Are the Common Genetic 3′UTR Variants in ADME Genes Playing a Role in Tolerance of Breast Cancer Chemotherapy?
Abstract
:1. Introduction
2. Results
2.1. Association of SNPs and Clinical Factors with Anemia
2.2. Association of SNPs with Leukopenia
2.3. Association of SNPs and Clinical Factor with Neutropenia
2.4. Association of SNPs and Clinical Factors with Nausea
2.5. Association of SNPs and Age with Vomiting
2.6. Association of SNPs and Clinical Factors with Nephrotoxicity
2.7. Association of SNPs and Clinical Factors with Hepatotoxicity
3. Discussion
3.1. Drug Metabolizers
3.2. DNA Repair Genes
3.3. Drug Transporters
3.4. Clinical Determinants of FAC Chemotherapy Toxicity
4. Materials and Methods
4.1. Patients and Samples
- Time of occurrence: overall—during whole first course of chemotherapy, and early—during the first two cycles.
- Severity: toxicity of any grade; severe—grades 3 and 4.
- Moreover, we analyzed symptoms during the first course of treatment: recurrent—during four or more cycles for any grade and recurrent severe events (grades 3 and/or 4) present at 2 or more cycles (Table 10).
4.2. SNP Selection and Genotyping
4.3. Statistical Analyses and Study Design
- (1)
- Univariate analyses using Fisher two-way and Pearson exact tests were used to indicate a possible interdependence between genetic polymorphisms, clinical factors, and chemotherapy toxicities. A p-value ≤ 0.10 was interpreted as a trend, and these results were moved to step 2.
- (2)
- Multivariate analyses were performed for each toxicity symptom with more than one factor from univariate analysis. In this step, logistic regression was used, with calculated odds ratios (ORs), 95% confidence intervals (95% CIs), and p-values. After stepwise regression, the sets of independent risk factors were possible to establish, or the multivariate model was rejected in the case of losing statistical significance (p ≤ 0.05). The sets of independent risk factors for a given toxicity symptom were then analyzed in step 3.
- (3)
- Cumulative analyses were performed to assess the simultaneous influence of many genetic and clinical factors on the appearance of treatment toxicity symptoms. Calculations were performed using logistic regression model odds ratios (ORs), 95% confidence intervals (95% CIs), and p-values. Patients with given toxicity symptoms were then divided into subgroups according to the number of independent risk factors they carried (groups 1’, 2’, etc.) The 0’s or noncarriers were defined as patients lacking high-risk factors, and were used as the control group in most analyses. The exception was made when toxicity symptoms were absent in the noncarriers group, and the control group was constructed from the 0’s and 1’s.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Barreto, J.N.; McCullough, K.B.; Ice, L.L.; Smith, J.A. Antineoplastic agents and the associated myelosuppressive effects: A review. J. Pharm. Pract. 2014, 27, 440–446. [Google Scholar] [CrossRef] [PubMed]
- Fornari, C.; Oplustil O’Connor, L.; Pin, C.; Smith, A.; Yates, J.W.T.; Cheung, S.Y.A.; Jodrell, D.I.; Mettetal, J.T.; Collins, T.A. Quantifying drug-induced bone marrow toxicity using a novel haematopoiesis systems pharmacology model. CPT Pharmacomet. Syst. Pharmacol. 2019, 11, 858–868. [Google Scholar] [CrossRef] [PubMed]
- Green, J.; Kirwan, J.; Tierney, J.; Vale, C.; Symonds, P.; Fresco, L.; Williams, C.; Collingwood, M. Concomitant chemotherapy and radiation therapy for cancer of the uterine cervix. Cochrane Database Syst. Rev. 2005, 20, CD002225. [Google Scholar] [CrossRef]
- Grigiene, R.; Valuckas, K.P.; Aleknavicius, E.; Kurtinaitis, J.; Letautiene, S.R. The value of prognostic factors for uterine cervical cancer patients treated with irradiation alone. BMC Cancer 2007, 7, 234. [Google Scholar] [CrossRef]
- Soares, S.; Nogueira, A.; Coelho, A.; Assis, J.; Pereira, D.; Bravo, I.; Medeiros, R. Relationship between clinical toxicities and ERCC1 rs3212986 and XRCC3 rs861539 polymorphisms in cervical cancer patients. Int. J. Biol. Markers 2018, 33, 116–123. [Google Scholar] [CrossRef]
- Lyman, G.H.; Abella, E.; Pettengell, R. Risk factors for febrile neutropenia amonpatients with cancer receiving chemotherapy: A systematic review. Crit. Rev. Oncol. Hematol. 2014, 90, 190–199. [Google Scholar] [CrossRef]
- Ahmed, J.H.; Makonnen, E.; Yimer, G.; Seifu, D.; Bekele, A.; Assefa, M.; Aseffa, A.; Howe, R.; Fotoohi, A.; Hassan, M.; et al. CYP2J2(∗)7 Genotype Predicts Risk of Chemotherapy-Induced Hematologic Toxicity and Reduced Relative Dose Intensity in Ethiopian Breast Cancer Patients. Front. Pharmacol. 2019, 10, 481. [Google Scholar] [CrossRef]
- Crawford, J. Risk assessment and guidelines for first-cycle colony-stimulating factor use in the management of chemotherapy-induced neutropenia. Oncology 2006, 20, 22–28. [Google Scholar] [PubMed]
- Dranitsaris, G.; Molassiotis, A.; Clemons, M.; Roeland, E.; Schwartzberg, L.; Dielenseger, P.; Jordan, K.; Young, A.; Aapro, M. The development of a prediction tool to identify cancer patients at high risk for chemotherapy-induced nausea and vomiting. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 2017, 28, 1260–1267. [Google Scholar] [CrossRef]
- Molassiotis, A.; Aapro, M.; Dicato, M.; Gascon, P.; Novoa, S.A.; Isambert, N.; Burke, T.A.; Gu, A.; Roila, F. Evaluation of risk factors predicting chemotherapy-related nausea and vomiting: Results from a European prospective observational study. J. Pain Symptom Manag. 2014, 47, 839–848. [Google Scholar] [CrossRef]
- Tilleman, J.A.; Pick, A.; DeSimone, E.M.; Price, S.; Runia-Bade, L. Chemotherapy-Induced Nausea and Vomiting. US Pharm. 2018, 43, 2–5. [Google Scholar]
- Mosa, A.; Hossain, A.M.; Lavoie, B.J.; Yoo, I. Patient-Related Risk Factors for Chemotherapy-Induced Nausea and Vomiting: A Systematic Review. Front. Pharmacol. 2020, 11, 329. [Google Scholar] [CrossRef] [PubMed]
- Stevens, L.A.; Coresh, J.; Greene, T.; Levey, A.S. Assessing kidney function- measured and estimated glomerular filtration rate. N. Engl. J. Med. 2006, 354, 2473–2483. [Google Scholar] [CrossRef] [PubMed]
- Al-Naimi, M.S.; Rasheed, H.A.; Hussien, N.R.; Al-Kuraishy, H.M.; Al-Gareeb, A.I. Nephrotoxicity: Role and significance of renal biomarkers in the early detection of acute renal injury. J. Adv. Pharm. Technol. Res. 2019, 10, 95–99. [Google Scholar]
- Jaeschke, H.; Gores, G.J.; Cederbaum, A.I.; Hinson, J.A.; Pessayre, D.; Lemasters, J.J. Mechanisms of hepatotoxicity. Toxicol. Sci. 2002, 65, 166–176. [Google Scholar] [CrossRef]
- Saukkonen, J.J.; Cohn, D.L.; Jasmer, R.M.; Schenker, S.; Jereb, J.A.; Nolan, C.M.; Peloquin, C.A.; Gordin, F.M.; Nunes, D.; Strader, D.B.; et al. An Official ATS Statement: Hepatotoxicity of antituberculosis therapy. Am. J. Respir. Crit. Care Med. 2006, 174, 935–952. [Google Scholar] [CrossRef]
- Deng, X.; Luyendyk, J.P.; Ganey, P.E.; Roth, R.A. Inflammatory stress and idiosyncratic hepatotoxicity: Hints from animal models. Pharmacol. Rev. 2009, 61, 262–282. [Google Scholar] [CrossRef]
- Chang, C.Y.; Schiano, T.D. Review article: Drug hepatotoxicity. Aliment Pharmacol. Ther. 2007, 25, 1135–1151. [Google Scholar] [CrossRef]
- Bleibel, W.; Kim, S.; D’Silva, K.; Lemmer, E.R. Drug-induced liver injury: Review article. Dig. Dis. Sci. 2007, 52, 2463–2471. [Google Scholar] [CrossRef]
- Faraji, A.; Dehghan Manshadi, H.R.; Mobaraki, M.; Zare, M.; Houshmand, M. Association of ABCB1 and SLC22A16 Gene Polymorphisms with Incidence of Doxorubicin-Induced Febrile Neutropenia: A Survey of Iranian Breast Cancer Patients. PLoS ONE 2016, 11, e0168519. [Google Scholar] [CrossRef]
- Ludovini, V.; Antognelli, C.; Rulli, A.; Foglietta, J.; Pistola, L.; Eliana, R.; Floriani, I.; Nocentini, G.; Tofanetti, F.R.; Piattoni, S.; et al. Influence of chemotherapeutic drug-related gene polymorphisms on toxicity and survival of early breast cancer patients receiving adjuvant chemotherapy. BMC Cancer 2017, 17, 502. [Google Scholar] [CrossRef] [PubMed]
- Megias-Vericat, J.E.; Martinez-Cuadron, D.; Herrero, M.J.; Alinom, S.F.; Povedam, J.L.; Sanzm, M.A.; Montesinos, P. Pharmacogenetics of Metabolic Genes of Anthracyclines in Acute Myeloid Leukemia. Curr. Drug Metab. 2018, 19, 55–74. [Google Scholar] [CrossRef] [PubMed]
- Palmirotta, R.; Carella, C.; Silvestris, E.; Cives, M.; Stucci, S.L.; Tucci, M.; Lovero, D.; Silvestris, F. SNPs in predicting clinical efficacy and toxicity of chemotherapy: Walking through the quicksand. Oncotarget 2018, 9, 25355–25382. [Google Scholar] [CrossRef] [PubMed]
- Wei, R.; Yang, F.; Urban, T.J.; Li, L.; Chalasani, N.; Flockhart, D.A.; Liu, W. Impact of the Interaction between 3′-UTR SNPs and microRNA on the Expression of Human Xenobiotic Metabolism Enzyme and Transporter Genes. Front. Genet. 2012, 3, 248. [Google Scholar] [CrossRef]
- Brooks, J.D.; Teraoka, S.N.; Bernstein, L.; Mellemkjær, L.; Malone, K.E.; Lynch, C.F.; Haile, R.W.; Concannon, P.; Reiner, A.S.; Duggan, D.J.; et al. Common variants in genes coding for chemotherapy metabolizing enzymes, transporters, and targets: A case-controls study of contralateral breast cancer risk in the WECARE Study. Cancer Causes Control 2013, 8, 1605–1614. [Google Scholar] [CrossRef]
