CD4+ T Cells. Front. Immunol. 2022, 13, 839390. [Google Scholar] [CrossRef]
- Levitt, D.E.; Bourgeois, B.L.; Rodríguez-Graciani, K.M.; Molina, P.E.; Simon, L. Alcohol Impairs Bioenergetics and Differentiation Capacity of Myoblasts from Simian Immunodeficiency Virus-Infected Female Macaques. Int. J. Mol. Sci. 2024, 25, 2448. [Google Scholar] [CrossRef]
- Levitt, D.E.; Chalapati, N.; Prendergast, M.J.; Simon, L.; Molina, P.E. Ethanol-Impaired Myogenic Differentiation Is Associated With Decreased Myoblast Glycolytic Function. Alcohol. Clin. Exp. Res. 2020, 44, 2166–2176. [Google Scholar] [CrossRef]
- Kumar, A.; Davuluri, G.; Welch, N.; Kim, A.; Gangadhariah, M.; Allawy, A.; Priyadarshini, A.; McMullen, M.R.; Sandlers, Y.; Willard, B.; et al. Oxidative Stress Mediates Ethanol-Induced Skeletal Muscle Mitochondrial Dysfunction and Dysregulated Protein Synthesis and Autophagy. Free Radic. Biol. Med. 2019, 145, 284–299. [Google Scholar] [CrossRef]
- Hoek, J.B.; Cahill, A.; Pastorino, J.G. Alcohol and Mitochondria: A Dysfunctional Relationship. Gastroenterology 2002, 122, 2049–2063. [Google Scholar] [CrossRef] [PubMed]
- Rubin, E.; Katz, A.M.; Lieber, C.S.; Stein, E.P.; Puszkin, S. Muscle Damage Produced by Chronic Alcohol Consumption. Am. J. Pathol. 1976, 83, 499–516. [Google Scholar] [PubMed]
- Singh, S.S.; Kumar, A.; Welch, N.; Sekar, J.; Mishra, S.; Bellar, A.; Gangadhariah, M.; Attaway, A.; Al Khafaji, H.; Wu, X.; et al. Multiomics-Identified Intervention to Restore Ethanol-Induced Dysregulated Proteostasis and Secondary Sarcopenia in Alcoholic Liver Disease. Cell. Physiol. Biochem. Int. J. Exp. Cell. Physiol. Biochem. Pharmacol. 2021, 55, 91–116. [Google Scholar] [CrossRef]
- Trounce, I.; Byrne, E.; Dennett, X.; Santamaria, J.; Doery, J.; Peppard, R. Chronic Alcoholic Proximal Wasting: Physiological, Morphological and Biochemical Studies in Skeletal Muscle. Aust. N. Z. J. Med. 1987, 17, 413–419. [Google Scholar] [CrossRef]
- Trounce, I.; Byrne, E.; Dennett, X. Biochemical and Morphological Studies of Skeletal Muscle in Experimental Chronic Alcoholic Myopathy. Acta Neurol. Scand. 1990, 82, 386–391. [Google Scholar] [CrossRef]
- Farrar, R.P.; Martin, T.P.; Abraham, L.D.; Erickson, C.K. The Interaction of Endurance Running and Ethanol on Skeletal Muscle Mitochondria. Life Sci. 1982, 30, 67–75. [Google Scholar] [CrossRef] [PubMed]
- Cardellach, F.; Taraschi, T.F.; Ellingson, J.S.; Stubbs, C.D.; Rubin, E.; Hoek, J.B. Maintenance of Structural and Functional Characteristics of Skeletal-Muscle Mitochondria and Sarcoplasmic-Reticular Membranes after Chronic Ethanol Treatment. Biochem. J. 1991, 274 Pt 2, 565–573. [Google Scholar] [CrossRef] [PubMed]
- Cardellach, F.; Galofré, J.; Grau, J.M.; Casademont, J.; Hoek, J.B.; Rubin, E.; Urbano-Márquez, A. Oxidative Metabolism in Muscle Mitochondria from Patients with Chronic Alcoholism. Ann. Neurol. 1992, 31, 515–518. [Google Scholar] [CrossRef]
- Kiessling, K.H.; Pilström, L.; Bylund, A.C.; Piehl, K.; Saltin, B. Effects of Chronic Ethanol Abuse on Structure and Enzyme Activities of Skeletal Muscle in Man. Scand. J. Clin. Lab. Investig. 1975, 35, 601–607. [Google Scholar] [CrossRef]
- Haida, M.; Yazaki, K.; Kurita, D.; Shinohara, Y. Mitochondrial Dysfunction of Human Muscle in Chronic Alcoholism Detected by Using 31P-Magnetic Resonance Spectroscopy and near-Infrared Light Absorption. Alcohol. Clin. Exp. Res. 1998, 22, 108S–110S. [Google Scholar] [CrossRef]
- Garriga, J.; Fernández-Solá, J.; Adanero, E.; Urbano-Márquez, A.; Cussó, R. Metabolic Effects of Ethanol on Primary Cell Cultures of Rat Skeletal Muscle. Alcohol Fayettev. N 2005, 35, 75–82. [Google Scholar] [CrossRef] [PubMed]
- Cadefau, J.A.; Andrés, V.; Carreras, J.; Vernet, M.; Grau, J.M.; Urbano-Márquez, A.; Cussó, R. Glucose 1,6-Bisphosphate and Fructose 2,6-Bisphosphate in Muscle from Healthy Humans and Chronic Alcoholic Patients. Alcohol Alcohol. 1992, 27, 253–256. [Google Scholar] [PubMed]
