4-Hexylresorcinol Enhances Glut4 Expression and Glucose Homeostasis via AMPK Activation and Histone H3 Acetylation
Abstract
:1. Introduction
2. Results
2.1. The Administration of 4HR Increases Glut4 Expression via Ac-H3 and p-AMPK Mediated Pathway
2.2. The Effect of a Single 4HR Injection on Blood Glucose Level
2.3. The Effect of Regular Drug Injection on Body Weight
3. Discussion
4. Materials and Methods
4.1. Antibodies and Reagents
4.2. Cell Cultures
4.3. Western Blot Analysis
4.4. Glucose Uptake Assay
4.5. Glyceraldehyde 3-Phosphate Dehydrogenase (GAPDH) Activity Assay
4.6. Animal Experiments
4.6.1. Single Injection Effect
4.6.2. Effects of Periodic 4HR Administration on Diabetic and Healthy Rat Models
4.7. Histological Analysis
4.8. Immunohistochemistry
4.9. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- GBD 2021 Diabetes Collaborators. Global, regional, and national burden of diabetes from 1990 to 2021, with projections of prevalence to 2050: A systematic analysis for the Global Burden of Disease Study (2021). Lancet 2023, 402, 203–234. [Google Scholar] [CrossRef] [PubMed]
- Leslie, R.D. Type 1 diabetes: Heterogeneity in heritability. Lancet Diabetes Endocrinol. 2024, 12, 287–289. [Google Scholar] [CrossRef] [PubMed]
- Chan, J.C.N.; Lim, L.L.; Wareham, N.J.; Shaw, J.E.; Orchard, T.J.; Zhang, P.; Lau, E.S.H.; Eliasson, B.; Kong, A.P.S.; Ezzati, M.; et al. The Lancet Commission on diabetes: Using data to transform diabetes care and patient lives. Lancet 2021, 396, 2019–2082. [Google Scholar] [CrossRef] [PubMed]
- Melendez-Ramirez, L.Y.; Richards, R.J.; Cefalu, W.T. Complications of type 1 diabetes. Endocrinol. Metab. Clin. N. Am. 2010, 39, 625–640. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Miao, C.; Wang, Y.; He, J. The long-term effect of bariatric/metabolic surgery versus pharmacologic therapy in type 2 diabetes mellitus patients: A systematic review and meta-analysis. Diabetes Metab. Res. Rev. 2024, 40, e3830. [Google Scholar] [CrossRef]
- Furman, B.L. Streptozotocin-Induced Diabetic Models in Mice and Rats. Curr. Protoc. Pharmacol. 2015, 70, 5.47.1–5.47.20. [Google Scholar] [CrossRef]
- Yang, C.; Zhang, M.; Li, Y.; Wang, Y.; Mao, W.; Gao, Y.; Xu, H. Streptozotocin Aggravated Osteopathology and Insulin Induced Osteogenesis Through Co-treatment with Fluoride. Biol. Trace Elem. Res. 2015, 168, 453–461. [Google Scholar] [CrossRef]
- Xie, S.Y.; Liu, S.Q.; Zhang, T.; Shi, W.K.; Xing, Y.; Fang, W.X.; Zhang, M.; Chen, M.Y.; Xu, S.C.; Fan, M.Q.; et al. USP28 Serves as a Key Suppressor of Mitochondrial Morphofunctional Defects and Cardiac Dysfunction in the Diabetic Heart. Circulation 2024, 149, 684–706. [Google Scholar] [CrossRef]
- Cho, Y.E.; Basu, A.; Dai, A.; Heldak, M.; Makino, A. Coronary endothelial dysfunction and mitochondrial reactive oxygen species in type 2 diabetic mice. Am. J. Physiol. Cell Physiol. 2013, 305, C1033–C1040. [Google Scholar] [CrossRef]