- Kulma, I.; Boonprasert, K.; Na-Bangchang, K. Polymorphisms of genes encoding drug transporters or cytochrome P450 enzymes and association with clinical response in cancer patients: A systematic review. Cancer Chemother Pharmacol. 2019, 84, 959–975. [Google Scholar] [CrossRef]
- Krawczak, M.; Reiss, J.; Cooper, D.N. The mutational spectrum of single base-pair substitutions in mRNA splice junctions of human genes: Causes and consequences. Hum. Genet. 1992, 90, 41–54. [Google Scholar] [CrossRef]
- Li, G.; Pan, T.; Guo, D.; Li, L.C. Regulatory Variants and Disease: The E-Cadherin-160C/A SNP as an Example. Mol. Biol. Int. 2014, 2014, 967565. [Google Scholar] [CrossRef] [PubMed]
- Tak, Y.G.; Farnham, P.J. Making sense of GWAS: Using epigenomics and genome engineering to understand the functional relevance of SNPs in non-coding regions of the human genome. Epigenet. Chromatin 2015, 30, 57. [Google Scholar] [CrossRef]
- Moszyńska, A.; Gebert, M.; Collawn, J.F.; Bartoszewski, R. SNPs in microRNA target sites and their potential role in human disease. Open Biol. 2017, 7, 170019. [Google Scholar] [CrossRef]
- Pamuła-Piłat, J.; Tęcza, K.; Kalinowska-Herok, M.; Grzybowska, E. Genetic 3′UTR variations and clinical factors significantly contribute to survival prediction and clinical response in breast cancer patients. Sci. Rep. 2020, 10, 5736. [Google Scholar] [CrossRef] [PubMed]
- Ji, Q.; Aoyama, C.; Nien, Y.D.; Liu, P.I.; Chen, P.K.; Chang, L.; Stanczyk, F.Z.; Stolz, A. Selective loss of AKR1C1 and AKR1C2 in breast cancer and their potential effect on progesterone signalling. Cancer Res. 2004, 64, 7610–7617. [Google Scholar] [CrossRef] [PubMed]
- Desmond, J.C.; Mountford, J.C.; Drayson, M.T.; Walker, E.A.; Hewison, M.; Ride, J.P.; Luong, Q.T.; Hayden, R.E.; Vanin, E.F.; Bunce, C.M. The aldo-keto reductase AKR1C3 is a novel suppressor of cell differentiation that provides a plausible target for the non-cyclooxygenase-dependent antineoplastic actions of nonsteroidal anti-inflammatory drugs. Cancer Res. 2003, 63, 505–512. [Google Scholar] [PubMed]
- Schulze, J.J.; Karypidis, H.; Ekström, L. Basal and Regulatory Promoter Studies of the AKR1C3 Gene in Relation to Prostate Cancer. Front. Pharmacol. 2012, 3, 151. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.Y.; Hsu, Y.H.; Pan, P.C.; Wu, M.T.; Ho, C.K.; Su, L.; Xu, X.; Li, Y.; Christiani, D.C.; Kaohsiung Leukemia Research Group. Maternal and offspring genetic variants of AKR1C3 and the risk of childhood leukemia. Carcinogenesis 2008, 29, 984–990. [Google Scholar] [CrossRef]
- Figueroa, J.D.; Malats, N.; García-Closas, M.; Real, F.X.; Silverman, D.; Kogevinas, M.; Chanock, S.; Welch, R.; Dosemeci, M.; Lan, Q.; et al. Bladder cancer risk and genetic variation in AKR1C3 and other metabolizing genes. Carcinogenesis 2008, 29, 1955–1962. [Google Scholar] [CrossRef]
- Reding, K.W.; Li, C.I.; Weiss, N.S.; Chen, C.; Carlson, C.S.; Duggan, D.; Thummel, K.E.; Daling, J.R.; Malone, K.E. Genetic variation in the progesterone receptor and metabolism pathways and hormone therapy in relation to breast cancer risk. Am. J. Epidemiol. 2009, 170, 1241–1249. [Google Scholar] [CrossRef]
- Voon, P.J.; Yap, H.L.; Ma, C.Y.; Lu, F.; Wong, A.L.; Sapari, N.S.; Soong, R.; Soh, T.I.; Goh, B.C.; Lee, H.S.; et al. Correlation of aldo-ketoreductase (AKR)1C3 genetic variant with doxorubicin pharmacodynamics in Asian breast cancer patients. Br. J. Clin. Pharmacol. 2013, 75, 1497–1505. [Google Scholar] [CrossRef]
- Wang, H.; Gao, X.; Zhang, X.; Gong, W.; Peng, Z.; Wang, B.; Wang, L.; Chang, S.; Ma, P.; Wang, S. Glutathione S-Transferase Gene Polymorphisms are Associated with an Improved Treatment Response to Cisplatin-Based Chemotherapy in Patients with Non-Small Cell Lung Cancer (NSCLC): A Meta-Analysis. Med. Sci. Monit. 2018, 20, 7482–7492. [Google Scholar] [CrossRef]
- Tian, X.; Han, Y.; Yu, L.; Luo, B.; Hu, Z.; Li, X.; Yang, Z.; Wang, X.; Huang, W.; Wang, H.; et al. Decreased expression of ALDH5A1 predicts prognosis in patients with ovarian cancer. Cancer Biol. Ther. 2017, 18, 245–251. [Google Scholar] [CrossRef]
- Li, X.; Zhang, J.; Wu, X.; Yan, H.; Zhang, Y.; He, R.H.; Tang, Y.J.; He, Y.J.; Tan, D.; Mao, X.Y.; et al. Polymorphisms of ABAT, SCN2A and ALDH5A1 may affect valproic acid responses in the treatment of epilepsy in Chinese. Pharmacogenomics 2016, 17, 2007–2014. [Google Scholar] [CrossRef] [PubMed]
- Meech, R.; Hu, D.G.; McKinnon, R.A.; Mubarokah, S.N.; Haines, A.Z.; Nair, P.C.; Rowland, A.; Mackenzie, P.I. The UDP-Glycosyltransferase (UGT) Superfamily: New Members, New Functions, and Novel Paradigms. Physiol. Rev. 2019, 99, 1153–1222. [Google Scholar] [CrossRef]
- Che, X.; Yu, D.; Wu, Z.; Zhang, J.; Chen, Y.; Han, Y.; Wang, C.; Qi, J. Polymorphisms in UGT2B4 and susceptibility to pancreatic cancer. Int. J. Clin. Exp. Med. 2015, 8, 2702–2710. [Google Scholar]
- Medhasi, S.; Pinthong, D.; Pasomsub, E.; Vanwong, N.; Ngamsamut, N.; Puangpetch, A.; Chamnanphon, M.; Hongkaew, Y.; Pratoomwun, J.; Limsila, P.; et al. Pharmacogenomic Study Reveals New Variants of Drug Metabolizing Enzyme and Transporter Genes Associated with Steady-State Plasma Concentrations of Risperidone and 9-Hydroxyrisperidone in Thai Autism Spectrum Disorder Patients. Front. Pharmacol. 2016, 7, 475. [Google Scholar] [CrossRef] [PubMed]
- Scherer, D.; Koepl, L.M.; Poole, E.M.; Balavarca, Y.; Xiao, L.; Baron, J.A.; Hsu, L.; Coghill, A.E.; Campbell, P.T.; Kleinstein, S.E.; et al. Genetic variation in UGT genes modify the associations of NSAIDs with risk of colorectal cancer: Colon cancer family registry. Genes Chromosomes Cancer 2014, 53, 568–578. [Google Scholar] [CrossRef]
- Vidal, A.C.; Tucker, C.; Schildkraut, J.M.; Richardson, R.M.; McPhail, M.; Freedland, S.J.; Hoyo, C.; Grant, D.J. Novel associations of UDP-glucuronosyltransferase 2B gene variants with prostate cancer risk in a multiethnic study. BMC Cancer 2013, 22, 556. [Google Scholar] [CrossRef]
- Papageorgiou, I.; Court, M.H. Identification and validation of the microRNA response elements in the 3′-untranslated region of the UDP glucuronosyltransferase (UGT) 2B7 and 2B15 genes by a functional genomics approach. Biochem. Pharmacol. 2017, 146, 199–213. [Google Scholar] [CrossRef] [PubMed]
- Majounie, E.; Wee, K.; Williamson, L.M.; Jones, M.R.; Pleasance, E.; Lim, H.J.; Ho, C.; Renouf, D.J.; Yip, S.; Jones, S.J.M.; et al. Fluorouracil sensitivity in a head and neck squamous cell carcinoma with a somatic DPYD structural variant. Cold Spring Harb. Mol. Case Stud. 2020, 6, a004713. [Google Scholar] [CrossRef]
- Amstutz, U.; Froehlich, T.K.; Largiadèr, C.R. Dihydropyrimidine dehydrogenase gene as a major predictor of severe 5-fluorouracil toxicity. Pharmacogenomics 2011, 12, 1321–1336. [Google Scholar] [CrossRef]
- Amstutz, U.; Henricks, L.M.; Offer, S.M.; Barbarino, J.; Schellens, J.H.M.; Swen, J.J.; Klein, T.E.; McLeod, H.L.; Caudle, K.E.; Diasio, R.B.; et al. Clinical pharmacogenetics implementation consortium (CPIC) guideline for dihydropyrimidine dehydrogenase genotype and fluoropyrimidine dosing: 2017 update. Clin. Pharmacol. Ther. 2018, 103, 210–216. [Google Scholar] [CrossRef]
- Lunenburg, C.A.T.C.; Henricks, L.M.; Guchelaar, H.J.; Swen, J.J.; Deenen, M.J.; Schellens, J.H.M.; Gelderblom, H. Prospective DPYD genotyping to reduce the risk of fluoropyrimidine-induced severe toxicity: Ready for prime time. Eur. J. Cancer 2016, 54, 40–48. [Google Scholar] [CrossRef] [PubMed]
- Etienne-Grimaldi, M.C.; Boyer, J.C.; Beroud, C.; Mbatchi, L.; van Kuilenburg, A.; Bobin-Dubigeon, C.; Thomas, F.; Chatelut, E.; Merlin, J.L.; Pinguet, F.; et al. New advances in DPYD genotype and risk of severe toxicity under capecitabine. PLoS ONE 2017, 12, e0175998. [Google Scholar] [CrossRef] [PubMed]
- García-González, X.; Pellicer, M.; García, M.I.; García-Alfonso, P.; Grávalos, C.; Pachón, V.; Martinez, V.; Martinez-Ortega, P.; Sanjurjo, M.; López-Fernández, L.A. Dpyd snps and disease free survival after capecitabine based adjuvant treatment in colorectal cancer. Eur. J. Hosp. Pharm. 2017, 24, A196–A198. [Google Scholar]
- Li, F.; Zhu, W.; Gonzalez, F.J. Potential role of CYP1B1 in the development and treatment of metabolic diseases. Pharmacol. Ther. 2017, 178, 18–30. [Google Scholar] [CrossRef]
- Kwon, Y.J.; Baek, H.S.; Ye, D.J.; Shin, S.; Kim, D.; Chun, Y.J. CYP1B1 Enhances Cell Proliferation and Metastasis through Induction of EMT and Activation of Wnt/β-Catenin Signaling via Sp1 Upregulation. PLoS ONE 2016, 11, e0151598. [Google Scholar] [CrossRef] [PubMed]
- Golmohammadzadeh, G.; Mohammadpour, A.; Ahangar, N.; Shokrzadeh, M. Polymorphisms in Phase I (CYP450) Genes CYP1A1 (rs4646421), CYP1B1 (rs1056836), CYP19A1 (rs749292)and CYP2C8 (rs1058930) and Their Relation to Risk of Breast Cancer: A Case-Control Study in Mazandaran Province in North of Iran. Open Access Maced. J. Med. Sci. 2019, 7, 2488–2496. [Google Scholar] [CrossRef]
- Gu, C.Y.; Li, G.X.; Zhu, Y.; Xu, H.; Zhu, Y.; Qin, X.J.; Bo, D.; Ye, D.W. A single nucleotide polymorphism in CYP1B1 leads to differential prostate cancer risk and telomere length. J. Cancer 2018, 9, 269–274. [Google Scholar] [CrossRef]
- Burdon, K.P.; Hewitt, A.W.; Mackey, D.A.; Mitchell, P.; Craig, J.E. Tag SNPs detect association of the CYP1B1 gene with primary open angle glaucoma. Mol. Vis. 2010, 16, 2286–2293. [Google Scholar]