- Beulens, J.W.J.; van Loon, L.J.C.; Kok, F.J.; Pelsers, M.; Bobbert, T.; Spranger, J.; Helander, A.; Hendriks, H.F.J. The Effect of Moderate Alcohol Consumption on Adiponectin Oligomers and Muscle Oxidative Capacity: A Human Intervention Study. Diabetologia 2007, 50, 1388–1392. [Google Scholar] [CrossRef]
- Vila, L.; Ferrando, A.; Voces, J.; Cabral de Oliveira, C.; Prieto, J.G.; Alvarez, A.I. Effect of Chronic Ethanol Ingestion and Exercise Training on Skeletal Muscle in Rat. Drug Alcohol Depend. 2001, 64, 27–33. [Google Scholar] [CrossRef]
- Tice, A.L.; Laudato, J.A.; Fadool, D.A.; Gordon, B.S.; Steiner, J.L. Acute Binge Alcohol Alters Whole Body Metabolism and the Time-Dependent Expression of Skeletal Muscle-Specific Metabolic Markers for Multiple Days in Mice. Am. J. Physiol. Endocrinol. Metab. 2022, 323, E215–E230. [Google Scholar] [CrossRef]
- Peters, T.J.; Nikolovski, S.; Raja, G.K.; Palmer, T.N.; Fournier, P.A. Ethanol Acutely Impairs Glycogen Repletion in Skeletal Muscle Following High Intensity Short Duration Exercise in the Rat. Addict. Biol. 1996, 1, 289–295. [Google Scholar] [CrossRef]
- Eisner, V.; Lenaers, G.; Hajnóczky, G. Mitochondrial Fusion Is Frequent in Skeletal Muscle and Supports Excitation-Contraction Coupling. J. Cell Biol. 2014, 205, 179–195. [Google Scholar] [CrossRef]
- Teräväinen, H.; Juntunen, J.; Eriksson, K.; Larsen, A. Myopathy Associated with Chronic Alcohol Drinking. Histological and Electrophysiological Study. Virchows Arch. A Pathol. Anat. Histol. 1978, 378, 45–53. [Google Scholar] [CrossRef] [PubMed]
- Guzmán, M.; Castro, J.; Maquedano, A. Ethanol Feeding to Rats Reversibly Decreases Hepatic Carnitine Palmitoyltransferase Activity and Increases Enzyme Sensitivity to Malonyl-CoA. Biochem. Biophys. Res. Commun. 1987, 149, 443–448. [Google Scholar] [CrossRef]
- Diao, Y.; Nie, J.; Tan, P.; Zhao, Y.; Zhao, T.; Tu, J.; Ji, H.; Cao, Y.; Wu, Z.; Liang, H.; et al. Long-Term Low-Dose Ethanol Intake Improves Healthspan and Resists High-Fat Diet-Induced Obesity in Mice. Aging 2020, 12, 13128–13146. [Google Scholar] [CrossRef]
- Ismaeel, A.; Laudato, J.A.; Fletcher, E.; Papoutsi, E.; Tice, A.; Hwa, L.S.; Miserlis, D.; Jamurtas, A.Z.; Steiner, J.; Koutakis, P. High-Fat Diet Augments the Effect of Alcohol on Skeletal Muscle Mitochondrial Dysfunction in Mice. Nutrients 2022, 14, 1016. [Google Scholar] [CrossRef]
- Levitt, D.E.; Ferguson, T.F.; Primeaux, S.D.; Zavala, J.A.; Ahmed, J.; Marshall, R.H.; Simon, L.; Molina, P.E. Skeletal Muscle Bioenergetic Health and Function in People Living with HIV: Association with Glucose Tolerance and Alcohol Use. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2021, 321, R781–R790. [Google Scholar] [CrossRef] [PubMed]
- Duplanty, A.A.; Siggins, R.W.; Allerton, T.; Simon, L.; Molina, P.E. Myoblast Mitochondrial Respiration Is Decreased in Chronic Binge Alcohol Administered Simian Immunodeficiency Virus-Infected Antiretroviral-Treated Rhesus Macaques. Physiol. Rep. 2018, 6, e13625. [Google Scholar] [CrossRef] [PubMed]
- Alleyne, J.; Dopico, A.M. Alcohol Use Disorders and Their Harmful Effects on the Contractility of Skeletal, Cardiac and Smooth Muscles. Adv. Drug Alcohol Res. 2021, 1, 10011. [Google Scholar] [CrossRef]
- Harris, R.C.; Söderlund, K.; Hultman, E. Elevation of Creatine in Resting and Exercised Muscle of Normal Subjects by Creatine Supplementation. Clin. Sci. 1992, 83, 367–374. [Google Scholar] [CrossRef]
- Cooper, R.; Naclerio, F.; Allgrove, J.; Jimenez, A. Creatine Supplementation with Specific View to Exercise/Sports Performance: An Update. J. Int. Soc. Sports Nutr. 2012, 9, 33. [Google Scholar] [CrossRef]
- Levitt, D.E.; Molina, P.E.; Simon, L. Pathophysiological Mechanisms of Alcoholic Myopathy—Lessons from Rodent Models. J. Vet. Anim. Sci. 2021, 52, 107–116. [Google Scholar] [CrossRef]
- Baker, J.S.; McCormick, M.C.; Robergs, R.A. Interaction among Skeletal Muscle Metabolic Energy Systems during Intense Exercise. J. Nutr. Metab. 2010, 2010, 905612. [Google Scholar] [CrossRef] [PubMed]
- Dos Santos, D.F.C.; Wanner, S.P.; De Paula, R.F.; Zanetti, G.O.; De Oliveira, D.C.X.; Orsatti, F.L.; Teixeira-Coelho, F. Acute Alcohol Ingestion Decreases the Work Done above the End-Test Power during a 3-Min All-out Cycling Exercise. Alcohol Alcohol. 2024, 59, agae017. [Google Scholar] [CrossRef]