- Zhang, X.; Wu, X.; Hu, Q.; Wu, J.; Wang, G.; Hong, Z.; Ren, J.; Lab for Trauma and Surgical Infections. Mitochondrial DNA in liver inflammation and oxidative stress. Life Sci. 2019, 236, 116464. [Google Scholar] [CrossRef]
- Magalhaes, D.A.; Kume, W.T.; Correia, F.S.; Queiroz, T.S.; Allebrandt Neto, E.W.; Santos, M.P.D.; Kawashita, N.H.; Franca, S.A. High-fat diet and streptozotocin in the induction of type 2 diabetes mellitus: A new proposal. An. Acad. Bras. Cienc. 2019, 91, e20180314. [Google Scholar] [CrossRef] [PubMed]
- Ma, T.; Huang, X.; Zheng, H.; Huang, G.; Li, W.; Liu, X.; Liang, J.; Cao, Y.; Hu, Y.; Huang, Y. SFRP2 Improves Mitochondrial Dynamics and Mitochondrial Biogenesis, Oxidative Stress, and Apoptosis in Diabetic Cardiomyopathy. Oxid. Med. Cell Longev. 2021, 2021, 9265016. [Google Scholar] [CrossRef]
- Han, Y.C.; Tang, S.Q.; Liu, Y.T.; Li, A.M.; Zhan, M.; Yang, M.; Song, N.; Zhang, W.; Wu, X.Q.; Peng, C.H.; et al. AMPK agonist alleviate renal tubulointerstitial fibrosis via activating mitophagy in high fat and streptozotocin induced diabetic mice. Cell Death Dis. 2021, 12, 925. [Google Scholar] [CrossRef]
- Herzig, S.; Shaw, R.J. AMPK: Guardian of metabolism and mitochondrial homeostasis. Nat. Rev. Mol. Cell Biol. 2018, 19, 121–135. [Google Scholar] [CrossRef]
- Lee, H.A.; Lee, E.; Do, G.Y.; Moon, E.K.; Quan, F.S.; Kim, I. Histone deacetylase inhibitor MGCD0103 protects the pancreas from streptozotocin-induced oxidative stress and β-cell death. Biomed. Pharmacother. 2019, 109, 921–929. [Google Scholar] [CrossRef] [PubMed]
- Kahraman, S.; Aydin, C.; Elpek, G.O.; Dirice, E.; Sanlioglu, A.D. Diabetes-resistant NOR mice are more severely affected by streptozotocin compared to the diabetes-prone NOD mice: Correlations with liver and kidney GLUT2 expressions. J. Diabetes Res. 2015, 2015, 450128. [Google Scholar] [CrossRef] [PubMed]
- Steinberg, G.R.; Hardie, D.G. New insights into activation and function of the AMPK. Nat. Rev. Mol. Cell Biol. 2023, 24, 255–272. [Google Scholar] [CrossRef]
- Tanaka, T.; Mizuno, T.; Nakagawa, T.; Hayakawa, T.; Shimada, M. Effects of H3 and H4 histones acetylation and bindings of CREB binding protein and p300 at the promoter on hepatic expression of gamma-glutamyltransferase gene in a streptozotocin-induced moderate hypoinsulinemic rat model. Physiol. Res. 2021, 70, 475–480. [Google Scholar] [CrossRef]
- Khan, S.; Jena, G.B. Protective role of sodium butyrate, a HDAC inhibitor on beta-cell proliferation, function and glucose homeostasis through modulation of p38/ERK MAPK and apoptotic pathways: Study in juvenile diabetic rat. Chem. Biol. Interact. 2014, 213, 1–12. [Google Scholar] [CrossRef]
- Raichur, S.; Teh, S.H.; Ohwaki, K.; Gaur, V.; Long, Y.C.; Hargreaves, M.; McGee, S.L.; Kusunoki, J. Histone deacetylase 5 regulates glucose uptake and insulin action in muscle cells. J. Mol. Endocrinol. 2012, 49, 203–211. [Google Scholar] [CrossRef]
- Kim, S.G. 4-Hexylresorcinol: Pharmacologic chaperone and its application for wound healing. Maxillofac. Plast. Reconstr. Surg. 2022, 44, 5. [Google Scholar] [CrossRef] [PubMed]