- Wang, M.; Li, Q.; Gu, C.; Zhu, Y.; Yang, Y.; Wang, J.; Jin, L.; He, J.; Ye, D.; Wei, Q. Polymorphisms in nucleotide excision repair genes and risk of primary prostate cancer in Chinese Han populations. Oncotarget 2017, 8, 24362–24371. [Google Scholar] [CrossRef]
- Medeiros, R.; Vasconcelos, A.; Costa, S.; Pinto, D.; Ferreira, P.; Lobo, F.; Morais, A.; Oliveira, J.; Lopes, C. Metabolic susceptibility genes and prostate cancer risk in a southern European population: The role of glutathione S-transferases GSTM1, GSTM3, and GSTT1 genetic polymorphisms. Prostate 2004, 58, 414–420. [Google Scholar] [CrossRef]
- Jaramillo-Rangel, G.; Ortega-Martínez, M.; Cerda-Flores, R.M.; Barrera-Saldaña, H.A. Polymorphisms in GSTM1, GSTT1, GSTP1, and GSTM3 genes and breast cancer risk in northeastern Mexico. Genet. Mol. Res. 2015, 14, 6465–6471. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Yang, Z.Y.; Chen, Y.H.; Li, F.; Shen, H.; Yu, Y.; Huang, H.Y.; Shen, Z.Y. A novel functional polymorphism of GSTM3 reduces clear cell renal cell carcinoma risk through enhancing its expression by interfering miR-556 binding. J. Cell. Mol. Med. 2018, 22, 3005–3015. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.H.; Wang, B.H.; Jiang, F.; Mo, X.B.; Wu, L.F.; He, P.; Lu, X.; Deng, F.Y.; Lei, S.F. Multi-omics integrative analysis identified SNP-methylation-mRNA: Interaction in peripheral blood mononuclear cells. J. Cell. Mol. Med. 2019, 23, 4601–4610. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Idle, J.R.; Gonzalez, F.J. The pregnane X receptor: From bench to bedside. Expert Opin. Drug Metab. Toxicol. 2008, 4, 895–908. [Google Scholar] [CrossRef] [PubMed]
- Istrate, M.A.; Nussler, A.K.; Eichelbaum, M.; Burk, O. Regulation of CYP3A4 by pregnane X receptor: The role of nuclear receptors competing for response element binding. Biochem. Biophys. Res. Commun. 2010, 393, 688–693. [Google Scholar] [CrossRef]
- Oleson, L.; von Moltke, L.L.; Greenblatt, D.J.; Court, M.H. Identification of polymorphisms in the 3′-untranslated region of the human pregnane X receptor (PXR) gene associated with variability in cytochrome P450 3A (CYP3A) metabolism. Xenobiotica 2010, 40, 146–162. [Google Scholar] [CrossRef]
- Brewer, C.T.; Chen, T. PXR variants: The impact on drug metabolism and therapeutic responses. Acta Pharm. Sin. B 2016, 6, 441–449. [Google Scholar] [CrossRef]
- Revathidevi, S.; Sudesh, R.; Vaishnavi, V.; Kaliyanasundaram, M.; MaryHelen, K.G.; Sukanya, G.; Munirajan, A.K. Screening for the 3′UTR Polymorphism of the PXR Gene in South Indian Breast Cancer Patients and its Potential Role in Pharmacogenomics. Asian Pac. J. Cancer Prev. 2016, 17, 3971–3977. [Google Scholar]
- Zhang, B.; Xie, W.; Krasowski, M.D. PXR: A xenobiotic receptor of diverse function implicated in pharmacogenetics. Pharmacogenomics 2008, 9, 1695–1709. [Google Scholar] [CrossRef]
- Ihunnah, C.A.; Jiang, M.; Xie, W. Nuclear receptor PXR, transcriptional circuits andmetabolic relevance. Biochim. Biophys. Acta 2011, 181, 956–963. [Google Scholar] [CrossRef]
- Zeng, G.; Wang, L.; Shi, L.; Li, H.; Zhu, M.; Luo, J.; Zhang, Z. Variability of voriconazole concentrations in patients with hematopoietic stem cell transplantation and hematological malignancies: Influence of loading dose, procalcitonin, and pregnane X receptor polymorphisms. Eur. J. Clin. Pharmacol. 2020, 76, 515–523. [Google Scholar] [CrossRef] [PubMed]
- Ren, W.; Zhou, C.; Liu, Y.; Su, K.; Jia, L.; Chen, L.; Li, M.; Ma, J.; Zhou, W.; Zhang, S. Genetic associations of docetaxel-based chemotherapy-induced myelosuppression in Chinese Han population. J. Clin. Pharm. Ther. 2020, 45, 354–364. [Google Scholar] [CrossRef] [PubMed]
- Chew, S.C.; Lim, J.; Singh, O.; Chen, X.; Tan, E.H.; Lee, E.J.; Chowbay, B. Pharmacogenetic effects of regulatory nuclear receptors (PXR, CAR, RXRα and HNF4α) on docetaxel disposition in Chinese nasopharyngeal cancer patients. Eur. J. Clin. Pharmacol. 2014, 70, 155–166. [Google Scholar] [CrossRef] [PubMed]
- Luo, L.; Zhou, C.; Hui, Y.; Kurogi, K.; Sakakibara, Y.; Suiko, M.; Liu, M.C. Human cytosolic sulfotransferase SULT1C4 mediates the sulfation of doxorubicin and epirubicin. Drug Metab. Pharmacokinet. 2016, 2, 163–166. [Google Scholar] [CrossRef]
- Falany, C.N.; Xie, X.; Wang, J.; Ferrer, J.; Falany, J.L. Molecular cloning and expression of novel sulphotransferase-like cDNAs from human and rat brain. Biochem. J. 2000, 346, 857–864. [Google Scholar] [CrossRef]
- Ziats, C.A.; Grosvenor, L.P.; Sarasua, S.M.; Thurm, A.E.; Swedo, S.E.; Mahfouz, A.; Rennert, O.M.; Ziats, M.N. Functional genomics analysis of Phelan-McDermid syndrome 22q13 region during human neurodevelopment. PLoS ONE 2019, 14, e02139212019. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.A.; Lee, K.M.; Yoo, K.Y.; Noh, D.Y.; Ahn, S.H.; Kang, D. Combined effects of antioxidant vitamin and NOS3 genetic polymorphisms on breast cancer risk in women. Clin. Nutr. 2012, 31, 93–98. [Google Scholar] [CrossRef]
- Ding, Y.W.; Gao, X.; Ye, D.X.; Liu, W.; Wu, L.; Sun, H.Y. Association of ERCC1 polymorphisms (rs3212986 and rs11615) with the risk of head and neck carcinomas based on case-control studies. Clin. Transl. Oncol. 2015, 17, 710–719. [Google Scholar] [CrossRef]
- Qixing, M.; Gaochao, D.; Wenjie, X.; Rong, Y.; Feng, J.; Lin, X.; Mantang, Q.; Qiang, C. Predictive value of Ercc1 and Xpd polymorphisms for clinical outcomes of patients receiving neoadjuvant therapy: A PRISMA-compliant meta-analysis. Medicine 2015, 94, e15932015. [Google Scholar] [CrossRef]
- Farnebo, L.; Tiefenböck, K.; Ansell, A.; Thunell, L.K.; Garvin, S.; Roberg, K. Strong expression of survivin is associated with positive response to radiotherapy and improved overall survival in head and neck squamous cell carcinoma patients. Int. J. Cancer 2013, 133, 1994–2003. [Google Scholar] [CrossRef]
- Zhu, H.; Luo, H.; Zhang, W.; Shen, Z.; Hu, X.; Zhu, X. Molecular mechanisms of cisplatin resistance in cervical cancer. Drug Des. Dev. Ther. 2016, 10, 1885–1895. [Google Scholar] [CrossRef] [PubMed]
- Gao, H.; Ge, R.C.; Liu, H.Y.; Wang, Y.; Yan, S. Effect of ERCC1 polymorphism on theresponse to chemotherapy and clinical outcome of non-small cell lung cancer. Genet. Mol. Res. 2014, 31, 8997–9004. [Google Scholar] [CrossRef] [PubMed]
- Zhao, R.; Ying, M.F. Association between ERCC1 and ERCC2 polymorphisms and breast cancer risk in a Chinese population. Genet. Mol. Res. 2016, 15, 15017263. [Google Scholar] [CrossRef] [PubMed]
- Mo, J.; Luo, M.; Cui, J.; Zhou, S. Prognostic value of ERCC1 and ERCC2 gene polymorphisms in patients with gastric cancer receiving platinum-based chemotherapy. Int. J. Clin. Exp. Pathol. 2015, 8, 15065–15071. [Google Scholar] [PubMed]
- Goekkurt, E.; Al-Batran, S.E.; Hartmann, J.T.; Mogck, U.; Schuch, G.; Kramer, M.; Jaeger, E.; Bokemeyer, C.; Ehninger, G.; Stoehlmacher, J. Pharmacogenetic analyses of a phase III trial in metastatic gastroesophageal adenocarcinoma with fluorouracil and leucovorin plus either oxaliplatin or cisplatin: A study of the arbeitsgemeinschaft internistische onkologie. J. Clin. Oncol. 2009, 27, 2863–2873. [Google Scholar] [CrossRef]
- Formica, V.; Doldo, E.; Antonetti, F.R.; Nardecchia, A.; Ferroni, P.; Riondino, S.; Morelli, C.; Arkenau, H.T.; Guadagni, F.; Orlandi, A.; et al. Biological and predictive role of ERCC1 polymorphisms in cancer. Crit. Rev. Oncol. Hematol. 2017, 111, 133–143. [Google Scholar] [CrossRef]
- Huang, Y.L.; Wu, J.R.; Fang, M.; Zhao, H.L.; Liu, Z.M.; Ye, J.; Huang, L.S.; Zhu, B. The role of ERCC1 and AFP gene polymorphism in hepatocellular carcinoma. Medicine 2019, 98, e150902019. [Google Scholar] [CrossRef]
- Liu, J.; Deng, N.; Xu, Q.; Sun, L.; Tu, H.; Wang, Z.; Xing, C.; Yuan, Y. Polymorphisms of multiple genes involved in NER pathway predict prognosis of gastric cancer. Oncotarget 2016, 7, 48130–48142. [Google Scholar] [CrossRef]
- Li, C.; Yin, M.; Wang, L.E.; Amos, C.I.; Zhu, D.; Lee, J.E.; Gershenwald, J.E.; Grimm, E.A.; Wei, Q. Polymorphisms of nucleotide excision repair genes predict melanoma survival. J. Investig. Dermatol. 2013, 133, 1813–1821. [Google Scholar] [CrossRef]
- Szabó, E.; Türk, D.; Telbisz, Á.; Kucsma, N.; Horváth, T.; Szakács, G.; Homolya, L.; Sarkadi, B.; Várady, G. A new fluorescent dye accumulation assay for parallel measurements of the ABCG2, ABCB1 and ABCC1 multidrug transporter functions. PLoS ONE 2018, 13, e01906292018. [Google Scholar] [CrossRef]
- Zhao, T.Y.; Lei, S.; Huang, L.; Wang, Y.N.; Wang, X.N.; Zhou, P.P.; Xu, X.J.; Zhang, L.; Xu, L.W.; Yang, L. Associations of Genetic Variations in ABCA1 and Lifestyle Factors with Coronary Artery Disease in a Southern Chinese Population with Dyslipidemia: A Nested Case-Control Study. Int. J. Environ. Res. Public Health 2019, 16, 786. [Google Scholar] [CrossRef] [PubMed]
- Steeghs, N.; Gelderblom, H.; Wessels, J.; Eskens, F.A.; de Bont, N.; Nortier, J.W.; Guchelaar, H.J. Pharmacogenetics of telatinib, a VEGFR-2 and VEGFR-3 tyrosine kinase inhibitor, used in patients with solid tumors. Investig. New Drugs 2011, 29, 137–143. [Google Scholar] [CrossRef] [PubMed]
- SNPinfo Web Server. Available online: https://snp.info.niehs.nih.gov (accessed on 13 September 2021).
