Sulfonamide-Based Inhibition of the β-Carbonic Anhydrase from A. baumannii, a Multidrug-Resistant Bacterium
Abstract
:1. Introduction
2. Results and Discussion
2.1. Sequence and Structural Analysis of βAbauCA
2.2. Kinetic Parameters and Inhibition Profiles
- (a)
- Efficient Inhibitors for hCA I and hCA II
- (b)
- Moderate Inhibition of βAbauCA
- (c)
- Weak Inhibitors for βAbauCA
- (d)
- Lack of Selective Inhibitors for βAbauCA
3. Materials and Methods
3.1. Chemicals and Instruments
3.2. Cloning, Expression, and Purification of Recombinant βAbauCA
3.3. Kinetic Parameters and Inhibition Constants
3.4. Phylogenetic Analysis
3.5. Model Generation
3.6. Sequence-Structure Alignment
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yao, Y.; Chen, Q.; Zhou, H. Virulence Factors and Pathogenicity Mechanisms of Acinetobacter baumannii in Respiratory Infectious Diseases. Antibiotics 2023, 12, 1749. [Google Scholar] [CrossRef] [PubMed]
- Lucidi, M.; Visaggio, D.; Migliaccio, A.; Capecchi, G.; Visca, P.; Imperi, F.; Zarrilli, R. Pathogenicity and virulence of Acinetobacter baumannii: Factors contributing to the fitness in healthcare settings and the infected host. Virulence 2024, 15, 2289769–2289796. [Google Scholar] [CrossRef] [PubMed]
- Asif, M.; Alvi, I.A.; Rehman, S.U. Insight into Acinetobacter baumannii: Pathogenesis, global resistance, mechanisms of resistance, treatment options, and alternative modalities. Infect. Drug Resist. 2018, 11, 1249–1260. [Google Scholar] [CrossRef] [PubMed]
- Shadan, A.; Pathak, A.; Ma, Y.; Pathania, R.; Singh, R.P. Deciphering the virulence factors, regulation, and immune response to Acinetobacter baumannii infection. Front. Cell. Infect. Microbiol. 2023, 13, 1053968. [Google Scholar] [CrossRef] [PubMed]
- Kyriakidis, I.; Vasileiou, E.; Pana, Z.D.; Tragiannidis, A. Acinetobacter baumannii Antibiotic Resistance Mechanisms. Pathogens 2021, 10, 373. [Google Scholar] [CrossRef]
- Afeke, I.; Adu-Amankwaah, J.; Nyarko, M.; Bushi, A.; Ablordey, A.S.; Duah, P.A.; Wowui, P.I.; Orish, V.N. Acinetobacter baumannii-induced infective endocarditis: New insights into pathophysiology and antibiotic resistance mechanisms. Future Microbiol. 2022, 17, 1335–1344. [Google Scholar] [CrossRef]
- Lin, M.F.; Lan, C.Y. Antimicrobial resistance in Acinetobacter baumannii: From bench to bedside. World J. Clin. Cases 2014, 2, 787–814. [Google Scholar] [CrossRef]
- Ibrahim, S.; Al-Saryi, N.; Al-Kadmy, I.M.S.; Aziz, S.N. Multidrug-resistant Acinetobacter baumannii as an emerging concern in hospitals. Mol. Biol. Rep. 2021, 48, 6987–6998. [Google Scholar] [CrossRef]
- Maragakis, L.L.; Perl, T.M. Epidemiology, antimicrobial resistance, and treatment options. Clin. Infect. Dis. 2008, 46, 1254–1263. [Google Scholar] [CrossRef]
- Bakhtiyari, N.; Farajnia, S.; Ghasemali, S.; Farajnia, S.; Pourmohammad, A.; Saeidvafa, S. Strategies to Overcome Antimicrobial Resistance in Nosocomial Infections, A Review and Update. Infect. Disord. Drug Targets 2024, 24, 49–62. [Google Scholar] [CrossRef]
- Jeon, J.H.; Jang, K.M.; Lee, J.H.; Kang, L.W.; Lee, S.H. Transmission of antibiotic resistance genes through mobile genetic elements in Acinetobacter baumannii and gene-transfer prevention. Sci. Total Environ. 2023, 857, 159497–159511. [Google Scholar] [CrossRef]