- IuF, K.; Noks, P.P.; Loiko, N.G.; Abdulnasyrov, E.G.; Korotina, O.A.; Stepanov, S.A.; Zakharova, N.I.; IuA, N.; El’-Registan, G.I.; Rubin, A.B. Effect of chemical chaperones on properties of lysozyme and the reaction center protein from Rhodobacter sphaeroides. Biofizika 2011, 56, 13–30. [Google Scholar]
- Kang, Y.J.; Yang, W.G.; Chae, W.S.; Kim, D.W.; Kim, S.G.; Rotaru, H. Administration of 4-hexylresorcinol increases p53-mediated transcriptional activity in oral cancer cells with the p53 mutation. Oncol. Rep. 2022, 48, 160. [Google Scholar] [CrossRef] [PubMed]
- Tanizawa, H.; Terada, M.; Watanabe, Y. Experimental studies on anthelmintics (XXVI). Biochemical and pharmacological studies of 4-iodothymol on Ascaris lumbricoides suum. Nihon Yakurigaku Zasshi 1976, 72, 493–499. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.G. 4-Hexylresorcinol as Histone Deacetylase Inhibitor. In Biomedical Application of 4-Hexylresorcinol; Kim, S.G., Ed.; Springer: Berlin/Heidelberg, Germany, 2024; pp. 71–89. [Google Scholar]
- Song, S.; Liu, Q.; Chai, W.M.; Xia, S.S.; Yu, Z.Y.; Wei, Q.M. Inhibitory potential of 4-hexylresorcinol against alpha-glucosidase and non-enzymatic glycation: Activity and mechanism. J. Biosci. Bioeng. 2021, 131, 241–249. [Google Scholar] [CrossRef]
- Jeong, H.; Kim, J.Y.; Che, X.; Choi, J.Y.; Jang, I.; Kim, S.G. Effects of 4-hexylresorcinol on facial skeletal development in growing rats: Considerations for diabetes. Korean J. Orthod. 2023, 53, 393–401. [Google Scholar] [CrossRef]
- Gaida, D.; Park, Y.W.; Kim, S.G. 4-Hexylresorcinol and Its Effects on Circumvallate Papillae Taste Buds in Diabetic and Healthy Rats: An Initial Investigation. Appl. Sci. 2023, 13, 11617. [Google Scholar] [CrossRef]
- Oh, J.H.; Choi, J.Y.; Kim, D.W.; Kim, S.G.; Garagiola, U. Therapeutic Potential of 4-Hexylresorcinol in Preserving Testicular Function in Streptozotocin-Induced Diabetic Rats. Int. J. Mol. Sci. 2024, 25, 4316. [Google Scholar] [CrossRef]
- Wu, H.; Gabriel, T.A.; Burney, W.A.; Chambers, C.J.; Pan, A.; Sivamani, R.K. Prospective, randomized, double-blind clinical study of split-body comparison of topical hydroquinone and hexylresorcinol for skin pigment appearance. Arch. Dermatol. Res. 2023, 315, 1207–1214. [Google Scholar] [CrossRef]
- Kim, S.G. 4-Hexylresorcinol: Antiseptic, Cosmetics, and Food Industry. In Biomedical Application of 4-Hexylresorcinol; Kim, S.G., Ed.; Springer: Berlin/Heidelberg, Germany, 2024; pp. 11–25. [Google Scholar]
- Morokutti-Kurz, M.; Graf, C.; Prieschl-Grassauer, E. Amylmetacresol/2,4-dichlorobenzyl alcohol, hexylresorcinol, or carrageenan lozenges as active treatments for sore throat. Int. J. Gen. Med. 2017, 10, 53–60. [Google Scholar] [CrossRef]
- Richter, E.A.; Hargreaves, M. Exercise, GLUT4, and skeletal muscle glucose uptake. Physiol. Rev. 2013, 93, 993–1017. [Google Scholar] [CrossRef] [PubMed]
- Govers, R. Molecular mechanisms of GLUT4 regulation in adipocytes. Diabetes Metab. 2014, 40, 400–410. [Google Scholar] [CrossRef] [PubMed]