- Cao, H.X.; Miao, C.F.; Yan, L.; Tang, P.; Zhang, L.R.; Sun, L. Polymorphisms at microRNA binding sites of Ara-C and anthracyclines-metabolic pathway genes are associated with outcome of acute myeloid leukemia patients. J. Transl. Med. 2017, 15, 235. [Google Scholar] [CrossRef] [PubMed]
- El-Murr, N.; Abidi, Z.; Wanherdrick, K.; Svrcek, M.; Gaub, M.P.; Fléjou, J.F.; Hamelin, R.; Duval, A.; Lesuffleur, T. MiRNA genes constitute new targets for microsatellite instability in colorectal cancer. PLoS ONE 2012, 7, e318622012. [Google Scholar] [CrossRef]
- Coelho, A.V.; Silva, S.P.; de Alencar, L.C.; Stocco, G.; Crovella, S.; Brandão, L.A.; Guimarães, R.L. ABCB1 and ABCC1 variants associated with virological failure of first-line protease inhibitors antiretroviral regimens in Northeast Brazil patients. J. Clin. Pharmacol. 2013, 53, 1286–1293. [Google Scholar] [CrossRef]
- Freedman, J.A.; Wang, Y.; Li, X.; Liu, H.; Moorman, P.G.; George, D.J.; Lee, N.H.; Hyslop, T.; Wei, Q.; Patierno, S.R. Single-nucleotide polymorphisms of stemness genes predicted to regulate RNA splicing, microRNA and oncogenic signaling are associated with prostate cancer survival. Carcinogenesis 2018, 39, 879–888. [Google Scholar] [CrossRef]
- Margier, M.; Collet, X.; le May, C.; Desmarchelier, C.; André, F.; Lebrun, C.; Defoort, C.; Bluteau, A.; Borel, P.; Lespine, A.; et al. ABCB1 (P-glycoprotein) regulates vitamin D absorption and contributes to its transintestinal efflux. FASEB J. 2019, 33, 2084–2094. [Google Scholar] [CrossRef]
- Tripodi, G.; Citterio, L.; Kouznetsova, T.; Lanzani, C.; Florio, M.; Modica, R.; Messaggio, E.; Hamlyn, J.M.; Zagato, L.; Bianchi, G.; et al. Steroid biosynthesis and renal excretion in human essential hypertension: Association with blood pressure and endogenous ouabain. Am. J. Hypertens. 2009, 22, 357–363. [Google Scholar] [CrossRef]
- Dong, C.; Wong, M.L.; Licinio, J. Sequence variations of ABCB1, SLC6A2, SLC6A3, SLC6A4, CREB1, CRHR1 and NTRK2: Association with major depression and antidepressant response in Mexican-Americans. Mol. Psychiatry 2009, 14, 1105–1118. [Google Scholar] [CrossRef]
- Peethambaram, P.; Fridley, B.L.; Vierkant, R.A.; Larson, M.C.; Kalli, K.R.; Elliott, E.A.; Oberg, A.L.; White, K.L.; Rider, D.N.; Keeney, G.L.; et al. Polymorphisms in ABCB1 and ERCC2 associated with ovarian cancer outcome. Int. J. Mol. Epidemiol. Genet. 2011, 2, 185–195. [Google Scholar]
- Moore, J.; McKnight, A.J.; Döhler, B.; Simmonds, M.J.; Courtney, A.E.; Brand, O.J.; Briggs, D.; Ball, S.; Cockwell, P.; Patterson, C.C.; et al. Donor ABCB1 variant associates with increased risk for kidney allograft failure. J. Am. Soc. Nephrol. 2012, 23, 1891–1899. [Google Scholar] [CrossRef] [PubMed]
- Johnson, D.H.; Sutherland, D.; Acosta, E.P.; Erdem, H.; Richardson, D.; Haas, D.W. Genetic and non-genetic determinants of raltegravir penetration into cerebrospinal fluid: A single arm pharmacokinetic study. PLoS ONE 2013, 8, e82672. [Google Scholar] [CrossRef] [PubMed]
- Yuan, M.; Wang, W.; Chen, H.; Lu, J.; He, M.; Liu, C.; Tang, H.; Wang, L. ABCC4, ABCC5 and SLC28A1 polymorphisms: Host genome on responses of chronic hepatitis B patients with entecavir treatment. Antivir. Ther. 2016, 21, 689–696. [Google Scholar] [CrossRef] [PubMed]
- GeneCards: The Human Gene Database. Available online: https://www.genecards.org (accessed on 13 September 2021).
- Singhal, S.S.; Singhal, J.; Nair, M.P.; Lacko, A.G.; Awasthi, Y.C.; Awasthi, S. Doxorubicin transport by RALBP1 and ABCG2 in lung and breast cancer. Int. J. Oncol. 2007, 30, 717–725. [Google Scholar] [CrossRef]
- Pourali, L.; Taghizadeh, A.; Akhoundi, M.R.; Varshoei, F.; Zarifian, A.; Andalibi, M.S.S. Frequency of Chemotherapy Induced Anemia in Breast Cancer Patients. Iran J. Cancer Prev. 2017, 10, e4672. [Google Scholar] [CrossRef]
- Karlsson, M.O.; Port, R.E.; Ratain, M.J.; Sheiner, L.B. A population model for the leukopenic effect of etoposide. Clin. Pharmacol. Ther. 1995, 57, 325–334. [Google Scholar] [CrossRef]
- Carey, P.J. Drug-Induced Myelosuppression. Drug-Safety 2003, 26, 691–706. [Google Scholar] [CrossRef] [PubMed]
- Groopman, J.E.; Itri, L.M. Chemotherapy-induced anemia in adults: Incidence and treatment. J. Natl. Cancer Inst. 1999, 91, 1616–1634. [Google Scholar] [CrossRef]
- Hassan, B.A.; Yusoff, Z.B.; Hassali, M.A.; Othman, S.B. Association and correlation of different chemotherapeutic regimens and doses with onset and severity of anemia among solid cancer patients. Asian Pac. J. Cancer Prev. 2011, 12, 2753–2758. [Google Scholar]
- Mayama, M.; Asano, H.; Nomura, E.; Ihira, K.; Nozaki, A.; Kato, T.; Konno, Y.; Mitamura, T.; Kobayashi, N.; Takeda, M.; et al. Four versus six chemotherapy cycles in endometrial carcinoma with a high risk of recurrence: A retrospective study. Jpn. J. Clin. Oncol. 2020, 50, 882–888. [Google Scholar] [CrossRef]
- Adel, N. Overview of chemotherapy-induced nausea and vomiting and evidence-based therapies. Am. J. Manag. Care 2017, 23, S259–S265. [Google Scholar] [PubMed]
- McCourt, D.D.; Parikh, K.; Brady, A.L.; Wang, Y.; Kennedy, J.; Buckley, M.E.; Ali, Z.A.; Shevade, A.L.; Gilman, P.B.; Wallon, U.M. The quest for reliable prediction of chemotherapy induced delayed nausea among breast cancer patients. J. Unexplored Med. Data 2019, 4, 6. [Google Scholar] [CrossRef]
- Pirri, C.; Katris, P.; Trotter, J.; Bayliss, E.; Bennett, R.; Drummond, P. Risk factors at pretreatment predicting treatment-induced nausea and vomiting in Australian cancer patients: A prospective, longitudinal, observational study. Support Care Cancer 2011, 19, 1549–1563. [Google Scholar] [CrossRef]
- Dranitsaris, G.; Joy, A.; Young, S.D.; Clemons, M.; Callaghan, W.; Petrella, T. Identifying patients at high risk for nausea and vomiting after chemotherapy: The development of a practical prediction tool I. Acute Nausea and Vomiting. J. Supp. Oncol. 2009, 7, W1–W8. [Google Scholar]
- Petrella, T.; Clemons, M.; Joy, A.; Young, S.D.; Callaghan, W.; Dranitsaris, G. Identifying patients at high risk for nausea and vomiting after chemotherapy: The development of a practical validated prediction tool II. Delayed Nausea and Vomiting. J. Supp. Oncol. 2009, 7, W9–W16. [Google Scholar]
- Nawa-Nishigaki, M.; Kobayashi, R.; Suzuki, A.; Hirose, C.; Matsuoka, R.; Mori, R.; Futamura, M.; Sugiyama, T.; Yoshida, K.; Itoh, Y. Control of Nausea and Vomiting in Patients Receiving Anthracycline/Cyclophosphamide Chemotherapy for Breast Cancer. Anticancer Res. 2018, 38, 877–884. [Google Scholar] [PubMed]
- Hilarius, D.L.; Kloeg, P.H.; van der Wall, E.; van den Heuvel, J.J.; Gundy, C.M.; Aaronson, N.K. Chemotherapy-induced nausea and vomiting in daily clinical practice: A community hospital-based study. Support Care Cancer 2012, 20, 107–117. [Google Scholar] [CrossRef]
- Goorts, B.; van Nijnatten, T.J.; de Munck, L.; Moossdorff, M.; Heuts, E.M.; de Boer, M.; Lobbes, M.B.; Smidt, M.L. Clinical tumor stage is the most important predictor of pathological complete response rate after neoadjuvant chemotherapy in breast cancer patients. Breast Cancer Res. Treat. 2017, 63, 83–91. [Google Scholar] [CrossRef]
- Cummings, M.C.; Simpson, P.T.; Reid, L.E.; Jayanthan, J.; Skerman, J.; Song, S.; McCart Reed, A.E.; Kutasovic, J.R.; Morey, A.L.; Marquart, L. Metastatic progression of breast cancer: Insights from 50 years of autopsies. J. Pathol. 2014, 232, 23–31. [Google Scholar] [CrossRef]
- Pan, H.; Gray, R.; Braybrooke, J.; Davies, C.; Taylor, C.; McGale, P.; Peto, R.; Pritchard, K.I.; Bergh, J.; Dowsett, M. 20-Year Risks of Breast-Cancer Recurrence after Stopping Endocrine Therapy at 5 Years. N. Engl. J. Med. 2017, 377, 1836–1846. [Google Scholar] [CrossRef]
- Paul, M.R.; Pan, T.C.; Pant, D.K.; Shih, N.N.; Chen, Y.; Harvey, K.L.; Solomon, A.; Lieberman, D.; Morrissette, J.J.; Soucier-Ernst, D. Genomic landscape of metastatic breast cancer identifies preferentially dysregulated pathways and targets. J. Clin. Investig. 2020, 130, 4252–4265. [Google Scholar] [CrossRef] [PubMed]
- Koca, E.; Kuzan, T.Y.; Dizdar, O.; Babacan, T.; Sahin, I.; Ararat, E.; Altundag, K. Outcomes of locally advanced breast cancer patients with ≥ 10 positive axillary lymph nodes. Med. Oncol. 2013, 30, 615. [Google Scholar] [CrossRef]
- van Mackelenbergh, M.T.; Denkert, C.; Nekljudova, V.; Karn, T.; Schem, C.; Marmé, F.; Stickeler, E.; Jackisch, C.; Hanusch, C.; Huober, J. Outcome after neoadjuvant chemotherapy in estrogen receptor-positive and progesterone receptor-negative breast cancer patients: A pooled analysis of individual patient data from ten prospectively randomized controlled neoadjuvant trials. Breast Cancer Res. Treat. 2018, 167, 59–71. [Google Scholar] [CrossRef] [PubMed]
- Thomas, C.; Gustafsson, J.Å. Progesterone receptor-estrogen receptor crosstalk: A novel insight. Trends Endocrinol. Metab. 2015, 26, 453–454. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, H.; Russell, I.A.; Stark, R.; Rueda, O.M.; Hickey, T.E.; Tarulli, G.A.; Serandour, A.A.; Birrell, S.N.; Bruna, A.; Saadi, A. Progesterone receptor modulates ERα action in breast cancer. Nature 2015, 523, 313–317. [Google Scholar] [CrossRef]
- Faheem, M.; Mahmood, H.; Khurram, M.; Qasim, U.; Irfan, J. Estrogen receptor, progesterone receptor, and Her 2 Neu positivity and its association with tumour characteristics and menopausal status in a breast cancer cohort from northern Pakistan. Ecancermedicalscience 2012, 6, 283. [Google Scholar]
- Rossi, L.; Verrico, M.; Tomao, S.; Ricci, F.; Fontana, A.; Spinelli, G.P.; Colonna, M.; Vici, P.; Tomao, F. Expression of ER, PgR, HER-2, and Ki-67 in core biopsies and in definitive histological specimens in patients with locally advanced breast cancer treated with neoadjuvant chemotherapy. Cancer Chemother. Pharmacol. 2020, 85, 105–111. [Google Scholar] [CrossRef]
- ECOG Common Toxicity Criteria. Available online: https://www3.med.unipmn.it/master/DM/2010/Settembre_2010/Statistica%20Magnani/ctc_ecog.pdf (accessed on 13 September 2021).
- Bio-Mart Ensembl Database. Available online: https://www.ensembl.org/index.html (accessed on 13 December 2021).
- PubMed Database. Available online: https://www.ncbi.nlm.nih.gov/pubmed (accessed on 13 September 2021).
- dbSNP Database. Available online: https://www.ncbi.nlm.nih.gov/snp/ (accessed on 13 September 2021).
- Primer3Plus. Available online: http://primer3plus.com/cgi-bin/dev/primer3plus.cgi (accessed on 13 September 2021).