- Raimann, A.; Dangl, A.; Javanmardi, A.; Greber-Platzer, S.; Egerbacher, M.; Pietschmann, P.; Haeusler, G. Elevation of Phosphate Levels Impairs Skeletal Myoblast Differentiation. Cell Tissue Res. 2020, 382, 427–432. [Google Scholar] [CrossRef]
- O’Connor, R.S.; Steeds, C.M.; Wiseman, R.W.; Pavlath, G.K. Phosphocreatine as an Energy Source for Actin Cytoskeletal Rearrangements during Myoblast Fusion. J. Physiol. 2008, 586, 2841–2853. [Google Scholar] [CrossRef] [PubMed]
- Spolarics, Z.; Bagby, G.J.; Pekala, P.H.; Dobrescu, C.; Skrepnik, N.; Spitzer, J.J. Acute Alcohol Administration Attenuates Insulin-Mediated Glucose Use by Skeletal Muscle. Am. J. Physiol.-Endocrinol. Metab. 1994, 267, E886–E891. [Google Scholar] [CrossRef] [PubMed]
- Xu, D.; Dhillon, A.S.; Davey, C.G.; Fournier, P.A.; Palmer, T.N. Alcohol and Glucose Metabolism in Skeletal Muscles in the Rat. Addict. Biol. 1996, 1, 71–83. [Google Scholar] [CrossRef] [PubMed]
- Baj, J.; Flieger, W.; Teresiński, G.; Buszewicz, G.; Sitarz, R.; Forma, A.; Karakuła, K.; Maciejewski, R. Magnesium, Calcium, Potassium, Sodium, Phosphorus, Selenium, Zinc, and Chromium Levels in Alcohol Use Disorder: A Review. J. Clin. Med. 2020, 9, 1901. [Google Scholar] [CrossRef]
- Elisaf, M.; Kalaitzidis, R. Metabolic Abnormalities in Alcoholic Patients: Focus on Acid Base and Electrolyte Disorders. J. Alcohol. Drug Depend. 2015, 3, 100185. [Google Scholar] [CrossRef]
- Lindberg, D.; Ho, A.M.C.; Peyton, L.; Choi, D. Chronic Ethanol Exposure Disrupts Lactate and Glucose Homeostasis and Induces Dysfunction of the Astrocyte–Neuron Lactate Shuttle in the Brain. Alcohol. Clin. Exp. Res. 2019, 43, 1838–1847. [Google Scholar] [CrossRef]
- Sonoo, T.; Iwai, S.; Inokuchi, R.; Gunshin, M.; Nakajima, S.; Yahagi, N. Quantitative Analysis of High Plasma Lactate Concentration in ED Patients after Alcohol Intake. Am. J. Emerg. Med. 2016, 34, 825–829. [Google Scholar] [CrossRef]
- Dezman, Z.D.W.; Comer, A.C.; Narayan, M.; Scalea, T.M.; Hirshon, J.M.; Smith, G.S. Alcohol Consumption Decreases Lactate Clearance in Acutely Injured Patients. Injury 2016, 47, 1908–1912. [Google Scholar] [CrossRef]
- Sutton, J.R.; Jones, N.L.; Toews, C.J. Effect of pH on Muscle Glycolysis during Exercise. Clin. Sci. 1981, 61, 331–338. [Google Scholar] [CrossRef]
- Shaw, A.G.; Chae, S.; Levitt, D.E.; Nicholson, J.L.; Vingren, J.L.; Hill, D.W. Effect of Previous-Day Alcohol Ingestion on Muscle Function and Performance of Severe-Intensity Exercise. Int. J. Sports Physiol. Perform. 2022, 17, 44–49. [Google Scholar] [CrossRef]
- Fernández-Solá, J.; Sacanella, E.; Estruch, R.; Nicolás, J.M.; Grau, J.M.; Urbano-Márquez, A. Significance of Type II Fiber Atrophy in Chronic Alcoholic Myopathy. J. Neurol. Sci. 1995, 130, 69–76. [Google Scholar] [CrossRef] [PubMed]
- Ritterson Lew, C.; Tolan, D.R. Targeting of Several Glycolytic Enzymes Using RNA Interference Reveals Aldolase Affects Cancer Cell Proliferation through a Non-Glycolytic Mechanism. J. Biol. Chem. 2012, 287, 42554–42563. [Google Scholar] [CrossRef]
- Merkulova, M.; Hurtado-Lorenzo, A.; Hosokawa, H.; Zhuang, Z.; Brown, D.; Ausiello, D.A.; Marshansky, V. Aldolase Directly Interacts with ARNO and Modulates Cell Morphology and Acidic Vesicle Distribution. Am. J. Physiol. Cell Physiol. 2011, 300, C1442–C1455. [Google Scholar] [CrossRef] [PubMed]
- Lee, B.-S.; Koo, K.M.; Ryu, J.; Hong, M.J.; Kim, S.H.; Kwon, S.-J.; Kim, J.-B.; Choi, J.; Ahn, J.-W. Overexpression of Fructose-1,6-Bisphosphate Aldolase 1 Enhances Accumulation of Fatty Acids in Chlamydomonas Reinhardtii. Algal Res. 2020, 47, 101825. [Google Scholar] [CrossRef]
- Gupta, V.; Bamezai, R.N.K. Human Pyruvate Kinase M2: A Multifunctional Protein. Protein Sci. 2010, 19, 2031–2044. [Google Scholar] [CrossRef]
- Tesch, P.; Sjodin, B.; Karlsson, J. Relationship between Lactate Accumulation, LDH Activity, LDH Isozyme and Fibre Type Distribution in Human Skeletal Muscle. Acta Physiol. Scand. 1978, 103, 40–46. [Google Scholar] [CrossRef]