- Marino, A.; Augello, E.; Stracquadanio, S.; Bellanca, C.M.; Cosentino, F.; Spampinato, S.; Cantarella, G.; Bernardini, R.; Stefani, S.; Cacopardo, B.; et al. Unveiling the Secrets of Acinetobacter baumannii: Resistance, Current Treatments, and Future Innovations. Int. J. Mol. Sci. 2024, 25, 6814. [Google Scholar] [CrossRef]
- Gaurav, A.; Bakht, P.; Saini, M.; Pandey, S.; Pathania, R. Role of bacterial efflux pumps in antibiotic resistance, virulence, and strategies to discover novel efflux pump inhibitors. Microbiology 2023, 169, 001333–001345. [Google Scholar] [CrossRef]
- De Gaetano, G.V.; Lentini, G.; Fama, A.; Coppolino, F.; Beninati, C. Antimicrobial Resistance: Two-Component Regulatory Systems and Multidrug Efflux Pumps. Antibiotics 2023, 12, 965. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Liao, X.Y.; Ding, T.; Ahn, J. Role of β-Lactamase Inhibitors as Potentiators in Antimicrobial Chemotherapy Targeting Gram-Negative Bacteria. Antibiotics 2024, 13, 260. [Google Scholar] [CrossRef] [PubMed]
- Vázquez-Ucha, J.C.; Arca-Suárez, J.; Bou, G.; Beceiro, A. New Carbapenemase Inhibitors: Clearing the Way for the β-Lactams. Int. J. Mol. Sci. 2020, 21, 9308. [Google Scholar] [CrossRef] [PubMed]
- Philippon, A.; Arlet, G.; Labia, R.; Iorga, B.I. Class C beta-Lactamases: Molecular Characteristics. Clin. Microbiol. Rev. 2022, 35, e0015021. [Google Scholar] [CrossRef] [PubMed]
- Gedefie, A.; Demsis, W.; Ashagrie, M.; Kassa, Y.; Tesfaye, M.; Tilahun, M.; Bisetegn, H.; Sahle, Z. Acinetobacter baumannii Biofilm Formation and Its Role in Disease Pathogenesis: A Review. Infect. Drug Resist. 2021, 14, 3711–3719. [Google Scholar] [CrossRef]
- Lee, C.R.; Lee, J.H.; Park, M.; Park, K.S.; Bae, I.K.; Kim, Y.B.; Cha, C.J.; Jeong, B.C.; Lee, S.H. Biology of Acinetobacter baumannii: Pathogenesis, Antibiotic Resistance Mechanisms, and Prospective Treatment Options. Front. Cell. Infect. Microbiol. 2017, 7, 55–89. [Google Scholar] [CrossRef]
- Tu, Q.H.; Pu, M.F.; Li, Y.H.; Wang, Y.R.; Li, M.C.; Song, L.H.; Li, M.Z.; An, X.P.; Fan, H.H.; Tong, Y.G. Acinetobacter baumannii Phages: Past, Present and Future. Viruses 2023, 15, 673. [Google Scholar] [CrossRef]
- Young, M.K.; Cripps, A.W. Passive immunization for the public health control of communicable diseases Current status in four high-income countries and where to next. Hum. Vaccines Immunother. 2013, 9, 1885–1893. [Google Scholar] [CrossRef] [PubMed]
- Pavia, C.S.; Wormser, G.P. Passive immunization and its rebirth in the era of the COVID-19 pandemic. Int. J. Antimicrob. Agents 2021, 57, 106275–106278. [Google Scholar] [CrossRef] [PubMed]
- Capasso, C.; Supuran, C.T. An overview of the alpha-, beta- and gamma-carbonic anhydrases from Bacteria: Can bacterial carbonic anhydrases shed new light on evolution of bacteria? J. Enzym. Inhib. Med. Chem. 2015, 30, 325–332. [Google Scholar] [CrossRef]
- Occhipinti, R.; Boron, W.F. Role of Carbonic Anhydrases and Inhibitors in Acid-Base Physiology: Insights from Mathematical Modeling. Int. J. Mol. Sci. 2019, 20, 3841. [Google Scholar] [CrossRef] [PubMed]