- Primer-BLAST. Available online: https://www.ncbi.nlm.nih.gov/tools/primer-blast/ (accessed on 13 September 2021).
- WatCut. Available online: http://watcut.uwaterloo.ca/template.php (accessed on 13 September 2021).
- NEBcutter v 2.0. Available online: http://www.labtools.us/nebcutter-v2-0/ (accessed on 13 September 2021).
- Silverton, L.; Dean, M.; Moitra, K. Variation and evolution of the ABC transporter genes ABCB1, ABCC1, ABCG2, ABCG5 and ABCG8: Implication for pharmacogenetics and disease. Drug Metabol. Drug Interact. 2011, 26, 169–179. [Google Scholar] [CrossRef] [PubMed]
- Makówka, A.; Kotowicz, B. The importance of selected biomarkers in the clinical practice of breast cancer patients. Nowotwory J. Oncol. 2023, 73, 277–285. [Google Scholar] [CrossRef]
- Liblab, S.; Vusuratana, A.; Areepium, N. ERCC1, XRCC1, and GSTP1 Polymorphisms and Treatment Outcomes of Advanced Epithelial Ovarian Cancer Patients Treated with Platinum-based Chemotherapy. Asian Pac. J. Cancer Prev. 2020, 21, 1925–1929. [Google Scholar] [CrossRef]
- Bergmann, T.K.; Gréen, H.; Brasch-Andersen, C.; Mirza, M.R.; Herrstedt, J.; Hølund, B.; du Bois, A.; Damkier, P.; Vach, W.; Brosen, K.; et al. Retrospective study of the impact of pharmacogenetic variants on paclitaxel toxicity and survival in patients with ovarian cancer. Eur. J. Clin. Pharmacol. 2011, 67, 693–700. [Google Scholar] [CrossRef] [PubMed]
- Tecza, K.; Pamula-Pilat, J.; Lanuszewska, J.; Grzybowska, E. Genetic polymorphisms and response to 5-fluorouracil, doxorubicin and cyclophosphamide chemotherapy in breast cancer patients. Oncotarget 2016, 7, 66790–66808. [Google Scholar] [CrossRef] [PubMed]
- Tecza, K.; Pamula-Pilat, J.; Lanuszewska, J.; Butkiewicz, D.; Grzybowska, E. Pharmacogenetics of toxicity of 5-fluorouracil, doxorubicin and cyclophosphamide chemotherapy in breast cancer patients. Oncotarget 2018, 9, 9114–9136. [Google Scholar] [CrossRef] [PubMed]
Anemia | Variable | FAC-Induced Anemia | Anemia Risk OR (±95% CI) | p | |
---|---|---|---|---|---|
Absent n (%) | Present n (%) | ||||
Overall | AKR1C3 rs3209896 | ||||
AA/GG | 148 (54.21) | 8 (28.57) | 1 (ref.) | ||
AG | 125 (45.79) | 20 (71.43) | 3.00 (1.23–7.26) | 0.015 | |
ERCC1 rs3212986 | |||||
GG/TT | 173 (63.84) | 12 (44.44) | 1 (ref.) | ||
GT | 98 (36.16) | 15 (55.56) | 2.50 (1.09–5.75) | 0.030 | |
Number of chemotherapy cycles | |||||
0 (<6) | 249 (90.22) | 20 (71.43) | |||
1 (>6) | 27 (9.78) | 8 (28.57) | 3.88 (1.48–10.16) | 0.005 | |
Early | ABCC1 rs129081 | ||||
CC/CG | 102 (36.69) | 10 (58.82) | 1 (ref.) | ||
GG | 176 (63.31) | 7 (41.18) | 3.52 (1.18–10.51) | 0.023 | |
AKR1C3 rs32098968 | |||||
AA/GG | 150 (53) | 4 (23.53) | 1 (ref.) | ||
AG | 133 (47) | 13 (76.47) | 5.85 (1.56–21.83) | 0.008 | |
RALBP1 rs12680 | |||||
GG | 246 (87.23) | 10 (62.50) | 1 (ref.) | ||
CC/CG | 36 (12.77) | 6 (37.50) | 4.41 (1.42–13.74) | 0.009 | |
Recurrent | UGT2B4 rs1131878 | ||||
AG/GG | 138 (50.74) | 14 (50.00) | 1 (ref.) | ||
AA | 134 (49.26) | 14 (50.00) | 8.91 (0.01–0.94) | 0.043 | |
ABCC1 rs129081 | |||||
CG/CC | 171 (63.81) | 14 (50.00) | 1 (ref.) | ||
GG | 97 (36.19) | 14 (50.00) | 8.02 (0.02–0.63) | 0.012 | |
ERCC1 rs1046282 | |||||
TT/CC | 166 (61.25) | 12 (42.86) | 1 (ref.) | ||
TC | 105 (38.75) | 16 (57.14) | 5.24 (1.0–6.99) | 0.047 |
Leukopenia | Variable | FAC-Induced Leukopenia | Leukopenia Risk OR (±95% CI) | p | |
---|---|---|---|---|---|
Absent n (%) | Present n (%) | ||||
Overall | ABCC1 rs129081 | ||||
CC | 28 (20.44) | 20 (12.5) | 1 (ref.) | ||
CG/GG | 109 (79.56) | 140 (87.5) | 1.89 (0.27–0.99) | 0.048 | |
DPYD rs291593 | |||||
CC | 75 (53.57) | 67 (40.85) | 1 (ref.) | ||
CT/TT | 65 (46.43) | 97 (59.15) | 1.73 (1.08–2.76) | 0.020 | |
Early | DPYD rs291583 | ||||
AA/AG | 164 (84.10) | 78 (72.22) | 1 (ref.) | ||
GG | 31 (15.90) | 30 (27.78) | 2.25 (1.25–4.05) | 0.006 | |
AKR1C3 rs32098968 | |||||
AG | 102 (52.85) | 44 (40.74) | 1 (ref.) | ||
AA/GG | 91 (40.74) | 64 (59.26) | 1.77 (1.08–2.89) | 0.021 | |
Recurrent | ABCA1 rs4149339 | ||||
CT | 98 (37.84) | 6 (18.18) | 1 (ref.) | ||
CC/TT | 161 (62.16) | 27 (81.82) | 2.66 (0.14–0.95) | 0.040 | |
DPYD rs291583 | |||||
AA/AG | 222 (82.22) | 21 (61.76) | 1 (ref.) | ||
GG | 48 (17.78) | 13 (38.24) | 2.80 (1.26–6.19) | 0.011 |
Neutropenia | Variable | FAC-Induced Neutropenia | Neutropenia Risk OR (±95% CI) | p | |
---|---|---|---|---|---|
Absent n (%) | Present n (%) | ||||
Overall | DPYD rs291583 | ||||
AA | 53 (36.81) | 38 (23.75) | 1 (ref.) | ||
AG/GG | 91 (63.19) | 122 (76.25) | 1.83 (1.03–3.21) | 0.036 | |
ABCB1 rs17064 | |||||
AA | 256 (93.43) | 27 (96.43) | 1 (ref.) | ||
AT | 18 (6.57) | 1 (3.57) | 4.56 (1.25–16.63) | 0.021 | |
HER2 status | |||||
0 | 51 (45.13) | 47 (33.57) | 1 (ref.) | ||
1 | 62 (54.87) | 93 (66.43) | 1.69 (0.99–2.87) | 0.049 | |
Early | GSTM3 rs3814309 | ||||
CT/TT | 179 (94.71) | 93 (86.92) | 1 (ref.) | ||
CC | 10 (5.29) | 14 (13.08) | 3.12 (1.29–7.52) | 0.010 | |
ABCB1 rs17064 | |||||
AA | 186 (96.37) | 96 (88.89) | 1 (ref.) | ||
AT | 7 (3.63) | 12 (11.11) | 3.52 (1.29–9.56) | 0.013 | |
ERCC1 rs1046282 | |||||
CT/TT | 188 (98.43) | 98 (91.59) | 1 (ref.) | ||
CC | 3 (1.57) | 9 (8.41) | 5.88 (1.50–22.97) | 0.010 | |
ALDH5A1 rs1054899 | |||||
AA | 104 (54.45) | 47 (43.93) | 1 (ref.) | ||
AC/CC | 87 (45.55) | 60 (56.07) | 1.66 (1.00–2.75) | 0.046 | |
Recurrent | ABCC1 rs212091 | ||||
AA/GG | 204 (75.00) | 17 (56.67) | 1 (ref.) | ||
AG | 68 (25.00) | 13 (43.33) | 3.14 (1.36–7.25) | 0.007 | |
UGT2B4 rs1131878 | |||||
AA/GG | 152 (56.30) | 10 (33.33) | 1 (ref.) | ||
AG | 118 (43.70) | 20 (66.67) | 2.68 (1.13–6.34) | 0.024 | |
PR status | |||||
0 | 117 (45.17) | 7 (25) | 1 (ref.) | ||
1 | 142 (54.83) | 21 (75.00) | 2.65 (1.04–6.68) | 0.039 | |
Recurrent Severe | ABCB1 rs17064 | ||||
AA | 268 (94.70) | 16 (80.00) | 1 (ref.) | ||
AT | 15 (5.30) | 4 (20.00) | 5.13 (1.38–19.02) | 0.014 | |
UGT2B4 rs1131878 | |||||
AA/GG | 157 (58.87) | 6 (30.00) | 1 (ref.) | ||
AG | 124 (44.13) | 14 (70.00) | 3.78 (1.26–11.24) | 0.016 | |
ALDH5A1 rs1054899 | |||||
AA/CC | 168 (59.79) | 5 (26.32) | 1 (ref.) | ||
AC | 113 (20.21) | 14 (73.68) | 3.94 (1.34–11.53) | 0.012 |
Nausea | Variable | FAC-Induced Nausea | Nausea Risk OR (±95% CI) | p | |
---|---|---|---|---|---|
Absent n (%) | Present n (%) | ||||
Early | NOS3 rs2566508 | ||||
TG | 103 (64.78) | 107 (76.43) | 1 (ref.) | ||
TT/GG | 56 (35.22) | 33 (23.57) | 1.73 (1.0–2.91) | 0.038 | |
CYP1B1 rs162562 | |||||
CC/AC | 89 (56.33) | 94 (67.14) | 1 (ref.) | ||
AA | 69 (43.67) | 46 (32.86) | 1.63 (1.0–2.66) | 0.048 | |
DPYD rs291583 | |||||
AA | 95 (58.64) | 65 (46.10) | 1 (ref.) | ||
AG/GG | 67 (41.36) | 76 (53.90) | 1.90 (1.12–3.21) | 0.015 | |
AGE | |||||
other | 155 (95.68) | 128 (90.14) | 1 (ref.) | ||
premenopausal | 7 (4.32) | 14 (9.86) | 2.98 (1.12–3.21) | 0.040 | |
Early Severe | AKR1C3 rs3209896 | ||||
AA/GG | 150 (53.19) | 5 (26.32) | 1 (ref.) | ||
AG | 132 (46.81) | 14 (73.68) | 3.80 (1.26–11.39) | 0.016 | |
AGE | |||||
other | 269 (94.39) | 14 (73.68) | |||
premenopausal | 16 (5.61) | 5 (26.32) | 7.49 (2.23–25.08) | 0.001 | |
Recurrent | ERCC4 rs2276464 | ||||
GG | 153 (58.85) | 16 (40.00) | 1 (ref.) | ||
CC/CG | 107 (41.15) | 24 (60.00) | 2.63 (1.26–5.48) | 0.01 | |
SULT4A1 rs138057 | |||||
AA/AG | 244 (95.69) | 36 (87.80) | 1 (ref.) | ||
GG | 11 (4.61) | 5 (12.20) | 3.76 (1.16–12.17) | 0.027 | |
DPYD rs291593 | |||||