- Hintz, C.S.; Lowry, C.V.; Kaiser, K.K.; McKee, D.; Lowry, O.H. Enzyme Levels in Individual Rat Muscle Fibers. Am. J. Physiol. 1980, 239, C58–C65. [Google Scholar] [CrossRef] [PubMed]
- Tice, A.L.; Gordon, B.S.; Fletcher, E.; McNeill, A.G.; Laskin, G.R.; Laudato, J.A.; Rossetti, M.L.; Koutakis, P.; Steiner, J.L. Effects of Chronic Alcohol Intoxication on Aerobic Exercise-Induced Adaptations in Female Mice. J. Appl. Physiol. 2024, 136, 721–738. [Google Scholar] [CrossRef]
- Deshpande, O.A.; Mohiuddin, S.S. Biochemistry, Oxidative Phosphorylation. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
- Chomentowski, P.; Coen, P.M.; Radiková, Z.; Goodpaster, B.H.; Toledo, F.G.S. Skeletal Muscle Mitochondria in Insulin Resistance: Differences in Intermyofibrillar Versus Subsarcolemmal Subpopulations and Relationship to Metabolic Flexibility. J. Clin. Endocrinol. Metab. 2011, 96, 494–503. [Google Scholar] [CrossRef]
- Galgani, J.E.; Fernández-Verdejo, R. Pathophysiological Role of Metabolic Flexibility on Metabolic Health. Obes. Rev. 2021, 22, e13131. [Google Scholar] [CrossRef]
- Stump, C.S.; Henriksen, E.J.; Wei, Y.; Sowers, J.R. The Metabolic Syndrome: Role of Skeletal Muscle Metabolism. Ann. Med. 2006, 38, 389–402. [Google Scholar] [CrossRef] [PubMed]
- Shoemaker, M.E.; Pereira, S.L.; Mustad, V.A.; Gillen, Z.M.; McKay, B.D.; Lopez-Pedrosa, J.M.; Rueda, R.; Cramer, J.T. Differences in Muscle Energy Metabolism and Metabolic Flexibility between Sarcopenic and Nonsarcopenic Older Adults. J. Cachexia Sarcopenia Muscle 2022, 13, 1224–1237. [Google Scholar] [CrossRef] [PubMed]
- Lefèvre, A.; Adler, H.; Lieber, C.S. Effect of Ethanol on Ketone Metabolism. J. Clin. Investig. 1970, 49, 1775–1782. [Google Scholar] [CrossRef]
- Long, B.; Lentz, S.; Gottlieb, M. Alcoholic Ketoacidosis: Etiologies, Evaluation, and Management. J. Emerg. Med. 2021, 61, 658–665. [Google Scholar] [CrossRef]
- Duplanty, A.A.; Simon, L.; Molina, P.E. Chronic Binge Alcohol-Induced Dysregulation of Mitochondrial-Related Genes in Skeletal Muscle of Simian Immunodeficiency Virus-Infected Rhesus Macaques at End-Stage Disease. Alcohol Alcohol. 2017, 52, 298–304. [Google Scholar] [CrossRef]
- Simon, L.; Primeaux, S.D.; Levitt, D.E.; Bourgeois, B.; Johannsen, N.M.; Peters, A.; Ahmed, J.; Marshall, R.H.; Fairchild, A.H.; Ferguson, T.F.; et al. An Aerobic Exercise Intervention to Improve Metabolic Health among People Living with HIV with At-Risk Alcohol Use: The ALIVE-Ex Research Study Protocol. AIDS Res. Ther. 2023, 20, 35. [Google Scholar] [CrossRef]
- Javadov, S.; Chapa-Dubocq, X.; Makarov, V. Different Approaches to Modeling Analysis of Mitochondrial Swelling. Mitochondrion 2018, 38, 58–70. [Google Scholar] [CrossRef]
- Chapa-Dubocq, X.R.; Rodríguez-Graciani, K.M.; García-Báez, J.; Vadovsky, A.; Bazil, J.N.; Javadov, S. The Role of Swelling in the Regulation of OPA1-Mediated Mitochondrial Function in the Heart In Vitro. Cells 2023, 12, 2017. [Google Scholar] [CrossRef]
- Jheng, H.-F.; Tsai, P.-J.; Guo, S.-M.; Kuo, L.-H.; Chang, C.-S.; Su, I.-J.; Chang, C.-R.; Tsai, Y.-S. Mitochondrial Fission Contributes to Mitochondrial Dysfunction and Insulin Resistance in Skeletal Muscle. Mol. Cell. Biol. 2012, 32, 309–319. [Google Scholar] [CrossRef]
- Wang, Y.; Nartiss, Y.; Steipe, B.; McQuibban, G.A.; Kim, P.K. ROS-Induced Mitochondrial Depolarization Initiates PARK2/PARKIN-Dependent Mitochondrial Degradation by Autophagy. Autophagy 2012, 8, 1462–1476. [Google Scholar] [CrossRef]
- Baechler, B.L.; Bloemberg, D.; Quadrilatero, J. Mitophagy Regulates Mitochondrial Network Signaling, Oxidative Stress, and Apoptosis during Myoblast Differentiation. Autophagy 2019, 15, 1606–1619. [Google Scholar] [CrossRef] [PubMed]
- Wanderoy, S.; Hees, J.T.; Klesse, R.; Edlich, F.; Harbauer, A.B. Kill One or Kill the Many: Interplay between Mitophagy and Apoptosis. Biol. Chem. 2020, 402, 73–88. [Google Scholar] [CrossRef] [PubMed]
- Larsen, S.; Nielsen, J.; Hansen, C.N.; Nielsen, L.B.; Wibrand, F.; Stride, N.; Schroder, H.D.; Boushel, R.; Helge, J.W.; Dela, F.; et al. Biomarkers of Mitochondrial Content in Skeletal Muscle of Healthy Young Human Subjects. J. Physiol. 2012, 590, 3349–3360. [Google Scholar] [CrossRef]