- Grahn, E.; Kaufmann, S.V.; Askarova, M.; Ninov, M.; Welp, L.M.; Berger, T.K.; Urlaub, H.; Kaupp, U.B. Control of intracellular pH and bicarbonate by CO2 diffusion into human sperm. Nat. Commun. 2023, 14, 5395–5411. [Google Scholar] [CrossRef] [PubMed]
- Jiao, M.; He, W.B.; Ouyang, Z.L.; Qin, Q.; Guo, Y.C.; Zhang, J.X.; Bai, Y.X.; Guo, X.L.; Yu, Q.Y.; She, J.J.; et al. Mechanistic and structural insights into the bifunctional enzyme PaaY from Acinetobacter baumannii. Structure 2023, 31, 935–947.e4. [Google Scholar] [CrossRef]
- Gallagher, L.A.; Ramage, E.; Weiss, E.J.; Radey, M.; Hayden, H.S.; Held, K.G.; Huse, H.K.; Zurawski, D.V.; Brittnacher, M.J.; Manoil, C. Resources for Genetic and Genomic Analysis of Emerging Pathogen Acinetobacter baumannii. J. Bacteriol. 2015, 197, 2027–2035. [Google Scholar] [CrossRef]
- Buzas, G.M.; Birinyi, P. Newer, Older, and Alternative Agents for the Eradication of Helicobacter pylori Infection: A Narrative Review. Antibiotics 2023, 12, 946. [Google Scholar] [CrossRef]
- Nocentini, A.; Capasso, C.; Supuran, C.T. Carbonic Anhydrase Inhibitors as Novel Antibacterials in the Era of Antibiotic Resistance: Where Are We Now? Antibiotics 2023, 12, 142. [Google Scholar] [CrossRef]
- Supuran, C.T.; Capasso, C. Biomedical applications of prokaryotic carbonic anhydrases. Expert. Opin. Ther. Pat. 2018, 28, 745–754. [Google Scholar] [CrossRef]
- Kumar, R.S.; Ferry, J.G. Prokaryotic carbonic anhydrases of Earth’s environment. Subcell. Biochem. 2014, 75, 77–87. [Google Scholar] [PubMed]
- Smith, K.S.; Ferry, J.G. Prokaryotic carbonic anhydrases. FEMS Microbiol. Rev. 2000, 24, 335–366. [Google Scholar] [CrossRef] [PubMed]
- Plotniece, A.; Sobolev, A.; Supuran, C.T.; Carta, F.; Bjorkling, F.; Franzyk, H.; Yli-Kauhaluoma, J.; Augustyns, K.; Cos, P.; De Vooght, L.; et al. Selected strategies to fight pathogenic bacteria. J. Enzym. Inhib. Med. Chem. 2023, 38, 2155816–2155842. [Google Scholar] [CrossRef]
- Boone, C.D.; Pinard, M.; McKenna, R.; Silverman, D. Catalytic mechanism of α-class carbonic anhydrases: CO2 hydration and proton transfer. Subcell. Biochem. 2014, 75, 31–52. [Google Scholar]
- Parsons, J.B.; Rock, C.O. Bacterial lipids: Metabolism and membrane homeostasis. Prog. Lipid Res. 2013, 52, 249–276. [Google Scholar] [CrossRef]
- De Luca, V.; Giovannuzzi, S.; Supuran, C.T.; Capasso, C. A comprehensive investigation of the anion inhibition profile of a beta-carbonic anhydrase from Acinetobacter baumannii for crafting innovative antimicrobial treatments. J. Enzym. Inhib. Med. Chem. 2024, 39, 2372731. [Google Scholar] [CrossRef] [PubMed]
- Colquhoun, J.M.; Farokhyfar, M.; Anderson, A.C.; Bethel, C.R.; Bonomo, R.A.; Clarke, A.J.; Rather, P.N. Collateral Changes in Cell Physiology Associated with ADC-7 beta-Lactamase Expression in Acinetobacter baumannii. Microbiol. Spectr. 2023, 11, e0464622–e0464638. [Google Scholar] [CrossRef]
- Capasso, C.; Supuran, C.T. Overview on bacterial carbonic anhydrase genetic families. Enzymes 2024, 55, 1–29. [Google Scholar]
- Capasso, C.; Supuran, C.T. Biomedical applications of prokaryotic carbonic anhydrases: An update. Expert. Opin. Ther. Pat. 2024, 34, 351–363. [Google Scholar] [CrossRef]