CC/TT | 146 (55.73) | 14 (34.15) | 1 (ref.) | ||
CT | 116 (44.27) | 27 (65.85) | 2.65 (1.27–5.59) | 0.01 | |
NOS3 rs2566508 | |||||
TG | 83 (32.17) | 6 (14.63) | 1 (ref.) | ||
TT/GG | 175 (67.83) | 35 (85.37) | 2.74 (1.07–7.06) | 0.036 | |
ALDH5A1 rs1054899 | |||||
CC/CA | 244 (94.57) | 34 (82.93) | 1 (ref.) | ||
AA | 14 (5.43) | 7 (17.07) | 4.72 (1.67–13.36) | 0.003 | |
Severe | UGT2B15 rs3100 | ||||
CT/TT | 174 (65.66) | 15(44.12) | 1 (ref.) | ||
CC | 91 (34.34) | 19 (55.88) | 2.31 (1.11–4.81) | 0.025 | |
AGE | |||||
other | 255 (94.44) | 28 (82.35) | 1 (ref.) | ||
premenopausal | 15 (5.56) | 6 (17.65) | 3.52 (1.23–10.12) | 0.019 |
Vomiting | Variable | FAC-Induced Vomiting | Vomiting Risk OR (±95% CI) | p | |
---|---|---|---|---|---|
Absent n (%) | Present n (%) | ||||
Overall | ABCC5 rs3805114 | ||||
AC/CC | 39 (17.81) | 6 (7.79) | 1 (ref.) | ||
AA | 180 (82.19) | 71 (92.21) | 2.64 (1.05–6.62) | 0.037 | |
AGE | |||||
other | 215 (95.98) | 68 (85.00) | 1 (ref.) | ||
premenopausal | 9 (4.02) | 12 (15.00) | 3.60 (1.38–9.42) | 0.009 | |
Early | RALBP1 rs12680 | ||||
GG | 214 (88.07) | 44 (77.19) | 1 (ref.) | ||
CC/CG | 29 (11.93) | 13 (22.81) | 2.05 (0.97–4.32) | 0.057 | |
AGE | |||||
other | 234 (95.12) | 50 (84.75) | |||
premenopausal | 12 (4.88) | 9 (15.25) | 2.92 (1.11–7.65) | 0.028 | |
Recurrent | ABCB1 rs17064 | ||||
AA | 278 (94.24) | 4 (66.67) | 1 (ref.) | ||
AT/TT | 17 (5.76) | 2 (33.33) | 8.63 (1.37–54.56) | 0.021 | |
NR1/2 rs3732359 | |||||
AA/AG | 251 (85.96) | 3 (50.00) | 1 (ref.) | ||
GG | 41 (14.04) | 3 (50.00) | 6.44 (1.19–34.77) | 0.030 | |
Severe | ABCB1 rs17064 | ||||
AA | 271 (94.76) | 12 (75.00) | 1 (ref.) | ||
AT/TT | 15 (5.24) | 4 (25.00) | 6.46 (1.65–25.25) | 0.007 | |
SULT4A1 rs138057 | |||||
AG/GG | 124 (44.29) | 2 (12.50) | 1 (ref.) | ||
AA | 156 (55.71) | 14 (87.50) | 6.50 (1.37–30.76) | 0.017 | |
AGE | |||||
other | 271 (94.10) | 12 (75.00) | 1 (ref.) | ||
premenopausal | 17 (5.90) | 4 (25.00) | 8.36 (2.07–33.75) | 0.003 | |
Early Severe | SULT4A1 rs138057 | ||||
AA | 160 (55.94) | 10 (90.91) | 1 (ref.) | ||
AG/GG | 126 (44.06) | 1 (9.09) | 11.34 (1.31–98.06) | 0.026 | |
AGE | |||||
other | 277 (94.22) | 7 (63.64) | 1 (ref.) | ||
premenopausal | 17 (5.78) | 4 (36.36) | 14.50 (3.38–62.19) | 0.0003 | |
Severe Recurrent | ABCC1 rs212091 | ||||
AA/AG | 293 (97.99) | 2 (66.67) | 1 (ref.) | ||
GG | 6 (2.01) | 1 (33.33) | 36.17 (1.87–701.24) | 0.017 | |
T (tumor; TNM component) | |||||
>1 | 222 (84.73) | 1 (33.33) | 1 (ref.) | ||
1 | 40 (15.27) | 2 (66.67) | 13.82 (0.98–195.27) | 0.051 |
Nephrotoxicity | Variable | FAC-Induced Nephrotoxicity | Nephrotoxicity Risk OR (±95% CI) | p | |
---|---|---|---|---|---|
Absent n (%) | Present n (%) | ||||
Overall | DPYD rs291593 | ||||
CT | 135 (49.27) | 2 (14.29) | 1 (ref.) | ||
CC/TT | 139 (50.73) | 12 (85.71) | 7.23 (1.44–36.14) | 0.016 | |
AKR1C3 rs3209896 | |||||
AG | 137 (50.37) | 2 (14.29) | 1 (ref.) | ||
AA/GG | 135 (49.63) | 12 (87.71) | 6.71 (1.33–33.75) | 0.020 | |
AGE | |||||
other | 212 (77.09) | 5 (35.71) | 1 (ref.) | ||
postmenopausal | 63 (22.91) | 9 (64.29) | 7.57 (2.12–26.98) | 0.002 | |
ER status | |||||
positive | 116 (63.36) | 5 (35.71) | 1 (ref.) | ||
negative | 96 (36.64) | 9 (64.29) | 5.71 (1.14–18.89) | 0.012 | |
Early | ABCC5 rs3805114 | ||||
AA | 224 (85.82) | 4 (50) | 1 (ref.) | ||
AC | 37 (14.18) | 4 (50) | 6.07 (1.11–32.99) | 0.035 | |
ERCC4 rs4781563 | |||||
AG/GG | 256 (96.97) | 6 (75) | 1 (ref.) | ||
AA | 8 (3.03) | 2 (25) | 24.66 (2.22–273.1) | 0.008 | |
DPYD rs291593 | |||||
CT/TT | 120 (44.78) | 7 (87.5) | 1 (ref.) | ||
CC | 148 (55.22) | 1 (12.50) | 14.92 (1.13–195.99) | 0.038 | |
AGE | |||||
other | 80 (29.74) | 7 (87.50) | 1 (ref.) | ||
perimenopausal | 189 (70.26) | 1 (12.50) | 10.25 (1.11–94.14) | 0.038 |
Hepatotoxicity | Variable | FAC-Induced Hepatotoxicity | Hepatotoxicity Risk OR (±95% CI) | p | |
---|---|---|---|---|---|
Absent n (%) | Present n (%) | ||||
Overall | NR1/2 rs3732359 | ||||
AA | 99 (50.51) | 35 (38.89) | 1 (ref.) | ||
AG/GG | 97 (49.49) | 55 (61.11) | 2.06 (1.14–3.69) | 0.016 | |
AGE | |||||
other | 211 (76.45) | 19 (67.86) | 1 (ref.) | ||
postmenopausal | 65 (23.55) | 9 (32.14) | 3.98 (1.77–8.92) | 0.0007 | |
M (metastases; TNM component) | |||||
no | 225 (92.98) | 19 (79.17) | 1 (ref.) | ||
yes | 17 (7.02) | 5 (20.83) | 8.31 (2.87–8.32) | 0.00008 | |
Early | AKR1C3 rs32098968 | ||||
AG/GG | 127 (69.40) | 16 (51.61) | 1 (ref.) | ||
AA | 56 (30.6) | 15 (48.39) | 2.45 (1.08–5.54) | 0.030 | |
M (metastases; TNM component) | |||||
no | 147 (92.45) | 24 (77.42) | |||
yes | 12 (7.55) | 7 (22.58) | 3.44 (1.19–9.94) | 0.021 |
Toxicity Symptom | Independent Risk Factors | Factors Number | Symptom Absent n (%) | Symptom Present n (%) | Toxicity Risk OR (±95% CI) | p |
---|---|---|---|---|---|---|
Anemia | AKR1C3 rs3209896 AG ERCC1 rs3212986 GT Number of chemotherapy cycles >6 | 0 | 74 (27.31) | 4 (14.81) | 1 (ref.) | |
1 | 149 (54.98) | 9 (33.33) | 1.12 (0.33–3.77) | 0.857 | ||
2 | 45 (16.61) | 9 (33.33) | 3.70 (1.06–12.87) | 0.038 | ||
3 | 3 (1.11) | 5 (18.52) | 30.83 (5.22–181.97) | 0.0001 | ||
0–2 | 268 (98.89) | 22 (81.48) | 1 (ref.) | |||
3 | 3 (1.11) | 5 (18.52) | 20.30 (4.52–91.18) | 0.00008 | ||
Anemia Early | ABCC1 rs129081 GG AKR1C3 rs32098968 AG RALBP1 rs12680CC/CG | 0 | 76 (27.44) | 0 (0.00) | 1 (ref.) | |
1 | 140 (50.54) | 5 (31.25) | ||||
2 | 56 (20.220 | 9 (56.25) | 6.94 (2.22–21.64) | 0.001 | ||
3 | 5 (1.81) | 2 (12.50) | 17.28 (2.65–112.58) | 0.003 | ||
0–1 | 216 (77.98) | 5 (31.25) | 1 (ref.) | |||
2–3 | 61 (22.02) | 11 (68.75) | 7.79 (2.59–23.38) | 0.0002 | ||
0–2 | 272 (98.19) | 14 (87.50) | 1 (ref.) | |||
3 | 5 (91.81) | 2 (12.50) | 7.77 (1.37–43.95) | 0.020 | ||
Anemia Recurrent | UGT2B4 rs1131878 AA ABCC1 rs129081 GG ERCC1 rs1046282 TC | 0 | 52 (18.18) | 0 (0.0) | 1 (ref) | |
1 | 133 (46.50) | 1 (11.11) | ||||
2 | 84 (29.37) | 3 (33.3) | 6.61 (0.67–65.11) | 0.104 | ||
3 | 17 (5.94) | 5 (55.56) | 54.41 (5.93–499.36) | 0.0004 | ||
0–1 | 185 (64.69) | 1 (11.11) | 1 (ref.) | |||
2–3 | 101 (35.31) | 8 (88.89) | 14.63 (1.79–119.85) | 0.012 | ||
0–2 | 269 (94.06) | 4 (44.44) | 1 (ref.) | |||
3 | 17 (5.94) | 5 (55.56) | 19.78 (4.83–80.91) | 0.00003 | ||
Leukopenia | ABCC1 rs129081 CG/GG DPYD rs291593 CT/TT | 0 | 14 (10.22) | 6 (3.75) | 1 (ref.) | |
1 | 75 (54.74) | 75 (46.88) | 2.33 (0.84–6.44) | 0.100 | ||
2 | 48 (35.04) | 79 (49.38) | 3.84 (1.37–10.76) | 0.010 | ||
0 | 14 (10.22) | 6 (3.75) | 1 (ref.) | |||
1–2 | 123 (89.78) | 154 (96.25) | 2.92 (1.09–7.86) | 0.033 | ||
0–1 | 89 (64.96) | 81 (50.62) | 1 (ref.) | |||
2 | 48 (35.04) | 79 (49.38) | 1.81 (1.13–2.89) | 0.013 | ||
Leukopenia Early | DPYD rs291583 GG AKR1C3 rs32098968 AA/GG | 0 | 84 (43.52) | 28 (26.17) | 1 (ref.) | |
1 | 97 (50.26) | 64 (59.81) | 1.97 (1.16–3.37) | 0.012 | ||
2 | 12 (6.22) | 15 (14.02) | 3.75 (1.55–9.03) | 0.003 | ||
0 | 84 (43.52) | 28 (26.17) | 1 (ref.) | |||
1–2 | 109 (56.48) | 79 (73.83) | 2.17 (1.29–3.65) | 0.003 | ||
0–1 | 181 (93.78) | 92 (85.98) | 1 (ref.) | |||
2 | 12 (6.22) | 15 (14.02) | 2.45 (1.10–5.49) | 0.027 | ||
Leukopenia Recurrent | ABCA1 rs4149339 CC/TT DPYD rs291583 GG | 0 | 80 (30.89) | 4 (12.50) | 1 (ref.) | |
1 | 151 (58.30) | 18 (56.25) | 2.38 (0.78–7.32) | 0.127 | ||
2 | 28 (10.81) | 10 (31.25) | 7.14 (2.05–24.91) | 0.002 | ||
0 | 80 (30.89) | 4 (12.50) | 1 (ref.) | |||
1–2 | 179 (69.11) | 28 (87.50) | 3.13 (1.06–9.26) | 0.039 | ||