- Klip, A.; McGraw, T.E.; James, D.E. Thirty sweet years of GLUT4. J. Biol. Chem. 2019, 294, 11369–11381. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.C.; Chan, M.H.; Yang, Y.F.; Li, C.H.; Hsiao, M. Glucose transporter 4: Insulin response mastermind, glycolysis catalyst and treatment direction for cancer progression. Cancer Lett. 2023, 563, 216179. [Google Scholar] [CrossRef]
- Kim, S.G. The Application of 4-Hexylresorcinol for Preventing Diabetic Complications. In Biomedical Application of 4-Hexylresorcinol; Kim, S.G., Ed.; Springer: Berlin/Heidelberg, Germany, 2024; pp. 135–162. [Google Scholar]
- McGee, S.L.; van Denderen, B.J.; Howlett, K.F.; Mollica, J.; Schertzer, J.D.; Kemp, B.E.; Hargreaves, M. AMP-activated protein kinase regulates GLUT4 transcription by phosphorylating histone deacetylase 5. Diabetes 2008, 57, 860–867. [Google Scholar] [CrossRef]
- Trefts, E.; Shaw, R.J. AMPK: Restoring metabolic homeostasis over space and time. Mol. Cell 2021, 81, 3677–3690. [Google Scholar] [CrossRef]
- Dugan, L.L.; You, Y.H.; Ali, S.S.; Diamond-Stanic, M.; Miyamoto, S.; DeCleves, A.E.; Andreyev, A.; Quach, T.; Ly, S.; Shekhtman, G.; et al. AMPK dysregulation promotes diabetes-related reduction of superoxide and mitochondrial function. J. Clin. Investig. 2013, 123, 4888–4899. [Google Scholar] [CrossRef] [PubMed]
- Zavyalov, O.; Galimzhan, D.; Marina, K. Effect of feeding bioactive compounds identified from plant extracts (4-hexylresorcinol, 7-hydroxycoumarin, and gamma-octalactone) on the productivity and quality of broiler meat. Vet. World 2022, 15, 2986–2996. [Google Scholar] [CrossRef]
- Yang, W.L.; Perillo, W.; Liou, D.; Marambaud, P.; Wang, P. AMPK inhibitor compound C suppresses cell proliferation by induction of apoptosis and autophagy in human colorectal cancer cells. J. Surg. Oncol. 2012, 106, 680–688. [Google Scholar] [CrossRef]
- Muronetz, V.I.; Medvedeva, M.V.; Sevostyanova, I.A.; Schmalhausen, E.V. Modification of Glyceraldehyde-3-Phosphate Dehydrogenase with Nitric Oxide: Role in Signal Transduction and Development of Apoptosis. Biomolecules 2021, 11, 1656. [Google Scholar] [CrossRef]
- Kushneruk, M.A.; Tugarova, A.V.; Il’chukova, A.V.; Slavkina, E.A.; Starichkova, N.I.; Bogatyrev, V.A.; Antoniuk, L.P. Factors inducing transition from growth to dormancy in rhizobacteria Azospirillum brasilense. Mikrobiologiia 2013, 82, 563–570. [Google Scholar] [CrossRef]
- Barinova, K.V.; Serebryakova, M.V.; Melnikova, A.K.; Medvedeva, M.V.; Muronetz, V.I.; Schmalhausen, E.V. Mechanism of inactivation of glyceraldehyde-3-phosphate dehydrogenase in the presence of methylglyoxal. Arch. Biochem. Biophys. 2023, 733, 109485. [Google Scholar] [CrossRef] [PubMed]
- Darenskaya, M.A.; Kolesnikova, L.I.; Kolesnikov, S.I. Oxidative Stress: Pathogenetic Role in Diabetes Mellitus and Its Complications and Therapeutic Approaches to Correction. Bull. Exp. Biol. Med. 2021, 171, 179–189. [Google Scholar] [CrossRef] [PubMed]
- Nicholls, C.; Li, H.; Liu, J.P. GAPDH: A common enzyme with uncommon functions. Clin. Exp. Pharmacol. Physiol. 2012, 39, 674–679. [Google Scholar] [CrossRef]