- Groennebaek, T.; Nielsen, J.; Jespersen, N.R.; Bøtker, H.E.; De Paoli, F.V.; Miller, B.F.; Vissing, K. Utilization of Biomarkers as Predictors of Skeletal Muscle Mitochondrial Content after Physiological Intervention and in Clinical Settings. Am. J. Physiol.-Endocrinol. Metab. 2020, 318, E886–E889. [Google Scholar] [CrossRef]
- Wu, S.; Zhou, F.; Zhang, Z.; Xing, D. Mitochondrial Oxidative Stress Causes Mitochondrial Fragmentation via Differential Modulation of Mitochondrial Fission–Fusion Proteins. FEBS J. 2011, 278, 941–954. [Google Scholar] [CrossRef]
- Agabio, R.; Pisanu, C.; Gessa, G.L.; Franconi, F. Sex Differences in Alcohol Use Disorder. Curr. Med. Chem. 2017, 24, 2661–2670. [Google Scholar] [CrossRef] [PubMed]
- Han, B.H.; Moore, A.A.; Sherman, S.; Keyes, K.M.; Palamar, J.J. Demographic Trends of Binge Alcohol Use and Alcohol Use Disorders among Older Adults in the United States, 2005–2014. Drug Alcohol Depend. 2017, 170, 198–207. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
Inclusion criteria |
|
Exclusion criteria |
|
Study | Model | Study Design | Outcome Measures | Main Findings |
---|---|---|---|---|
Assessments in muscle precursor cells | ||||
Garriga et al., 2005 [34] | M Sprague—Dawley rats (age 8–12 wks)-Myoblasts isolated from hind limb SKM | EtOH: myotubes cultured with 10, 25, or 100 mM EtOH for 6 or 48 h CON: myotubes cultured with 0 mM EtOH, time-matched | [PCr] | 10 mM EtOH: 6 h: ↔ [PCr] 48 h: ↑ [PCr] vs. CON 25 mM EtOH: 6 h: ↔ [PCr] 48 h: ↔ [PCr] 100 mM EtOH: 6 h: ↔ [PCr] 48 h: ↔ [PCr] |
Assessments in whole SKM | ||||
Haida et al., 1998 [33] | Adult M humans—left forearm flexor | Forearm curling a 2 kg weight every 3 s for up to 6 min EtOH delayed (N = 3): Patients with AUD, no abstinence, aged 60 ± 2 y EtOH non-delayed (N = 3): Patients with AUD abstained for 1 + months, aged 52 ± 2 y CON (N = 5): Healthy, no habitual EtOH intake, aged 31 ± 1 y | PCr index (PCr/[PCr + Pi]) using 31P-MRS at baseline (3 min), during exercise (6 min), and during recovery (16 min) | EtOH: ↔ PCr at rest vs. CON EtOH-delayed: ↓ PCr during exercise vs. CON ↔ PCr index recovery |
Kiessling et al., 1975 [32] | Adult M humans—VL | EtOH (N = 11): Patients with AUD, aged 42 ± 3 y CON (N = 10): Aged 54 ± 2 y | [PCr] | EtOH: ↑ [PCr] vs. CON |
Study | Model | Study Design | Outcome Measures | Main Findings |
---|---|---|---|---|
Assessments in muscle precursor cells | ||||
Garriga et al., 2005 [34] | M Sprague–Dawley rats (8–12 wks)—Myoblasts isolated from hind limb SKM, differentiated into myotubes | Myotubes cultured with 0 (CON) 10, 25, or 100 mM EtOH for 6 or 48 h | -Metabolites ([Glu], [G-6-P], [G-1-P], [Glu 1,6-P2], [F-6-P], [F-1,6-P2], [F-2,6-P2], [pyruvate], [lactate], and [ATP]) -Glycolytic enzyme activity (GS, GP, HK, PFK, and PK) | 10 mM EtOH: 6 h: ↑ [F-2,6-P2] vs. CON, ↓ [F-1,6-P2], [pyruvate], [lactate] vs. CON 48 h: ↑ [G-6-P], [G-1-P], [F-6-P] vs. CON; ↓ [F-2,6-P2] vs. CON 25 mM EtOH: 6 h: ↑ [F-2,6-P2], ↓ [F-6-P], [F-1,6-P2], [pyruvate], [lactate] vs. CON 48 h: ↑ [G-6-P], [G-1-P], [F-6-P] vs. CON; ↓ [F-2,6-P2] vs. CON 100 mM EtOH: 6 h: ↓ [F-6-P], [F-1,6-P2] vs. CON 48 h: ↑ [G-1-P] vs. CON EtOH ↔ glycolytic enzyme activity |
Kumar et al., 2019 [23] | C2C12 myotubes | Myotubes cultured with 0 (CON) 100 mM EtOH for 3, 6, or 24 h | -Transcriptomics -Proteomics | EtOH ↓ glycolysis pathway enrichment in transcriptome; overall ↑ glycolytic proteins, ↓ pyruvate vs. CON |
Levitt et al., 2020 [22] | M and F (N = 5 each) Rhesus Macaques (4–9 y.)—Myoblasts from VL | Myoblasts cultured in 0 (CON) or 50 mM EtOH for 3 d Myotubes cultured in 0 (CON) or 50 mM EtOH for 5 d | Myoblasts: ECAR Myoblasts and myotubes: Glycolytic gene expression | EtOH ↓ ECAR; ↔ glycolytic gene expression |
Assessments in whole SKM or SKM fibers | ||||