0–1 | 231 (89.19) | 22 (68.75) | 1 (ref.) | |||
2 | 28 (10.81) | 10 (31.25) | 3.75 (1.61–8.75) | 0.002 | ||
Neutropenia | DPYD rs291583 AG/GG ABCB1 rs17064 AT HER2 status positive | 0 | 14 (12.39) | 9 (6.52) | 1 (ref.) | |
1 | 61 (53.98) | 55 (39.86) | 1.40 (0.56–3.52) | 0.468 | ||
2 | 37 (32.74) | 65 (47.10) | 2.73 (1.07–6.99) | 0.034 | ||
3 | 1 (0.88) | 9 (6.52) | 14.0 (1.38–142.44) | 0.020 | ||
0 | 14 (12.39) | 9 (6.52) | 1 (ref.) | |||
1–3 | 99 (87.61) | 129 (93.48) | 2.03 (0.84–4.90) | 0.115 | ||
0–2 | 112 (99.12) | 129 (93.48) | 1 (ref.) | |||
3 | 1 (0.88) | 9 (6.52) | 7.81 (0.096–63.28) | 0.053 | ||
Neutropenia Early | GSTM3 rs3814309 CC ABCB1 rs17064 AT ERCC1 rs1046282 CC ALDH5A1 rs1054899 AC/CC | 0 | 94 (50.00) | 28 (26.92) | 1 (ref.) | |
1 | 83 (44.15) | 59 (56.73) | 2.38 (1.39–4.10) | 0.002 | ||
2 | 11 (5.85) | 16 (15.38) | 4.88 (2.01–11.81) | 0.0004 | ||
3 | 0 (0.00) | 1 (0.96) | -- | -- | ||
0 | 94 (89.52) | 28 (62.22) | ||||
2–3 | 11 (10.48) | 17 (37.78) | 5.18 (2.16–12.44) | 0.0002 | ||
0 | 94 (50.00) | 28 (26.92) | 1 (ref.) | |||
1–3 | 94 (50.00) | 73.08) | 2.71 (1.61–4.57) | 0.0002 | ||
0–1 | 177 (94.15) | 87 (83.65) | 1 (ref.) | |||
2–3 | 11 (5.85) | 17(16.35) | 3.14 (1.40–7.02) | 0.005 | ||
Neutropenia Recurrent | ABCC1 rs212091 AG UGT2B4 rs1131878 AG PR status positive | 0 | 46 (17.97) | 1 (3.70) | 1 (ref.) | |
1 | 117 (45.70) | 6 (22.22) | 2.36 (0.27–20.45) | 0.433 | ||
2 | 80 (31.25) | 15 (55.56) | 8.63 (1.08–68.65) | 0.040 | ||
3 | 13 (5.08) | 5 (18.52) | 17.69 (1.81–172.51) | 0.012 | ||
0 | 46 (17.97) | 1 (3.70) | 1 (ref.) | |||
1–3 | 210 (82.03) | 26 (96.30) | 5.70 (0.75–43.43) | 0.092 | ||
0–2 | 243 (94.92) | 22 (81.48) | 1 (ref.) | |||
3 | 13 (5.08) | 5 (18.52) | 4.28 (1.38–13.08) | 0.011 | ||
Neutropenia Recurrent Severe | ABCB1 rs17064 AT UGT2B4 rs1131878 AG ALDH5A1 rs1054899 AC | 0 | 91 (32.50) | 1 (5.26) | 1 (ref.) | |
1 | 129 (46.07) | 6 (31.58) | 4.23 (0.50–36.17) | 0.185 | ||
2 | 58 (20.71) | 10 (52.63) | 15.69 (1.93–127.85) | 0.010 | ||
3 | 2 (0.71) | 2 (10.53) | 91.0 (5.45–1520.36) | 0.002 | ||
0 | 91 (32.50) | 1 (5.26) | 1 (ref.) | |||
1–3 | 189 (67.50) | 18 (94.74) | 8.67 (1.13–66.48) | 0.037 | ||
0–2 | 278 (99.29) | 17 (89.47) | 1 (ref.) | |||
3 | 2 (0.71) | 2 (10.53) | 16.35 (2.15–124.32) | 0.007 | ||
Nausea Early | NOS3 rs2566508 TT/GG CYP1B1 rs162562 AA DPYD rs291583 AG/GG AGE premenopausal | 0 | 7 (4.43) | 2 (1.43) | 1 (ref.) | |
1 | 48 (30.38) | 16 (11.43) | 1.16 (0.21–6.38) | 0.856 | ||
2 | 61 (38.61) | 66 (47.14) | 3.78 (0.74–19.21) | 0.100 | ||
3 | 40 (25.32) | 51 (36.43) | 4.46 (0.64–15.76) | 0.071 | ||
4 | 2 (1.270 | 5 (3.57) | 8.75 (0.86–23.13) | 0.061 | ||
0 | 7 (4.43) | 2 (1.43) | 1 (ref.) | |||
1–4 | 151 (95.57) | 138 (98.57) | 3.19 (0.72–105.06) | 0.151 | ||
0–2 | 116 (73.42) | 84 (60.00) | 1 (ref.) | |||
3–4 | 42 (26.58) | 56 (40.00) | 1.84 (1.12–3.00) | 0.014 | ||
0–3 | 156 (98.73) | 135 (96.43) | 1 (ref.) | |||
4 | 2 (1.27) | 5 (3.57) | 2.89 (0.55–15.23) | 0.209 | ||
Nausea Early Severe | AKR1C3 rs3209896 AG AGE premenopausal | 0 | 138 (48.94) | 4 (21.05) | 1 (ref.) | |
1 | 140 (49.65) | 11 (57.89) | 2.71 (0.83–8.76) | 0.094 | ||
2 | 4 (1.42) | 4 (21.05) | 34.5 (6.18–192.60) | <0.00001 | ||
0 | 138 (48.94) | 4 (21.05) | 1 (ref.) | |||
1–2 | 144 (51.06) | 15 (78.95) | 3.59 (1.15–11.15) | 0.026 | ||
0–1 | 278 (98.58) | 15 (78.95) | 1 (ref.) | |||
2 | 4 (1.42) | 4 (21.05) | 18.5 (4.19–81.91) | 0.0001 | ||
Nausea Recurrent | ERCC4 rs2276464 CC/CG SULT4A1 rs138057 GG DPYD rs291593 CT NOS3 rs2566508 TT/GG ALDH5A1 rs1054899 AA | 0 | 24 (9.56) | -- | 1 (ref.) | |
1 | 87 (34.66) | 7 (17.50) | ||||
2 | 98 (39.04) | 11 (27.50) | 1.78 (0.66–4.80) | 0.252 | ||
3 | 41(16.33) | 21 (52.50) | 8.12 (3.12–20.66) | 0.00001 | ||
4 | 1 (0.40) | 1 (2.50) | 15.86 (0.87–289.61) | 0.060 | ||
5 | -- | -- | -- | -- | ||
0–1 | 111 (44.22) | 7 (17.50) | 1 (ref.) | |||
2–4 | 140 (55.78) | 33 (82.50) | 3.74 (1.59–8.80) | 0.0024 | ||
0–3 | 250 (99.60) | 39 (97.50) | 1 (ref.) | |||
4 | 1 (0.40) | 1 (2.50) | 6.41 (0.39–105.84) | 0.192 | ||
Nausea Severe | UGT2B15 rs3100 CC AGE premenopausal | 0 | 166 (62.64) | 13 (38.24) | 1 (ref.) | |
1 | 93 (35.09) | 17 (50.00) | 2.33 (1.08–5.03) | 0.030 | ||
2 | 6 (2.26) | 4 (11.76) | 8.51 (2.11–34.33) | 0.009 | ||
0 | 166 (62.64) | 13 (38.24) | 1 (ref.) | |||
1–2 | 99 (37.36) | 21 (61.76) | 2.71 (1.29–5.67) | 0.008 | ||
0–1 | 259 (97.74) | 30 (88.24) | 1 (ref.) | |||
2 | 6 (2.26) | 4 (11.76) | 5.76 (1.53–21.67) | 0.009 | ||
Vomiting | ABCC5 rs3805114 AA AGE premenopausal | 0 | 37 (16.89) | 5 (6.49) | 1 (ref.) | |
1 | 175 (79.91) | 63 (81.82) | 2.66 (0.98–7.10) | 0.049 | ||
2 | 7 (3.20) | 9 (11.69) | 9.51 (2.37–38.17) | 0.0012 | ||
0 | 37 (16.89) | 5 (6.49) | 1 (ref.) | |||
1–2 | 182 (83.11) | 72 (93.51) | 2.92 (1.10–7.78) | 0.030 | ||
0–1 | 212 (96.80) | 68 (88.31) | 1 (ref.) | |||
2 | 7 (3.20) | 9 (11.69) | 4.01 (1.43–11.22) | 0.008 | ||
Vomiting Early | RALBP1 rs12680 CC/CG AGE premenopausal | 0 | 203 (83.54) | 40 (70.18) | 1 (ref.) | |
1 | 39 (16.05) | 13 (22.81) | 1.69 (0.82–3.46) | 0.148 | ||
2 | 1 (0.41) | 4 (7.02) | 20.3 (2.18–188.49) | 0.008 | ||
0 | 203 (83.54) | 40 (70.18) | 1 (ref.) | |||
1–2 | 40 (16.46) | 17 (29.82) | 2.15 (1.11–2.15) | 0.023 | ||
0–1 | 242 (99.59) | 53 (92.98) | 1 (ref.) | |||
2 | 1 (0.41) | 7.02 | 18.26 (1.98–168.25) | 0.010 | ||
Vomiting Recurrent | ABCB1 rs17064 AT/TT NR1/2 rs3732359 GG | 0 | 236 (80.82) | 2 (33.33) | 1 (ref.) | |
1 | 54 (18.49) | 3 (50.00) | 6.56 (1.06–40.50) | 0.042 | ||
2 | 2 (0.69) | 1 (16.67) | 59.00 (3.63–959.44) | 0.004 | ||
0 | 236 (80.82) | 2 (33.33) | 1 (ref.) | |||
1–2 | 56 (19.18) | 4 (66.67) | 8.43 (1.50–47.50) | 0.015 | ||
0–1 | 290 (99.31) | 5 (83.33) | 1 (ref.) | |||
2 | 2 (0.69) | 1 (16.67) | 29.0 (2.22–378.35) | 0.010 | ||
Vomiting Severe | ABCB1 rs17064 AT/TT SULT4A1 rs138057 AA AGE premenopausal | 0 | 106 (37.86) | 2 (12.50) | 1 (ref.) | |
1 | 161 (57.50) | 7 (43.75) | 2.30 (0.47–11.38) | 0.306 | ||
2 | 13 (4.64) | 6 (37.50) | 24.46 (4.39–136.26) | 0.0002 | ||
3 | -- | 1 (6.25) | -- | -- | ||
0 | 106 (37.86) | 2 (12.50) | 1 (ref.) | |||
1–3 | 174 (62.14) | 14 (87.50) | 4.26 (0.94–19.25) | 0.058 | ||
0–1 | 263 (95.29) | 9 (56.25) | 1 (ref.) | |||
2–3 | 13 (4.71) | 7 (43.75) | 15.97 (5.12–49.87) | <0.00001 | ||
Vomiting Early Severe | SULT4A1 rs138057 AG/GG AGE premenopausal | 0 | 115 (40.21) | 1 (9.09) | 1 (ref.) | |
1 | 166 (58.04) | 6 (54.55) | 4.15 (0.48–35.30) | 0.189 | ||
2 | 5 (1.75) | 4 (36.36) | 92 (8.42–1004.90) | 0.0002 | ||
0 | 115 (40.21) | 1 (9.09) | 1 (ref.) | |||
1–2 | 171 (59.79) | 10 (90.91) | 6.72 (0.84–53.70) | 0.071 | ||
0–1 | 281 (98.25) | 7 (63.64) | 1 (ref.) | |||
2 | 5 (1.75) | 4 (36.36) | 32.11 (7.02–146.81) | <0.00001 | ||
Vomiting Severe Recurrent | ABCC1 rs212091 GG T (tumor; TNM) 1 | 0 | 216 (82.76) | 1 (33.33) | 1 (ref.) | |
1 | 45 (17.24) | 1 (33.33) | 4.80 (0.29–79.19) | 0.271 | ||
2 | -- | 1 (33.33) | -- | -- | ||
0 | 216 (82.76) | 1 (33.33) | 1 (ref.) | |||
1–2 | 45 (17.24) | 2 (66.67) | 9.60 (0.84–109.36) | 0.067 | ||
Nephrotoxicity | DPYD rs291593 CT/TT AKR1C3 rs3209896 AA/GG AGE postmenopausal ER status negative | 0 | 26 (10.08) | 0 (0.00) | 1 (ref.) | |
1 | 99 (38.37) | 0 (0.00) | ||||
2 | 88 (34.11) | 2 (14.29) | ||||
3 | 41 (15.89) | 10 (71.43) | 25.98 (5.44–123.82) | 0.00004 | ||
4 | 4 (1.55) | 2 (14.29) | 53.25 (5.85–484.25) | 0.0004 | ||