- Thorens, B.; Mueckler, M. Glucose transporters in the 21st Century. Am. J. Physiol. Endocrinol. Metab. 2010, 298, E141–E145. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Zhou, X.; Chen, H.; You, L.; Zhang, T.; Cheng, M.; Yao, Y.; Pan, X.; Yang, X. Mulberry extract ameliorates T2DM-related symptoms via AMPK pathway in STZ-HFD-induced C57BL/6J mice. J. Ethnopharmacol. 2023, 313, 116475. [Google Scholar] [CrossRef]
- Mei, H.; Xu, J.; He, Y.; Yang, X.; Liu, W.; Tian, W.; Zeng, Y.U.; Zhu, J. Protein-rich extract of Musca domestica larvae alleviated metabolic disorder in STZ-induced type 2 diabetic rat model via hepatoprotective and pancreatic beta-cell protective activities. J. Biosci. 2018, 43, 969–983. [Google Scholar] [CrossRef]
- Feng, S.Y.; Wu, S.J.; Chang, Y.C.; Ng, L.T.; Chang, S.J. Stimulation of GLUT4 Glucose Uptake by Anthocyanin-Rich Extract from Black Rice (Oryza sativa L.) via PI3K/Akt and AMPK/p38 MAPK Signaling in C2C12 Cells. Metabolites 2022, 12, 856. [Google Scholar] [CrossRef]
- Wang, D.S.; Wang, J.M.; Zhang, F.R.; Lei, F.J.; Wen, X.; Song, J.; Sun, G.Z.; Liu, Z. Ameliorative Effects of Malonyl Ginsenoside from Panax ginseng on Glucose-Lipid Metabolism and Insulin Resistance via IRS1/PI3K/Akt and AMPK Signaling Pathways in Type 2 Diabetic Mice. Am. J. Chin. Med. 2022, 50, 863–882. [Google Scholar] [CrossRef]
- Li, X.W.; Huang, M.; Lo, K.; Chen, W.L.; He, Y.Y.; Xu, Y.; Zheng, H.; Hu, H.; Wang, J. Anti-Diabetic Effect of a Shihunine-Rich Extract of Dendrobium loddigesii on 3T3-L1 Cells and db/db Mice by Up-Regulating AMPK-GLUT4-PPARalpha. Molecules 2019, 24, 2673. [Google Scholar] [CrossRef]
- Shakoor, H.; Abdelfattah, F.; Albadi, K.; Adib, M.; Kizhakkayil, J.; Platat, C. Inhibition of Digestive Enzyme and Stimulation of Human Liver Cells (HepG2) Glucose Uptake by Date Seeds Extract. Evid. Based Complement. Alternat. Med. 2020, 2020, 4290702. [Google Scholar] [CrossRef] [PubMed]
- Azzane, A.; Amssayef, A.; El-Haidani, A.; Eddouks, M. Effect of Pulicaria mauritanica on Glucose Metabolism and Glycogen Content in Streptozotocin-Induced Diabetic Rats. Cardiovasc. Hematol. Agents Med. Chem. 2022, 20, 197–211. [Google Scholar] [CrossRef] [PubMed]
- Raj, V.; Claudine, S.; Subramanian, A.; Tam, K.; Biswas, A.; Bongso, A.; Fong, C.Y. Histological, immunohistochemical, and genomic evaluation of excisional and diabetic wounds treated with human Wharton’s jelly stem cells with and without a nanocarrier. J. Cell. Biochem. 2019, 120, 11222–11240. [Google Scholar] [CrossRef] [PubMed]
- Sonthalia, M.; Roy, B.S.; Chandrawanshi, D.; Ganesh, G.V.; Jayasuriya, R.; Mohandas, S.; Rajagopal, S.; Ramkumar, K.M. Histone deacetylase inhibitors as antidiabetic agents: Advances and opportunities. Eur. J. Pharmacol. 2022, 935, 175328. [Google Scholar] [CrossRef] [PubMed]
- Hara, N.; Alkanani, A.K.; Dinarello, C.A.; Zipris, D. Histone deacetylase inhibitor suppresses virus-induced proinflammatory responses and type 1 diabetes. J. Mol. Med. 2014, 92, 93–102. [Google Scholar] [CrossRef]