Cadefau et al., 1992 [35] | M humans (adult)—non-dominant deltoid muscle | EtOH (N = NL): >100 g EtOH/d for ≥2 y, separated by myopathy (none, mild, or moderate), age NL CON (N = 5): <20 g EtOH/d, aged 29–55 y | -[G-1,6-P2], [F-2,6-P2] -PFK activity | EtOH (no and mild myopathy): ↑ [G-1,6-P2] vs. CON EtOH (moderate myopathy): ↓ [F-2,6-P2] vs. all other groups EtOH ↔ PFK activity |
Haida et al., 1998 [33] | M humans (adult)—forearm flexors | Acute exercise: forearm curling a 2 kg weight every 3 s for up to 6 min EtOH delayed (N = 3): Patients with AUD, no abstinence, aged 60 ± 2 y EtOH non-delayed (N = 3): Patients with AUD, abstained for 1+ mos, aged 52 ± 2 y Con (N = 5): Healthy non-drinkers aged 31 ± 1 y | Intracellular pH changes | EtOH delayed: greater ↓ in pH during exercise, slower pH recovery vs. EtOH non-delayed and CON |
Kiessling et al., 1975 [32] | M humans (adult)—VL | EtOH (N = 11): Hospitalized for AUD, aged 42 ± 3 y CON (N = 10): No history of EtOH misuse, aged 54 ± 2 y | Enzyme activity (GAPDH, LDH) | EtOH ↓ GAPDH, LDH activity vs. CON |
Kumar et al., 2019 [23] | F C57BL/6 mice (8–10 wk), GAS | EtOH: 0% EtOH for 2d, 5.5% energy as EtOH for 2d, 32% energy as EtOH for 2d CON: Pair fed, time-matched | [Pyruvate] | EtOH ↓ [pyruvate] |
Peters et al., 1996 [39] | M Wistar rats (adult)—TA, GAS, and soleus | 3-min weighted (9% body mass) swim, EtOH or CON injection, 30-min post-exercise recovery, then SKM collected EtOH (N = 4): IP injection (50% EtOH; 75 mmol/kg) immediately post-exercise CON (N = 4): Isovolumetric IP injection (0.15 mol/L NaCl) immediately post-exercise | Metabolites ([Glycogen], [Lactate], [Glu], [G-6-P]) | EtOH ↓ post-exercise glycogen resynthesis in TA vs. CON EtOH ↓ post-exercise lactate clearance in white GAS and soleus vs. CON EtOH ↔ post-exercise decrease in [G-6-P] |
Tice et al., 2022 [38] | F C57BL6/Hsd mice (15 wks)—GAS | Baseline (N = 3): No EtOH EtOH (N = 18): EtOH IP (5 g/kg) CON (N = 18): Isovolumetric saline IP SKM collected every 4 h from 3 EtOH and 3 CON for 48 h | Glycolytic genes: Hk2, Pfkm | EtOH: ↓ Pkfm (24–48 h) vs. CON |
Trounce et al., 1987 [27] | M and F humans (35–68 y.)—VL | AUD/Wasting (N = 7 M): AUD > 5 y; evidence of SKM wasting AUD (N = 3 M): AUD > 5 y.; no evidence of SKM wasting CON (N = 7 M, 3F): No AUD; no evidence of SKM wasting | Glycolytic enzyme activity (PH, HK, PGI, PFK, ALD, TIM, GAPDH, PGK, PGM, ENOL, PK, LDH) | AUD/wasting ↓ activities of all glycolytic enzymes vs. CON |
Trounce et al., 1990 [28] | M Sprague-Dawley rats (Age NL)—VL | EtOH (N = 12): Increased to 25% EtOH/day in water over 4 wks, remained at 25% for up to 10 wks CON (N = 4): 0 g EtOH for 10 wks | -Glycolytic and glycogenolytic enzyme activity (PG, PH, HK, PGI, PFK, ALD, TIM, GDH, PGK, PGM, ENOL, PK, LDH) | EtOH: ↓ PG, ALD, PK, and LDH, activity vs. CON |
Vila et al., 2001 [37] | M Wistar rats (Age NL)—Hind limb 36–40 h after final exercise bout | EtOH/Exercise (N = 10): 15% EtOH in drinking water; treadmill running (20–24 m/min, 0–15% grade, 30–60 min/d, 4 d/wk) for 12 wks Exercise (N = 10): No EtOH, same exercise program as above EtOH (N = 10): 15% EtOH in drinking water, no exercise, time-matched CON (N = 10): No EtOH, no exercise, time-matched | Glycolytic enzyme activity (HK, PK, LDH) | EtOH/exercise: ↑ HK activity (red and white GAS, soleus) vs. all other groups; ↓ PK activity (plantaris) vs. CON and EtOH EtOH: ↑ PK and LDH activity (white GAS) vs. CON |
Study | Model | Study Design | Outcome Measures | Main Findings |
---|---|---|---|---|
Assessments in muscle precursor cells | ||||
Kumar et al., 2019 [23] | C2C12 myotubes | Myotubes cultured with 0 (CON) 100 mM EtOH for 3, 6, or 24 h | -Transcriptomics -Proteomics -NAD+/NADH -[ATP] -Metabolites -Mito content (CS and VDAC protein expression, CS activity) -High-resolution respirometry | -Transcriptome: EtOH ↑ TCA cycle (6 and 24 h) and Ox Phos (24 h) pathway enrichment -Proteome: EtOH differentially expressed proteins in TCA cycle and PDH complex (6 h); ↓ ETC components (6 h) -EtOH ↓ NAD+/NADH; [ATP]; ETC intermediates; OCR with complex I and II substrates; complex I, II, and IV function; max OCR |