- Capasso, C.; Supuran, C.T. Carbonic anhydrase and bacterial metabolism: A chance for antibacterial drug discovery. Expert. Opin. Ther. Pat. 2024, 34, 465–474. [Google Scholar] [CrossRef]
- Supuran, C.T. Challenges for developing bacterial CA inhibitors as novel antibiotics. Enzymes 2024, 55, 383–411. [Google Scholar]
- De Simone, G.; Supuran, C.T. (In)organic anions as carbonic anhydrase inhibitors. J. Inorg. Biochem. 2012, 111, 117–129. [Google Scholar] [CrossRef] [PubMed]
- Nocentini, A.; Angeli, A.; Carta, F.; Winum, J.Y.; Zalubovskis, R.; Carradori, S.; Capasso, C.; Donald, W.A.; Supuran, C.T. Reconsidering anion inhibitors in the general context of drug design studies of modulators of activity of the classical enzyme carbonic anhydrase. J. Enzym. Inhib. Med. Chem. 2021, 36, 561–580. [Google Scholar] [CrossRef]
- Waterhouse, A.; Bertoni, M.; Bienert, S.; Studer, G.; Tauriello, G.; Gumienny, R.; Heer, F.T.; de Beer, T.A.P.; Rempfer, C.; Bordoli, L.; et al. SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic Acids Res. 2018, 46, W296–W303. [Google Scholar] [CrossRef] [PubMed]
- Ferraroni, M.; Del Prete, S.; Vullo, D.; Capasso, C.; Supuran, C.T. Crystal structure and kinetic studies of a tetrameric type II beta-carbonic anhydrase from the pathogenic bacterium Vibrio cholerae. Acta Crystallogr. D Biol. Crystallogr. 2015, 71, 2449–2456. [Google Scholar] [CrossRef]
- Smith, K.S.; Cosper, N.J.; Stalhandske, C.; Scott, R.A.; Ferry, J.G. Structural and kinetic characterization of an archaeal β-class carbonic anhydrase. J. Bacteriol. 2000, 182, 6605–6613. [Google Scholar] [CrossRef]
- Supuran, C.T.; Capasso, C. New light on bacterial carbonic anhydrases phylogeny based on the analysis of signal peptide sequences. J. Enzym. Inhib. Med. Chem. 2016, 31, 1254–1260. [Google Scholar] [CrossRef]
- Modak, J.K.; Liu, Y.C.; Machuca, M.A.; Supuran, C.T.; Roujeinikova, A. Structural Basis for the Inhibition of Helicobacter pylori alpha-Carbonic Anhydrase by Sulfonamides. PLoS ONE 2015, 10, e0127149, Correction in PLoS ONE 2015, 10, e0132763. [Google Scholar]
- Supuran, C.T. Multi- and poly-pharmacology of carbonic anhydrase inhibitors. Pharmacol. Rev. 2024, 76, 1–132. [Google Scholar] [CrossRef]
- Li, Z.; Jaroszewski, L.; Iyer, M.; Sedova, M.; Godzik, A. FATCAT 2.0: Towards a better understanding of the structural diversity of proteins. Nucleic Acids Res. 2020, 48, W60–W64. [Google Scholar] [CrossRef]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef] [PubMed]
- Khalifah, R.G. The carbon dioxide hydration activity of carbonic anhydrase. I. Stop-flow kinetic studies on the native human isoenzymes B and C. J. Biol. Chem. 1971, 246, 2561–2573. [Google Scholar] [CrossRef] [PubMed]
- Ozensoy Guler, O.; Arslan, O.; Kockar, F. Differential in vitro inhibitory effects of anticancer drugs on tumor-associated carbonic anhydrase isozymes CA IX and CA XII. Methods Find. Exp. Clin. Pharmacol. 2008, 30, 335–340. [Google Scholar] [CrossRef] [PubMed]
- Craig, D.A. The Cheng-Prusoff Relationship—Something Lost in the Translation. Trends Pharmacol. Sci. 1993, 14, 89–91. [Google Scholar] [CrossRef] [PubMed]