- Miao, F.; Gonzalo, I.G.; Lanting, L.; Natarajan, R. In vivo chromatin remodeling events leading to inflammatory gene transcription under diabetic conditions. J. Biol. Chem. 2004, 279, 18091–18097. [Google Scholar] [CrossRef]
- Liu, J.; Chen, B.; Hu, Q.; Zhang, Q.; Huang, B.; Fei, P. Pectin grafted with resorcinol and 4-hexylresorcinol: Preparation, characterization and application in meat preservation. Int. J. Biol. Macromol. 2023, 237, 124212. [Google Scholar] [CrossRef]
- Kim, Y.S.; Kim, D.W.; Kim, S.G.; Lee, S.K. 4-hexylresorcinol-induced protein expression changes in human umbilical cord vein endothelial cells as determined by immunoprecipitation high-performance liquid chromatography. PLoS ONE 2020, 15, e0243975. [Google Scholar] [CrossRef]
- Bayley, J.S.; Pedersen, T.H.; Nielsen, O.B. Skeletal muscle dysfunction in the db/db mouse model of type 2 diabetes. Muscle Nerve 2016, 54, 460–468. [Google Scholar] [CrossRef]
- Lee, I.S.; Kim, D.W.; Oh, J.H.; Lee, S.K.; Choi, J.Y.; Kim, S.G.; Kim, T.W. Effects of 4-Hexylresorcinol on Craniofacial Growth in Rats. Int. J. Mol. Sci. 2021, 22, 8935. [Google Scholar] [CrossRef]
- Steinberg, G.R.; Carling, D. AMP-activated protein kinase: The current landscape for drug development. Nat. Rev. Drug Discov. 2019, 18, 527–551. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Reyes, I.; Chandel, N.S. Mitochondrial TCA cycle metabolites control physiology and disease. Nat. Commun. 2020, 11, 102. [Google Scholar] [CrossRef] [PubMed]
- Canto, C.; Jiang, L.Q.; Deshmukh, A.S.; Mataki, C.; Coste, A.; Lagouge, M.; Zierath, J.R.; Auwerx, J. Interdependence of AMPK and SIRT1 for metabolic adaptation to fasting and exercise in skeletal muscle. Cell Metab. 2010, 11, 213–219. [Google Scholar] [CrossRef]
- Wang, Y.; An, H.; Liu, T.; Qin, C.; Sesaki, H.; Guo, S.; Radovick, S.; Hussain, M.; Maheshwari, A.; Wondisford, F.E.; et al. Metformin Improves Mitochondrial Respiratory Activity through Activation of AMPK. Cell Rep. 2019, 29, 1511–1523.e5. [Google Scholar] [CrossRef]
- Hardie, D.G.; Ross, F.A.; Hawley, S.A. AMPK: A nutrient and energy sensor that maintains energy homeostasis. Nat. Rev. Mol. Cell Biol. 2012, 13, 251–262. [Google Scholar] [CrossRef] [PubMed]
- Lee, I.S.; Chang, J.H.; Kim, D.W.; Kim, S.G.; Kim, T.W. The effect of 4-hexylresorinol administration on NAD+ level and SIRT activity in Saos-2 cells. Maxillofac. Plast. Reconstr. Surg. 2021, 43, 39. [Google Scholar] [CrossRef]
- Fan, Y.; Yang, Q.; Yang, Y.; Gao, Z.; Ma, Y.; Zhang, L.; Liang, W.; Ding, G. Sirt6 Suppresses High Glucose-Induced Mitochondrial Dysfunction and Apoptosis in Podocytes through AMPK Activation. Int. J. Biol. Sci. 2019, 15, 701–713. [Google Scholar] [CrossRef]
- Cheruiyot, A.; Li, S.; Nickless, A.; Roth, R.; Fitzpatrick, J.A.J.; You, Z. Compound C inhibits nonsense-mediated RNA decay independently of AMPK. PLoS ONE 2018, 13, e0204978. [Google Scholar] [CrossRef]
- PubChem. Hexylresorcinol. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/3610 (accessed on 10 November 2024).