Levitt et al., 2020 [22] | M and F (N = 5 each) Rhesus Macaques (4–9 y.)—Myoblasts from VL | Myoblasts cultured in 0 (CON) or 50 mM EtOH for 3 d Myotubes differentiated in 0 (CON) or 50 mM EtOH for 5 d | Myoblasts: OCR (Mito Stress Test) Myoblasts and myotubes: mtDNA (DLOOP:B2M) | EtOH: ↑ max OCR, baseline and post-oligomycin OCR:ECAR ratio vs. CON |
Assessments in mitochondria isolated from SKM | ||||
Cardellach F, Taraschi T, et al., 1991 [30] | M Sprague-Dawley rats (age NL)—Mito isolated from hindlimb SKM | EtOH (N = 6): 36% energy as EtOH (12.3 ± 0.2 g EtOH/kg/d), 35–75 d CON (N = 6): Pair-fed with carbohydrate, time-matched Subset of mito treated with 0, 50, and 100 mM EtOH in vitro for mito morphology assessment | -O2 flux -ETC activity -Mito proteins (ETC complexes, cytochromes) -Mito morphology | EtOH ↓ state III respiration, ATP synthesis capacity EtOH in vitro ↑ mito membrane disordering, dose-dependent |
Cardellach F, Galofre, J et al., 1992 [31] | M humans (adult)—Mito isolated from VL | EtOH (N = 30): AUD for 19 ± 1.3 y, >150 g EtOH/d, aged 39.5 ± 1.6 y CON (N = 10): No AUD, healthy, aged 47.2 ± 6.1 y | -O2 flux -ETC complex and cytochrome protein expression | EtOH ↔ ETC complex and cytochrome protein expression ↔ correlation between lifetime EtOH intake and O2 flux |
Eisner et al., 2014 [40] | M Sprague Dawley rats (adult)—Mito isolated from flexor digitorum brevis and TA | EtOH (N = 30): 36% energy as EtOH, 6–11 mos CON (N = 34): pair fed, time-matched | -Fusion protein expression -Mito Ca2+ uptake -Mito membrane potential | EtOH ↓ mito membrane potential, Mfn1, Ca2+ uptake |
Farrar et al., 1982 [29] | M Sprague-Dawley rats (Age NL)—Mito isolated from GAS and plantaris | EtOH/SED (N = 10): 35% energy as EtOH for 8 wk, sedentary CON/SED (N = 10): Pair-fed, time-matched, sedentary EtOH/TR (N = 10): 35% energy as EtOH, treadmill running (20–30 m/min, 20–90 min, 5 d/wk, 8 wks) CON/TR (N = 10): Pair-fed, treadmill running as described above | -O2 flux -Mito proteins (cytochromes aa3, b, c + c1) | EtOH/SED ↓ mito content and aa3, b, c + c1 vs. all other groups; ↓ state III respiration vs. CON/SED EtOH/TR and CON/TR ↑ respiratory capacity, aa3, b, c + c1, vs. both SED groups |
Trounce et. al, 1990 [28] | M Sprague Dawley rats (age NL)—Mito isolated from hindlimb SKM | EtOH (N = 12): 15.3 g EtOH/d for up to 10 wks CON (N = 4): 0 g EtOH for 10 wks | -Mito respiration -Mito proteins (cytochromes aa3, b, c + c1) | EtOH: ↓ glutamate-supported state III respiration vs. CON |
Assessments in whole SKM or SKM fibers | ||||
Beulens et al., 2007 [36] | Adult M, Humans (18–40 y.)—VL | Randomized, crossover trial (N = 19), 2 d washout, diet controlled for last 7 d of each experimental period, biopsies at the end of each experimental period EtOH: 100 mL whiskey (32 g EtOH)/d for 4 wks CON: 100 mL mineral water/d for 4 wks | Enzyme activity (HAD, COX, CS, SDH) | EtOH: ↓ SDH activity vs. CON |
Diao et al., 2020 [43] | M C57BL/6J mice (age NL)—GAS | EtOH (N = 60): 3.5% v/v in drinking water wk 8 to end of life (low-dose, long term) CON (N = 60): free access to food/water for 12 wks | -mtDNA content -OCR | EtOH ↑ mtDNA; basal, maximal, and ATP-linked OCR |
Eisner et al., 2014 [40] | M Sprague Dawley rats (adult)—flexor digitorum brevis | EtOH (N = 30): 36% energy as EtOH, 6–11 mos CON (N = 34): pair fed, time-matched | Mito fusion | EtOH ↓ mito fusion |
Farrar et al., 1982 [29] | M Sprague-Dawley rats (age NL)—GAS and plantaris | EtOH/SED (N = 10): 35% energy as EtOH for 8 wk, sedentary CON/SED (N = 10): Pair-fed, time-matched, sedentary EtOH/TR (N = 10): 35% energy as EtOH, treadmill running (20–30 m/min, 20–90 min, 5 d/wk, 8 wks) CON/TR (N = 10): Pair-fed, treadmill running as described above | Mito content (SS and IMF) assessed via EM | EtOH/SED ↓ mito content (SS and IMF) |
Guzmán et al., 1987 [42] | M Wistar rats (age NL)—hindlimb SKM | EtOH: 36% energy as EtOH, 30 d CON: Pair-fed, time-matched | Cpt1 activity, IC50 for malonyl-CoA | EtOH ↔ Cpt1 activity, IC50 for malonyl-CoA |