- Del Prete, S.; Vullo, D.; De Luca, V.; Carginale, V.; di Fonzo, P.; Osman, S.M.; AlOthman, Z.; Supuran, C.T.; Capasso, C. Anion inhibition profiles of α-, β- and γ-carbonic anhydrases from the pathogenic bacterium. Bioorganic Med. Chem. 2016, 24, 3413–3417. [Google Scholar] [CrossRef]
- Edgar, R.C. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004, 32, 1792–1797. [Google Scholar] [CrossRef]
- Guindon, S.; Dufayard, J.F.; Lefort, V.; Anisimova, M.; Hordijk, W.; Gascuel, O. New algorithms and methods to estimate maximum-likelihood phylogenies: Assessing the performance of PhyML 3.0. Syst. Biol. 2010, 59, 307–321. [Google Scholar] [CrossRef]
Organism | Acronym | kcat (s−1) | kcat/Km (M−1 × s−1) | KIAAZ (nM) |
---|---|---|---|---|
Homo sapiens | hCA I | 2.0 × 105 | 5.0 × 107 | 250 |
hCA II | 1.4 × 106 | 1.5 × 108 | 12 | |
A. baumannii | βAbauCA | 2.8 × 105 | 1.5 × 107 | 191 |
Name | KI (nM) a | ||
---|---|---|---|
CA I | CA II | βAbauCA | |
1 | 28,000 | 300 | 678.4 |
2 | 25,000 | 240 | 650.1 |
3 | 79.0 | 8.0 | 609.1 |
4 | 78,500 | 320 | 1484 |
5 | 25,000 | 170 | 549.1 |
6 | 21,000 | 160 | 533.7 |
7 | 8300 | 60.0 | 412.7 |
8 | 9800 | 110 | 747.4 |
9 | 6500 | 40.0 | 923.7 |
10 | 7300 | 54.0 | 4160 |
11 | 5800 | 63.0 | 928.4 |
12 | 8400 | 75.0 | 1205 |
13 | 8600 | 60.0 | 443.5 |
14 | 9300 | 19.0 | 603.8 |
15 | 5500 | 80.0 | 624.8 |
16 | 9500 | 94.0 | 699.7 |
17 | 21,000 | 125 | 714.7 |
18 | 164 | 46.0 | 547.4 |
19 | 109 | 33.0 | 406.7 |
20 | 6.0 | 2.0 | 343.8 |
21 | 69.0 | 11.0 | 250.0 |
22 | 164 | 46.0 | 275.6 |
23 | 109 | 33.0 | 316.9 |
24 | 95.0 | 30.0 | 326.1 |
AAZ | 250 | 12.0 | 191.0 |
MZA | 50.0 | 14.0 | 248.7 |
EZA | 25.0 | 8.0 | 76.9 |
DCP | 1200 | 38.0 | 472.4 |
DZA | 50,000 | 9.0 | 232.2 |
BRZ | 45,000 | 3.0 | 170.2 |
BZA | 15.0 | 9.0 | 112.6 |
TPM | 250 | 10.0 | 2766 |
ZNS | 56.0 | 35.0 | 2340 |
SLP | 1200 | 40.0 | 6859 |
IND | 31.0 | 15.0 | 88.7 |
VLX | 54,000 | 43.0 | 214.6 |
CLX | 50,000 | 21.0 | 269.9 |
SLT | 374 | 9.0 | 541.9 |
SAC | 18,540 | 5959 | 7495 |
HCT | 328 | 290 | 874.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luca, V.D.; Giovannuzzi, S.; Capasso, C.; Supuran, C.T. Sulfonamide-Based Inhibition of the β-Carbonic Anhydrase from A. baumannii, a Multidrug-Resistant Bacterium. Int. J. Mol. Sci. 2024, 25, 12291. https://doi.org/10.3390/ijms252212291
Luca VD, Giovannuzzi S, Capasso C, Supuran CT. Sulfonamide-Based Inhibition of the β-Carbonic Anhydrase from A. baumannii, a Multidrug-Resistant Bacterium. International Journal of Molecular Sciences. 2024; 25(22):12291. https://doi.org/10.3390/ijms252212291
Chicago/Turabian StyleLuca, Viviana De, Simone Giovannuzzi, Clemente Capasso, and Claudiu T. Supuran. 2024. "Sulfonamide-Based Inhibition of the β-Carbonic Anhydrase from A. baumannii, a Multidrug-Resistant Bacterium" International Journal of Molecular Sciences 25, no. 22: 12291. https://doi.org/10.3390/ijms252212291
APA StyleLuca, V. D., Giovannuzzi, S., Capasso, C., & Supuran, C. T. (2024). Sulfonamide-Based Inhibition of the β-Carbonic Anhydrase from A. baumannii, a Multidrug-Resistant Bacterium. International Journal of Molecular Sciences, 25(22), 12291. https://doi.org/10.3390/ijms252212291