0–2 | 213 (82.56) | 2 (14.29) | 1 (ref.) | |||
3–4 | 45 (17.44) | 12 (85.71) | 28.40 (6.10–132.21) | 0.00001 | ||
0–3 | 254 (98.54) | 12 (85.71) | 1 (ref.) | |||
4 | 4 (1.55) | 2 (14.29) | 10.58 (1.75–64.12) | 0.010 | ||
Nephrotoxicity Early | ABCC5 rs3805114 AC ERCC4 rs4781563 AA DPYD rs291593 CC AGE perimenopausal | 0 | 83 (31.80) | 0 (0.00) | 1 (ref.) | |
1 | 127 (48.66) | 1 (12.50) | ||||
2 | 42 (16.09) | 2 (25.00) | 10 (0.87–114.12) | 0.063 | ||
3 | 9 (3.45) | 5 (62.50) | 4.88 (2.30–10.38) | 0.00003 | ||
0–2 | 252 (96.55) | 3 (37.5) | 1 (ref.) | |||
3 | 9 (3.45) | 5 (62.50) | 46.66 (9.55–227.80) | <0.00001 | ||
0–1 | 210 (80.46) | 1 (12.50) | 1 (ref.) | |||
2–3 | 51 (19.54) | 7 (87.50) | 28.82 (3.43–241.83) | 0.002 | ||
Hepatotoxicity | NR1/2 rs3732359 AG/GG AGE postmenopausal M (metastases; TNM), present | 0 | 22 (12.64) | 2 (2.53) | 1 (ref.) | |
1 | 95 (54.60) | 27 (34.18) | 3.13 (0.68–14.32) | 0.139 | ||
2 | 56 (32.18) | 44 (55.70) | 8.64 (1.89–39.34) | 0.005 | ||
3 | 1 (0.57) | 6 (7.59) | 66.0 (4.54–959.22) | 0.001 | ||
0 | 22 (12.64) | 2 (2.53) | 1 (ref.) | |||
1–3 | 152 (87.36) | 77 (97.47) | 5.57 (1.26–24.49) | 0.022 | ||
0–2 | 173 (99.43) | 73 (92.41) | 1 (ref.) | |||
3 | 1 (0.57) | 6 (7.59) | 14.22 (1.66–121.47) | 0.015 | ||
Hepatotoxicity Early | AKR1C3 rs32098968 AA M (metastases; TNM), present | 0 | 105 (66.88) | 12 (40.00) | 1 (ref.) | |
1 | 48 (30.57) | 14 (46.67) | 2.55 (1.09–5.96) | 0.029 | ||
2 | 4 (2.55) | 4 (13.33) | 8.75 (1.90–40.17) | 0.005 | ||
0 | 105 (66.88) | 12 (40.00) | 1 (ref.) | |||
1–2 | 52 (33.12) | 18 (60.00) | 3.02 (1.35–6.79) | 0.007 | ||
0–1 | 153 (97.45) | 26 (86.67) | 1 (ref.) | |||
2 | 4 (2.55) | 4 (13.33) | 5.88 (1.37–25.24) | 0.016 |
Characteristics | n (%) | |
---|---|---|
General | Age at diagnosis (years) | |
| 26 (8.0) | |
| 222 (68.5) | |
| 76 (23.5) | |
Mean age at diagnosis in years (min–max) | 54.7 (22.4–79.0) | |
Year of diagnosis | ||
| 15 (4.6) | |
| 289 (89.2) | |
| 20 (6.2) | |
Histopathology | ||
| 230 (71.1) | |
| 22 (6.8) | |
| 6 (1.8) | |
| 29 (8.9) | |
| 37 (11.4) | |
Tumor grade | ||
| 39 (12.0) | |
| 71 (21.9) | |
| 83 (25.8) | |
| 5 (1.5) | |
| 12 (3.7) | |
| 12 (3.7) | |
| 102 (31.4) | |
Receptors | Estrogen receptor status | |
| 115 (35.5) | |
| 190 (58.6) | |
| 19 (5.9) | |
Progesterone receptor status | ||
| 133 (41.0) | |
| 172 (53.1) | |
| 19 (5.9) | |
HER2 status | ||
| 103 (31.8) | |
| 167 (61.5) | |
| 54 (16.7) | |
triple-negative breast cancer (TNBC) | 37 (11.4) | |
TNM staging | Tumor (T) | |
| 2 (0.6) | |
| 43 (13.3) | |
| 97 (29.9) | |
| 52 (16.0) | |
| 82 (25.3) | |
| 50 (15.5) | |
Nodes (N) | ||
| 85 (26.2) | |
| 108 (33.3) | |
| 67 (20.7) | |
| 19 (5.8) | |
| 1 (0.3) | |
| 44 (13.6) | |
Metastases (M) | ||
| 258 (79.6) | |
| 25 (7.7) | |
| 42 (12.7) | |
Metastases locations | ||
| 8 (32.0) | |
| 3 (12.0) | |
| 3 (12.0) | |
| 2 (8.0) | |
| 9 (36.0) | |
Therapy | Surgery | |
| 187 (57.7) | |
| 87 (26.8) | |
| 14 (4.3) | |
| 73 (22.5) | |
| 50 (15.5) | |
Hormonotherapy | ||
| 204 (63.0) | |
| 120 (37.0) | |
Immunotherapy (Herceptine) | ||
| 36 (11.1) | |
| 288 (88.9) | |
Chemotherapy FAC | ||
| 136 (42.0) | |
| 188 (58.0) | |
Mean number of cycles (range) | 6.1 (3–9) | |
Radiotherapy | ||
| 265 (81.8) | |
| 59 (18.2) | |
| 7 (2.2) | |
Mean radiation dose in Gy (range) | 50.2 (20–70) | |
Mean radiation dose in brachytherapy (range) | 14 (10–30) | |
Follow-Up | Deaths | |
| 98 (32.2) | |
| 207 (67.8) | |
Median OS in months (min–max) | 87.0 (4.3–177.7) | |
Progression | ||
| 107 (35.1) | |
| 198 (64.9) | |
Median PFS in months (min–max) | 78.0 (0.9–176.7) | |
Progression- locations of metastases | ||
| 29 (27.1) | |
| 33 (30.9) | |
| 9 (8.4) | |
| 8 (7.5) | |
| 9 (8.4) | |
| 10 (9.3) | |
| 5 (4.7) | |
| 3 (2.8) | |
| 1 (0.9) | |
Recurrence | ||
| 14 (4.6) | |
| 291 (95.4) | |
Median RFS in months (min–max) | 82.8 (0.5–176.7) | |
Metachronous primary breast cancer | ||
| 11 (3.6) | |
| 294 (96.4) | |
Median survival to next breast cancer diagnosis in months (min–max) | 82.6 (0.5–176.7) | |
Baseline Blood Tests Results | White blood cells (103/µL) | 6.90 ± 1.92 |
Neutrophiles (103/µL) | 4.04 ± 1.58 | |
Thrombocytes (103/µL) | 273.5 ± 74.10 | |
Monocytes (103/µL) | 0.690 ± 2.30 H | |
Reticulocytes (103/µL) | 64.94 ± 20.67 | |
RDW (%) | 14.59 ± 10.03 H | |
Hemoglobin (g/dL) | 13.80 ± 1.28 | |
Creatinine (µmol/L) | 71.98 ± 14.00 | |
Bilirubin. Total (µmol/L) | 10.76 ± 12.16 | |
ALAT (U/L) | 21.13 ± 13.52 | |
AspAT (U/L) | 21.07 ± 12.42 | |
ALP (U/L) | 76.7 ± 40.78 |
Category | Symptom | Toxicity Grade, ECOG Common Toxicity Criteria n (%) | Number of Valid Cases | ||||
---|---|---|---|---|---|---|---|
0 | 1 | 2 | 3 | 4 | |||
Overall toxicity: During the whole first course of treatment | Anemia | 274 (90.13) | 18 (5.92) | 12 (3.95) | -- | -- | 304 |
Neutropenia | 143 (46.88) | 19 (6.23) | 85 (27.87) | 51 (16.72) | 7 (2.30) | 305 | |
Leukopenia | 140 (45.90) | 118 (38.69) | 44 (14.43) | 3 (0.98) | -- | 305 | |
Hepatotoxicity | 201 (68.84) | 84 (28.77) | 6 (2.05) | 1 (0.34) | -- | 292 | |
Gastrointestinal side effects—nausea | 119 (39.02) | 73 (23.93) | 79 (25.90) | 34 (11.15) | -- | 305 | |
Gastrointestinal side effects—vomiting | 225 (73.77) | 24 (7.87) | 40 (13.11) | 16 (5.25) | -- | 305 | |
Nephrotoxicity | 274 (95.14) | 11 (3.82) | 3 (1.04) | -- | -- | 288 | |
Early toxicity: During first two cycles of treatment | Anemia | 287 (94.72) | 8 (2.64) | 8 (2.64) | -- | -- | 303 |
Neutropenia | 193 (63.70) | 8 (2.64) | 67 (22.11) | 30 (9.90) | 5 (1.65) | 303 | |
Leukopenia | 196 (64.47) | 83 (27.30) | 24 (7.89) | 1 (0.33) | -- | 304 | |
Hepatotoxicity | 251 (88.69) | 30 (10.60) | 2 (0.71) | -- | -- | 283 | |
Gastrointestinal side effects—nausea | 162 (53.29) | 66 (21.71) | 57 (18.75) | - | -- | 304 | |
Gastrointestinal side effects—vomiting | 245 (80.33) | 26 (8.52) | 23 (7.54) | 11 (3.60) | -- | 305 | |
Nephrotoxicity | 269 (97.11) | 5 (1.81) | 3 (1.08) | -- | -- | 277 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tęcza, K.; Kalinowska-Herok, M.; Rusinek, D.; Zajkowicz, A.; Pfeifer, A.; Oczko-Wojciechowska, M.; Pamuła-Piłat, J. Are the Common Genetic 3′UTR Variants in ADME Genes Playing a Role in Tolerance of Breast Cancer Chemotherapy? Int. J. Mol. Sci. 2024, 25, 12283. https://doi.org/10.3390/ijms252212283
Tęcza K, Kalinowska-Herok M, Rusinek D, Zajkowicz A, Pfeifer A, Oczko-Wojciechowska M, Pamuła-Piłat J. Are the Common Genetic 3′UTR Variants in ADME Genes Playing a Role in Tolerance of Breast Cancer Chemotherapy? International Journal of Molecular Sciences. 2024; 25(22):12283. https://doi.org/10.3390/ijms252212283
Chicago/Turabian StyleTęcza, Karolina, Magdalena Kalinowska-Herok, Dagmara Rusinek, Artur Zajkowicz, Aleksandra Pfeifer, Małgorzata Oczko-Wojciechowska, and Jolanta Pamuła-Piłat. 2024. "Are the Common Genetic 3′UTR Variants in ADME Genes Playing a Role in Tolerance of Breast Cancer Chemotherapy?" International Journal of Molecular Sciences 25, no. 22: 12283. https://doi.org/10.3390/ijms252212283
APA StyleTęcza, K., Kalinowska-Herok, M., Rusinek, D., Zajkowicz, A., Pfeifer, A., Oczko-Wojciechowska, M., & Pamuła-Piłat, J. (2024). Are the Common Genetic 3′UTR Variants in ADME Genes Playing a Role in Tolerance of Breast Cancer Chemotherapy? International Journal of Molecular Sciences, 25(22), 12283. https://doi.org/10.3390/ijms252212283