- Yoshioka, K.; Saito, M.; Oh, K.B.; Nemoto, Y.; Matsuoka, H.; Natsume, M.; Abe, H. Intracellular fate of 2-NBDG, a fluorescent probe for glucose uptake activity, in Escherichia coli cells. Biosci. Biotechnol. Biochem. 1996, 60, 1899–1901. [Google Scholar] [CrossRef]
Name | CAT# | Manufacturer | Dilution Ratio | |
---|---|---|---|---|
WB | IHC | |||
Glut1 | sc-377228 | Santa Cruz Biotech. Santa Cruz, CA, USA | 1:1000 | - |
Glut4 | sc-53566 | Santa Cruz Biotech. Santa Cruz, CA, USA | 1:1000 | 1:100 |
AMPKα1/2 | sc-74461 | Santa Cruz Biotech. Santa Cruz, CA, USA | 1:1000 | - |
Ac-H3 | sc-56616 | Santa Cruz Biotech. Santa Cruz, CA, USA | 1:1000 | 1:100 |
β-actin | sc-47778 | Santa Cruz Biotech. Santa Cruz, CA, USA | 1:1000 | - |
p-AMPK | 07-681 | Merck, Rahway, NJ, USA | 1:1000 | 1:100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Che, X.; Oh, J.-H.; Kang, Y.-J.; Kim, D.-W.; Kim, S.-G.; Choi, J.-Y.; Garagiola, U. 4-Hexylresorcinol Enhances Glut4 Expression and Glucose Homeostasis via AMPK Activation and Histone H3 Acetylation. Int. J. Mol. Sci. 2024, 25, 12281. https://doi.org/10.3390/ijms252212281
Che X, Oh J-H, Kang Y-J, Kim D-W, Kim S-G, Choi J-Y, Garagiola U. 4-Hexylresorcinol Enhances Glut4 Expression and Glucose Homeostasis via AMPK Activation and Histone H3 Acetylation. International Journal of Molecular Sciences. 2024; 25(22):12281. https://doi.org/10.3390/ijms252212281
Chicago/Turabian StyleChe, Xiangguo, Ji-Hyeon Oh, Yei-Jin Kang, Dae-Won Kim, Seong-Gon Kim, Je-Yong Choi, and Umberto Garagiola. 2024. "4-Hexylresorcinol Enhances Glut4 Expression and Glucose Homeostasis via AMPK Activation and Histone H3 Acetylation" International Journal of Molecular Sciences 25, no. 22: 12281. https://doi.org/10.3390/ijms252212281
APA StyleChe, X., Oh, J. -H., Kang, Y. -J., Kim, D. -W., Kim, S. -G., Choi, J. -Y., & Garagiola, U. (2024). 4-Hexylresorcinol Enhances Glut4 Expression and Glucose Homeostasis via AMPK Activation and Histone H3 Acetylation. International Journal of Molecular Sciences, 25(22), 12281. https://doi.org/10.3390/ijms252212281