Ismaeel et al., 2022 [44] | M and F mice (10–12 wk)—GAS | EtOH/HF: High fat diet, increase EtOH over 18 d; 32% energy for remaining 24 d EtOH/LF: Low fat diet, 32% energy as EtOH CON/HF: Pair-fed HF | -ETC complex activity (I and III) -Protein expression (UQCRC2, MTCO1, SDHB, NDUFB8) | EtOH/HF: ↓ Complex I and III activity vs. CON/HF EtOH ↔ Protein expression |
Kiessling et al., 1975 [32] | M humans (adult)—VL | EtOH (N = 11): Hospitalized for AUD, aged 42 ± 3 y CON (N = 10): No history of alcohol misuse, aged 54 ± 2 y | -Mito morphology assessed via EM -COX activity -[ATP] -Histochemistry (ATP, NAD diaphorase) | EtOH ↓ mito volume |
Kumar, et al., 2019 [23] | F C57BL/6 mice (8–10 wk)—GAS | EtOH: 0% energy as EtOH for 2d, 5.5% energy as EtOH for 2d, 32% energy as EtOH for 2d CON: Pair fed, time-matched | -[ATP] -Mito content (CS and VDAC protein expression, CS activity) -Mito metabolites -High-resolution respirometry | -EtOH ↓ ATP content; αKG; OCR with complex II substrate; complex I, II, and IV function |
Rubin et al., 1976 [25] | M and F humans (21–38 y.)—Deltoid, GAS, and quadriceps | Cycle ergometer exercise 2×/d throughout study period. EtOH (N = 3): AUD, 10 d no EtOH, then 26–42% energy as EtOH (225–260 g/d) for 4 wks CON (N = 5): No history of AUD, 5 d no EtOH, then 26–42% energy as EtOH (225–260 g/d) for 4 wks | Mito morphology | EtOH: mito irregular, enlarged, and misshapen |
TerÄvÄin et al., 1978 [41] | M Sprague Dawley rats (2.5 mos.)—EDL and TA | EtOH (N = 14): 10–14% energy from EtOH for 2 mos, 15–20% for next 4 mos, 25% last 3.5 mos CON (N = 8): 0 g EtOH, pair-fed SKM collected at 4 time points (2.5–9.5 mos) | -NADH diaphorase activity for mito distribution | EtOH (9.5 mos) ↑ abnormal mito distribution |
Tice et al., 2022 [38] | F 57BL6/Hsd mice (15 wks)-GAS | Baseline (N = 3): No EtOH EtOH (N = 18): EtOH IP (5 g/kg) CON (N = 18): Isovolumetric saline IP SKM collected every 4 h from 3 EtOH and 3 CON for 48 h | -NAD+/NADH -mRNA expression (Nampt, Nadsyn1, Bdh1, Oxct1, Cd36, Hadh, Fasn, Ppard, Ppara, Pdk4) -Pdk4 protein | EtOH: ↑NAD+/NADH, (16–20 h), Nampt (4–48 h), Nadsyn1 (4–24 h), Bdh1 (4–48 h), Oxct1 (36 h), Cd36 (4–48 h), Ppard (4–36 h), Ppara (4–8 h), ↑ Pdk4 (8–20 h) and Pdk4 protein vs. CON; ↓ Fasn (4–48 h) and Ppara (32 h) vs. CON |
Trounce 1987 [27] | M and F humans (35–68 y.)—VL | AUD/Wasting (N = 7 M): AUD > 5 y; evidence of SKM wasting AUD (N = 3 M): AUD > 5 y.; no evidence of SKM wasting CON (N = 7 M, 3F): No AUD; no evidence of SKM wasting | -Mito enzyme activity (SDH, NADH-tetrazolium reductase, ICDH, cytochrome oxidase) -[Carnitine] | AUD ± wasting ↔ mito enzyme activity and [carnitine] vs. CON |
Vila et al., 2001 [37] | M Wistar rats (Age NL)—Hind limb, 36–40 h after final exercise bout | EtOH/Exercise (N = 10): 15% EtOH in drinking water; treadmill running (20–24 m/min, 0–15% grade, 30–60 min/d, 4 d/wk) for 12 wks Exercise (N = 10): No EtOH, same exercise program as above EtOH (N = 10): 15% EtOH in drinking water, no exercise, time-matched CON (N = 10): No EtOH, no exercise, time-matched | Enzyme activity (HAD, CS) | EtOH/exercise: ↑ HAD activity in plantaris muscle vs. CON and EtOH groups EtOH: ↑ CS activity in plantaris vs. CON |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
DiLeo, M.R.; Hall, R.E.; Vellers, H.L.; Daniels, C.L.; Levitt, D.E. Alcohol Alters Skeletal Muscle Bioenergetic Function: A Scoping Review. Int. J. Mol. Sci. 2024, 25, 12280. https://doi.org/10.3390/ijms252212280
DiLeo MR, Hall RE, Vellers HL, Daniels CL, Levitt DE. Alcohol Alters Skeletal Muscle Bioenergetic Function: A Scoping Review. International Journal of Molecular Sciences. 2024; 25(22):12280. https://doi.org/10.3390/ijms252212280
Chicago/Turabian StyleDiLeo, Matthew R., Rylea E. Hall, Heather L. Vellers, Chelsea L. Daniels, and Danielle E. Levitt. 2024. "Alcohol Alters Skeletal Muscle Bioenergetic Function: A Scoping Review" International Journal of Molecular Sciences 25, no. 22: 12280. https://doi.org/10.3390/ijms252212280
APA StyleDiLeo, M. R., Hall, R. E., Vellers, H. L., Daniels, C. L., & Levitt, D. E. (2024). Alcohol Alters Skeletal Muscle Bioenergetic Function: A Scoping Review. International Journal of Molecular Sciences, 25(22), 12280. https://doi.org/10.3390/ijms252212280